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Abstract. As domain-specific modeling begins to attract widespread
acceptance, pressure is increasing for the development of new domain-
specific languages. Unfortunately these DSLs typically conflict with the
grammar of the host language, making it difficult to compose hybrid
code except at the level of strings; few mechanisms (if any) exist to
control the scope of usage of multiple DSLs; and, most seriously, existing
host language tools are typically unaware of the DSL extensions, thus
hampering the development process. Language boxes address these issues
by offering a simple, modular mechanism to encapsulate (i) compositional
changes to the host language, (ii) transformations to address various
concerns such as compilation and syntax highlighting, and (iii) scoping
rules to control visibility of fine-grained language extensions. We describe
the design and implementation of language boxes, and show with the help
of several examples how modular extensions can be introduced to a host
language and environment.

1 Introduction

As domain-specific languages (DSLs) [1] are becoming mainstream, pressure is
increasing for better development support and close integration with the host
language and existing tools. However today’s general-purpose mainstream lan-
guages lack the possibility to introduce and express domain-specific concerns in
a compact and modular way. Repetitive boilerplate code bloats the code base
and makes it difficult to maintain and extend a software system. For example,
a single addition of a domain-specific language feature requires changes in both
the compiler and the editor. Extending a language to support domain-specific
additions thus results in crosscutting changes to the language and development
environment. Furthermore different language additions should be active at the
same time and tightly integrate with each other, without interfering with each
other.
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Our approach. In this paper we present the model of language boxes and how to
apply the concepts to embedded languages. Language boxes are used to describe
and implement language features in a modular way. Our model works on an
executable grammar model [2] of the host language. A language change is used
to specify a composition of this grammar together with the grammar of a dif-
ferent language. Language concerns denote a transformation from parse tokens
to the abstract syntax tree (AST) nodes of the host language. Other concerns
are supported to specify additional behavior of the tools, such as syntax high-
lighting, contextual menus, error correction or autocompletion. The language
scope describes the contexts in which the new language features are enabled.
Language boxes yield a high-level model to cleanly embed language extensions
and language changes into an existing host environment.

Our contribution. This paper presents the model and implementation of lan-
guage boxes, a novel model for language engineering and domain-specific lan-
guage development. Our contributions are the following:

– We use executable grammars to enable fine-grained language changes, lan-
guage composition and language re-use.

– We define a composable model of language changes and their transformation
to the host language.

– We describe the integration of different language related tools, such as editors
and debuggers.

– We propose a scoping mechanism to define when and where different lan-
guage features are to be active.

Outline. This paper is structured as follows: In Section 2 we present a motivating
example. In Section 3 we introduce language boxes. Section 4 gives an overview of
the implementation identifying the general principles and techniques necessary
to build the proposed system. Section 5 shows the implementation in action.
Section 6 discusses related work, and Section 7 evaluates and summarizes our
approach to introduce new features to an existing language.

2 Language Boxes in Practice

In this section, we demonstrate a simple language extension to motivate our
work. As host language we use Smalltalk [3]. Readers unfamiliar with the syn-
tax of Smalltalk might want to read the code examples in the following sections
aloud and interpret them as normal sentences. A message send (method invo-
cation) with two arguments is written like this: receiver do: argument1 with:

argument2; the name of this message (method) is do:with:. A message send
with no arguments is written like this: receiver message. The most important
syntactic elements of Smalltalk are the dot to separate statements: statement1
. statement2; square brackets to denote code blocks (anonymous functions):
[ statements ]; and single quotes to delimit strings: 'a string'. The caret: ^
returns the result of the following expression.

The Smalltalk programming language does not include a literal type for reg-
ular expressions. Traditionally regular expressions are instantiated by passing a



string to a constructor method of the class Regexp. To match a sequence of digits
one would, for example, write: Regexp on: '\d+'. For developers such lengthy
code is repetitive to write. Furthermore, the code is inefficient as the regular
expression is parsed and built at run-time. In this section we propose a language
extension that adds regular expression literals to the language. This makes a
good illustration for our framework, because regular expressions represent an
already existing non-trivial domain-specific language that is currently not well
integrated into the host system.

A new language box is created by subclassing LanguageBox. We use ordinary
methods to define the characteristics of the language extension. In our example
we start by creating a new language box called RegexpLanguageBox. We add the
method change: returning a change object that determines how to transform the
host language grammar.

RegexpLanguageBox>>change: aGrammar

^ LanguageChange new

after: aGrammar literal;

choice: '/' , '/' not star , '/'

The first line in bold is the method declaration with class and method name.
The returned change specifies that the grammar fragment '/' , '/' not star ,

'/' is appended as an additional choice after the existing grammar production
for literals. aGrammar literal returns the original production used to parse literal
values in the host language.

The grammar extension is defined using a DSL for parser combinators, where
the comma is used as a sequence operator and strings denote parsers for them-
selves. '/' not star is a parser that accepts zero or more occurrences of char-
acters other than the slash. In this example the parser accepts any sequence of
characters that start and end with the slash delimiter.

The editors, compiler and debugger will automatically pick up the language
box and use its change definition to transform the grammar of the host language.
Anywhere in the source code where a literal is expected a regular expression with
the specified syntax is accepted as well. At this point, the language box does not
yet specify any additional behavior for the tools. This means that the compiler
would accept code that uses the new language extension, but generate and insert
a default null node into the host language AST.

RegexpLanguageBox>>compile: aToken

^ (Regexp on: aToken string) lift: aToken

The above method is a hook method that is automatically called by the
compiler to transform the parse tree tokens of the language extension to the
host language AST. In our example we instantiate a regular expression object
from the token value. The method lift: takes the regular expression object and
wraps it into a literal node of the host language. The original token is passed
into the literal node to retain the source mapping for the debugger.

Expressions like 'One After 909' =~ /\d+/ can now be used and evaluated
from anywhere within the system. As depicted in Figure 1 the transformed gram-
mar of the host language parses the source code and uses our custom transfor-
mation function compile: as a new production action to transform the input to
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Fig. 1: From the source code to the AST of the host language.

the host AST. Note that =~ is a matching operator with respect to regular ex-
pressions. This operator is not a language extension, but a method implemented
in the String class. In this example, the matched sub-string '909' is returned.

The syntax highlighter in the editor recognizes the regular expression syntax
as valid, but it still colors the source using the default font style. To change that,
we add syntax highlighting instructions to the language box:

RegexpLanguageBox>>highlight: aToken

^ aToken -> Color orange

With only a few lines of code we have demonstrated how to extend the
syntax of a general purpose language with a new literal type, how to define the
transformation to the host language AST and how to integrate it into editors by
customizing the syntax highlighting.

3 Language Box Model

Parser, compiler and associated development tools are usually black boxes. Ex-
tending, changing or replacing the default behavior is not easy and thus discour-
aged. We propose a high-level language model that provides us with fine grained
access to the different syntactic elements of the host language without revealing
too much of the underlying implementation. Furthermore we provide a set of
extension points for the language grammar to allow developers to extend the
compiler and available development tools. Language extensions should be open,
in the sense that they tightly integrate anywhere in the host language gram-
mar without requiring special syntactical constructs to change between different
language extensions.

As depicted in Figure 2 the language box model consists of three parts: In
Section 3.1 we introduce the language change, which defines how the grammar of
the host language is changed. Then in Section 3.2 we explain how language con-
cerns customize the behavior of language extensions, such as syntax highlighting
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Fig. 2: The interplay of the language box model with the application layer and
the development tools.

or menu actions. Finally in Section 3.3 we discuss the language scope, which is
used to restrict the effect of a language box to certain parts of the application
code.

3.1 Language Change

The language change is used to encapsulate the change applied to the grammar of
the host language. In our case the language extension is defined using a grammar
fragment and a specification of how this fragment is composed with the grammar
of the host language.

In Section 2 we added a new regular expression literal as an additional choice
to the existing literals. This means the host language grammar rule was changed
from

Literal ::= String / Number / Boolean

to
Literal ::= String / Number / Boolean / Regexp

where Regexp was defined as Regexp ::= '/' , '/' not star , '/'. In addition
to appending to the end of a choice, we also support various other composition
strategies to combine the grammar of the host language and the new grammar
fragment. These composition strategies are listed in Table 1.

An important property of the language change is that the grammar that
is composed into the host language might reference other productions from the
existing grammar. This allows language designers to reuse existing features of the
host language and closely integrate existing syntax with the language extension.
Depending on the host language production we can decide to change the language
box to replace the complete host language with a new grammar (for example
when the start production of the grammar is replaced), or just to change subtle
features (for example when adding a new literal type).

While the inserted grammar fragment in our initial example was intentionally
chosen to be trivial, it is possible to compose arbitrary complex grammars using
the given composition strategies. Furthermore multiple composition strategies
can be defined in the same language box, as we will demonstrate in Section 5
where Smalltalk and SQL are combined.



Action Composition Production

replace – R ::= X
before sequence R ::= X A
after sequence R ::= A X
before choice R ::= X / A
after choice R ::= A / X

Table 1: Composition strategies for a grammar rule R ::= A. A is a symbol of
the original grammar. X is the extending grammar fragment as defined by the
language change. X A denotes the sequence of X and A, X / A denotes an
ordered choice between X and A.

3.2 Language Concern

When changing or adding new language features, there are different concerns to
integrate into the toolset of the application developers. First and foremost we
need to specify a transformation from our language extension to the code rep-
resentation of the host language. Optionally we might want to closely integrate
the language extensions into the existing programming tools, such as editors and
debuggers. This is done by adding concerns to the language box such as:

– Compilation. This concern describes the transformation from the AST
nodes and parse tree tokens of the language extension to the AST of the host
language. We call this process compilation because it makes the language
extension executable. Subsequently the host language AST is passed into the
standard compiler tool-chain that compiles it further down into an efficiently
executable representation.

– Highlighting. The syntax highlighter concern annotates the source ranges
with color and font information, so that the editor and debugger are able
to display properly colored and formatted text. The resulting source ranges
and styling information is then passed into the standard editors for display.

– Actions. This concern provides a list of labels and associated actions that
are integrated into the standard contextual menu of editors. This allows for
context sensitive functionality, such as language specific refactorings. Thus
unsuitable actions from the host language or other language extensions are
not displayed when the user works in the context of a language extension.

Other concerns can be specified similarly, for example enhanced navigation
and search facilities, error correction, code expansion templates, code comple-
tion, code folding, or pretty printing.

Concerns are implemented by overriding a default implementation. This fa-
cilitates the evolution of new language features, starting from a minimal lan-
guage box that defines a change to the host grammar only. At a later point the
language designer can incrementally add new concerns to make the language in-
tegrate more appropriately with the tools. In the introductory example we saw



that the compilation and highlighting concerns were not specified in the begin-
ning. In this case a default implementation caused the compiler to insert a null
node and the highlighter to use the default text color.

3.3 Language Scope

To scope the effect of language boxes to well-defined fragments of the application
source code, we need a way to specify the extent of the language changes within
the application code. The scope identifies language boxes and the associated
code entities, as depicted in Figure 2. Language developers can define a default
scope. From coarse to fine grained the following scopes are supported:

– System. The system scope affects all the source code of the system without
restriction. This is the default, if no more restrictive scope is specified.

– Package. The package scope affects all source artifacts contained in a par-
ticular package.

– Class. The class scope affects all source artifacts of a particular class, or its
class hierarchy.

– Method. The method scope affects a particular method, or methods with
a particular name.

Furthermore we give the language box users the possibility to explicitly add a
language box to a particular code entity (package, class, method) or to remove it.
This effectively overrides the default scope and facilitates a fine-grained control of
language features from within the application code. Language boxes are added
or removed using either a context menu in the user interface or a declarative
specification in the source code.

Whenever a tool requests a grammar at a specific location in the source code,
the language box system determines all active language boxes by comparing their
scope with the current source location. It then transforms the host language
grammar according to the change specification in the language boxes and inserts
the concerns for the active tool. This enables one to scope language boxes and
their grammar changes to well-defined parts of the system.

4 Implementation

To validate the language box model, we have implemented it in Pharo [4], an
open-source Smalltalk [3] platform3. Language boxes are implemented on top of
the extensible compiler framework Helvetia. As host language we use Smalltalk
because it provides excellent access to compiler and tools, as everything is im-
plemented in Smalltalk itself and is accessible at runtime [5]. Furthermore the
syntax of Smalltalk is relatively simple (i.e., 11 AST nodes, 52 grammar rules),
which makes it a good base for program and grammar transformation.

Our implementation depends on the following host language features:

3 Our implementation of language boxes along with its source code and examples can
be downloaded from http://scg.unibe.ch/research/helvetia.

http://scg.unibe.ch/research/helvetia


Modular compiler. The internals of the compiler must be accessible so that
a custom parser and an additional transformation phase can be introduced.

Structural reflection. The system must provide the capability to query pack-
ages, classes, and methods to determine when and where to apply language
boxes.

Behavioral reflection. The AST must be a first class abstraction that can
be queried, extended with new node types, built and transformed during
compilation.

Extensible tools. The development environment and its tools must be exten-
sible and have full access to structural and behavioral reflection.

Our implementation of language boxes is lightweight because we reused as
much functionality from the host environment as possible. Our approach is
entirely implemented in Smalltalk. We do not change the underlying virtual
machine. The implementation presented in this paper consists of 640 lines of
Smalltalk code, of which 410 lines consist of a reimplementation of the tradi-
tional Smalltalk parser as an executable grammar. Please refer to our related
work for a detailed comparison of different programming languages and their
support for our requirements [6].

To facilitate transformations on the host language grammar we replaced the
standard LALR parser of Smalltalk with our own implementation. We com-
bine four different parser methodologies: scannerless parsers, parser combinators,
parsing expression grammars and packrat parsers.

– Scannerless Parsers [7] combine lexical and context-free syntax into one
grammar. This avoids the common problem of overlapping token sets when
grammars are composed. Furthermore language definitions become more
concise as there is only one uniform formalism.

– Parser Combinators [8] are building blocks for parsers modeled as a graph of
composable objects; they are modular and maintainable, and can be changed,
recomposed and reflected upon. Parser combinators enable language boxes
to perform grammar transformation on the fly.

– Parsing Expression Grammars (PEGs) [9] provide ordered choice. Unlike
in parser combinators, the ordered choice of PEGs always follows the first
matching alternative and ignores other alternatives. With valid input we
always get exactly one parse-tree, the result of a parse is never ambiguous.

– Packrat Parsers [10] give us linear parse time guarantees and avoid problems
with left-recursion in PEGs. We discovered that enabling memoization on
all primitive parsers is not worth the effort, as the additional bookkeeping
outweighs the performance gain. We only apply memoization at the level of
productions in the language definition, which significantly improves parsing
speed.

Before a method is compiled, a custom parser for that particular compilation
context is composed. This new parser is built by starting from the standard
grammar of the host language and by applying the change objects of the active
language boxes in the defined order.

Figure 3 depicts a fragment of the original Smalltalk grammar and the regular
expression language extension that we introduced in Section 2. The composition
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Fig. 3: Traditional Smalltalk (left) and the regular expression extension (right)
are combined in three steps to a single grammar: (a) the grammar fragment
is wrapped with the action, (b) the wrapped fragment is combined with the
existing grammar, and (c) all references to the original production are replaced
with the combined one.

algorithm takes the original grammar of the host language aGrammar and the
grammar of the language extension fragment and composes them using the fol-
lowing algorithm. For conciseness we present the complete algorithm as a single
method with nested conditional statements instead of the original implementa-
tion, which makes use of the strategy design pattern.

1 LanguageChange>>modify: aGrammar with: aLanguageBox

2 | wrapped replacement |

3 wrapped := fragment ==> [ :nodes | " Figure 3(a) "

4 aLanguageBox

5 perform: aGrammar concern

6 with: (self transform: nodes) ].

7 replacement := action = 'replace' " Figure 3(b) "

8 ifTrue: [ wrapped ]

9 ifFalse: [

10 action = 'before'

11 ifTrue: [ composition with: wrapped with: production ]

12 ifFalse: [

13 action = 'after'

14 ifTrue: [ composition with: production with: wrapped ]

15 ifFalse: [ self error: 'Invalid composition.' ] ] ].

16 aGrammar replace: production with: replacement " Figure 3(c) "

The composition algorithm modify:with: is implemented in the language
change object. As input parameter the method takes the original language gram-



mar aGrammar and the language box aLanguageBox responsible for this change. The
actual transformation is a three step process:

1. Lines 3–6 fetch the grammar fragment and wrap it with the concern of the
language box. This is achieved with the ==> operator which adds an action
to a production. In our example with the regular expressions the fragment
is the new parser '/' , '/' not star , '/'. The concern depends on what
the grammar is used for. If the grammar is used for compilation, the compile
concern compile: is called; if the grammar is used for syntax highlighting, the
highlight concern highlight: is called, etc. This does not change the structure
of the resulting language grammar, but allows the production actions to
produce different results for the different concerns. While the compilation
concern requires a complete and valid AST the highlighting concern produces
a stream of tokens with source position and color information.

2. Depending on the action and the selected composition a new grammar frag-
ment is built (Figure 3(b)):
(a) The replace action (line 8) replaces the selected grammar production

with the wrapped fragment.
(b) The before action (line 11) composes the wrapped fragment with the old

production using either choice or sequence as composition operator.
(c) The after action (line 14) composes the old production with the wrapped

fragment using either choice or sequence as composition operator.
In our example the replacement production is defined as a choice that is
added after the original literal production, i.e., replacement ::= production

/ wrapped where production is the grammar fragment for literals in the
original Smalltalk grammar.

3. Last on line 16 (Figure 3(c)) the grammar is told to replace all references
to the original production with the replacement. This is done by traversing
the complete grammar and replacing all the references to the old production
with the new one. In our example all references to original literal production
are replaced with the newly composed grammar fragment. This step ensures
that the new grammar can parse regular expressions everywhere the host
syntax would expect a literal.

In Smalltalk, the unit of editing and compilation is the method. This facil-
itates our language box model and enables a straightforward integration with
the editor and other tools. The small and well-defined unit of editing eases the
way for language boxes, however it is not a strict requirement. Depending on
the granularity of the language scopes to be supported, grammar changes could
be applied at the level of packages, files, classes or methods. The scoping of
language boxes depends on the reflective capabilities of the host system [11].

5 Case Study

In order to demonstrate the applicability of language boxes in practice, we
present and discuss a more elaborate language extension. The goal is to em-
bed a subset of the Structured Query Language (SQL) in the host language.



Furthermore SQL should be extended so that values within the query can be
safely replaced with expressions from the host language.

The following method shows a typical example of an embedded SQL query:

SQLQueries>>findUser: aString

| query rows |

query := 'SELECT * FROM users WHERE username = "' , aString

asEscapedSql , '"'.

rows := SQLSession execute: query.

^ rows first

The query is concatenated from a series of strings and the input parameter
aString. The composition of SQL from strings is not only error prone and cum-
bersome, but also introduces possible security exploits. The developer has to pay
attention to correctly escape all input, otherwise an attacker might be able to
manipulate the original SQL statement.

The following method shows the improved version using a language box for
SQL statements:

SQLQueries>>findUser: aString

| rows |

rows := SELECT * FROM users

WHERE username = @(aString).

^ rows first

SQL statements can be used anywhere in the host language where an ex-
pression is expected. The syntax of the SQL expression is automatically verified
when compiling the code, assembled and executed, and the result is passed back
into the host language as a collection of row objects. SQL itself is extended with
a special construct @(...) to embed host language values into the query.

5.1 Adding an SQL Language Extension

Since SQL is a language on its own and considerably more complex than the
regular expression language we saw before, we use an external class to define its
grammar. To do this we took advantage of the same infrastructure that we used
to define a mutable model of the host language grammar. We implemented the
syntax specification described for SQLite4 which is almost identical to SQL92,
but leaves out some of the more obscure features.

To combine the host language and SQL, we create a new language box called
SQLanguageBox. Again we specify a change method that describes how the new
language is integrated into the host language:

1 SQLanguageBox>>change: aSmalltalkGrammar

2 | sqliteGrammar compositeChange |

3 sqliteGrammar := SQLiteGrammar new.

4 compositeChange :=

5 (LanguageChange new

6 before: aSmalltalkGrammar expression;

4 http://www.sqlite.org/syntaxdiagrams.html

http://www.sqlite.org/syntaxdiagrams.html


7 choice: sqliteGrammar)

8 + (LanguageChange new

9 before: sqliteGrammar literalValue;

10 choice: '@(' , aSmalltalkGrammar expression , ')').

11 ^ compositeChange

On line 3 we instantiate the SQL grammar defined in the class SQLiteGrammar.
In this example a single grammar transformation is not enough. On lines 5–7 we
extend the production for host language expressions with SQL as an additional
choice that is added before the original expression production. On lines 8–10
we extend the production for SQL literal values with a new syntax that lets
Smalltalk expressions be part of SQL. The two changes are composed using the
+ operator and returned on line 11.

Note that the first change object introduces ambiguity into the host language
grammar. Intentionally we decide that the SQL grammar should take precedence
over the Smalltalk expression production and insert the SQL grammar before the
expression production of the host language. SELECT * FROM users is both a syn-
tactically valid SQL statement and a syntactically valid Smalltalk expression5.
Since we added the SQL grammar to the beginning of the original host language
production any expression is first tried with the SQL grammar. If that does not
work the original production of the host language expression will take over. The
ordered choice of PEGs avoids the ambiguity by giving SQL precedence over
Smalltalk.

The problem that an SQL expression can potentially hide valid Smalltalk
code remains open. The current implementation gives the responsibility to detect
and avoid such problems to the language developer. Language boxes provide the
tools to tightly control the scope of language changes, as discussed in Section 3.3.
Furthermore, conflicting language changes can always be surrounded by special
tokens to make the intention absolutely clear. An example of this can be seen in
the example above on line 10 where Smalltalk expressions in SQL are surrounded
by @(...). If possible we try to avoid such extra tokens as they clutter the close
integration of the new language. When integrating SQL into Smalltalk this is
less of a problem, as SQL is a very strict language with a rigid and very verbose
syntax. A test run on a large collection of open-source Smalltalk code with a
total of over 1 200 000 expression statements revealed that none of them parsed
as valid SQL.

Similar to the regular expression example we define a compilation concern
that tells the language box how to compile the new expression to the host lan-
guage. In this example we do not receive a single token, but the complete AST
as it is produced by the SQL grammar.

5 In Smalltalk, this would send the message users to the variable FROM, and then
multiply the result with the variable SELECT.



1 SQLanguageBox>>compile: anSQLNode

2 | nodes query |

3 nodes := anSQLNode allLeaves collect: [ :token |

4 token isToken

5 ifTrue: [ token string lift: token ]

6 ifFalse: [ ``(`,token asEscapedSql) ] ].

7 query := nodes fold: [ :a :b | ``(`,a , ' ' , `,b) ].

8 ^ ``(SQLSession execute: `,query)

The method above makes use of quasiquoting facilities known from Lisp
[12] and OMetaCaml’s staging constructs [13]. A quasiquote is an expression
prefixed with `` which is delayed in execution and represents the AST of the
enclosed expression at runtime. The unquote `, is used within a quasiquoted
expression. It is executed when the AST is built and can be used to combine
smaller quasiquoted values to larger ones. This language extension has also been
realized using language boxes.

The compilation concern flattens all the leaf nodes of the SQL AST (line 3)
and transforms the input to host language AST nodes (lines 4–6). Tokens of
the SQL AST are transformed to literal nodes in the host language (line 5).
If the node comes from embedded Smalltalk code, we automatically wrap the
expression with a call to asEscapedSql to ensure it is properly escaped (line 6).
Finally we concatenate all the nodes to a single query expression (line 7), which
is then sent to the current SQL session manager (line 8).

5.2 Restricting the Scope of a Language Extension

As we noted in our introductory example, by default a language box is active
in the complete system. In many cases this is not desired, especially when a
language change is more intrusive. We provide two different ways of modeling
the scope of a language extension. While the first one is aimed at language
designers, the second one targets language users who want to select and activate
available language extensions while working in their code.

The language designer can specify a scope for a language, by overriding the
scope method in the language box. The default implementation of the method
returns a system scope, but frameworks might want to reduce the scope to
certain class hierarchies, packages, classes or methods. This feature makes use
of the reflective facilities of the host language to determine if a given language
box is active in a specific compilation context.

The language user can further change the scope of a language box through
the code editor. As an extension we added menu commands that allow developers
to add and remove language extensions from code entities like packages, classes
and methods. This is useful for language extensions that make sense in different
smaller scopes that cannot be foreseen by the language designer. Furthermore
we extended the code editor with functionality to display the active extensions,
so that the developer knows what he is expected to write. Also distinct syntax
highlighting (i.e., different background colors) in the language definition can
help developers to know in which context they are currently working.



5.3 Mixing Different Language Extensions

The SQL language extension blends nicely with the host language, as well as
the regular expression language extension we presented previously. For example
we can use both language extensions at the same time, together with the host
language:

rows := SELECT * FROM users

WHERE username = @(aString ~= /\s*(\w+)\s*/)

This example transparently expands to the following (more verbose) code:

rows := SQLSession execute: 'SELECT * FROM users WHERE username = ' ,

(aString ~= (Regexp on: '\s*(\w+)\s*')) asEscapedSql

The compiler automatically ensures that the SQL statement is syntactically
valid, that all values injected into the statement are properly escaped and that
the query is automatically executed within the current session.

5.4 Tool Integration

Adding syntax highlighting to the SQL expressions is straightforward. Contrary
to the regular expression that was highlighted using a single color, the SQL
extension is more complex and we have to deal with many different kinds of
keywords, operators and expression types. To avoid having to specify the high-
lighting for every production within the language box itself, we allow language
developers to specify an external class that specifies the concern-specific produc-
tion actions. In the case of syntax highlighting these actions return the color and
font information.

SQLanguageBox>>highlight

^ SQLiteHighlighter

Adding a context menu item that links to the SQL documentation is a matter
of adding the method:

SQLanguageBox>>menu: aMenu using: anSQLNode

^ aMenu

addMenuItem: 'SQLite Documentation'

action: [ WebBrowser open: anSQLNode documentationUrl ]

Clicking on the menu item opens a web browser on the URL returned by the
AST node under the cursor. The method documentationUrl is implemented to
dispatch to the parent node if no documentation is available at the most specific
AST node.

Figure 4 depicts a standard Smalltalk code browser and a debugger on the
presented example. The upper part of both windows show the navigation context,
in the code browser this is the currently edited package, class and method; in
the debugger this is the execution stack. In both cases the lower part shows the
source code of the method properly highlighted.



(a) Code Browser

(b) Debugger

Fig. 4: Development tools on a method that combines two language boxes and
the host language.



The transformations as defined by the compilation concern are not visible to
end-users that work at the level of source-code. The transformations are only vis-
ible at the level of the compiled bytecode code. All tools, including the debugger,
display the original source code only. Stepping through custom languages in the
debugger works similarly to traditional Smalltalk. Since all our transformations
are on the level of the standard AST nodes and tokens, their original location in
the source code can be traced back. The use of the AST to highlight the current
execution position is a standard feature of the debugger. Generated nodes that
do not have a physical position in the source code are ignored when stepping
through with the debugger.

Another example of how tightly language boxes integrate into the host lan-
guage are breakpoints. In traditional Smalltalk breakpoints are implemented by
invoking the method halt at the desired position in the source code. This method
is implemented by the system. It stops the execution of the active process and
opens a debugger at the current execution point. Since breakpoints are imple-
mented at the level of AST nodes, they continue to work even within language
extensions. Upon execution of a halt instruction the debugger opens up and
automatically highlights the currently active code statement.

6 Related Work

There is a wide range of academic and commercial products that facilitate the
creation and integration of DSLs. We categorize some of these systems.

Meta-programming Systems. Converge [14], the Extensible Programming
Language (XMF) [15], and Katahdin [16] encourage the integration of new lan-
guages using their meta-programming facilities. All these languages provide their
own proprietary host languages. Converge and XMF require special syntactic to-
kens to change to a DSL, and therefore do not allow developers to arbitrarily
extend and mix host language and DSLs. With Katahdin it is possible to override
and replace grammar rules of the host language. None of these tools provides
integration into a programming environment.

ASF+SDF [17] is a language neutral collection of tools for the interactive
construction of language definitions and associated tools. SDF is implemented as
a scannerless generalized LR parser and supports the composition of grammars.
A single parse table is created for all possibly active productions, and depending
on the context the corresponding transitions are enabled and disabled. Our use
of parser combinators allows us to directly model the grammar as an executable
graph of productions that can be recombined and modified on the fly.

Language Workbenches. Language workbenches [18] provide sophisticated
environments to design new languages and to use them with existing tools. The
Meta Programming System (MPS) provides a convenient environment to define
new languages. Languages are specified using multiple interleaving concepts to
define grammar, editors, constraints, transformations, behavior, type systems,
data flow and code generators. Language workbenches are typically generative



frameworks, which means that the code is transformed down to source files of
the host language before compilation and execution. This is in strong contrast
to our approach where we transform a common AST representation with exact
source information.

Xtext is a framework for development of textual domain-specific languages. It
is integrated well with the Eclipse environment and especially the Eclipse model-
ing tools, but it does not provide the possibility to change the Java programming
language itself.

Generative Approaches. TXL [19] is a source transformation system for ex-
perimentation with language design. A TXL program consists of a base grammar
definition and a series of overrides that extend and change the base grammar.
These language changes are global, while various traversal and rewrite strategies
can be contextually scoped to perform a source-to-source transformation. Our
model provides a high-level concept of language changes that are augmented with
different transformation concerns for compiler and tool integration. Our target
is always the host language AST, that is directly used to generate executable
code.

MetaBorg [20] is a method for embedding DSLs and extending existing lan-
guages. MetaBorg is based on the Stratego/XT [21] toolkit, a language inde-
pendent program transformation engine. MetaBorg employs a scannerless gen-
eralized LR parser technique to compose different grammars, and an annotated
term language to build abstract syntax trees. While this approach is language
independent, it is also much more complex than our implementation. Our use
of a parser combinator library makes it straightforward to define and transform
arbitrary context-free grammars, ambiguities are supported and automatically
resolved by the rule order. To define the transformation, MetaBorg uses a quot-
ing mechanism similar to ours, however the resulting code is pretty printed to
a string before passing it on to the compiler of the host language. Hence there
is no close integration in the compiler, the development environment or code
debuggers.

MontiCore [22] uses language inheritance and language embedding [23] to fa-
cilitate modularity. Language inheritance enables changing and adding grammar
rules to a super grammar but has the problem that multiple extensions cannot
be easily combined without resorting to multiple inheritance or delegation. Lan-
guage embedding enables the composition of existing grammars. MontiCore does
not model the host language (Java) as a first class entity, so extending the host
language is not directly possible.

The Linglet Transformation System [24] provides a mechanism to modularize
the syntax and semantics of a single language construct. The code to generate is
specified using a templating system. Linglets can be composed with each other
and integrated into the host language at specific extension points. There is no
support to replace or change existing language features and no scoping mecha-
nism. Contrary to our approach the linglets are only used during compilation;
other tools do not take advantage of the language model.



Attribute Grammars. VanWyk et al. [25] propose forwarding attribute gram-
mars to catalyze modularity of language extensions. The Java Language Exten-
der framework [26] is the tool that uses this technique to import domain-adapted
languages into Java. The use of LR-style parsers enforces certain restrictions to
imported extensions, as the resulting grammar needs to be unambiguous. Lan-
guage extensions can be scoped to files, but not at a more fine-grained scale.
Language boxes uses a form of attribute grammars too, where new constructs
are expressed as semantically equivalent constructs of the host language. The
Java Language Extender framework does not provide an integration into the
IDE.

7 Conclusion

In this paper we have presented language boxes, a novel model to bend the
syntax and semantics of the host language. We have presented the concepts,
an implementation and two examples of language boxes. We have demonstrated
how language boxes encapsulate language extensions and enable mixing different
language changes. We have further demonstrated how existing tools are closely
integrated with new language features.

The solution proposed in this paper has the following properties:

Model. The language box model encapsulates changes to the grammar of the
host language and defines different concerns that specify the behavior of the
language extension in the tools. The scope defines the context in the source
code where the language extension is active.

Modular. Language boxes are modular. Language extensions can be indepen-
dently developed and deployed. The use of parser combinators makes it
possible to combine grammars and even to support ambiguous ones in a
meaningful way.

Concerns. Tools can be extended with language specific concerns. Language
extensions can be developed incrementally. While the compilation concern
is usually defined first, editor integration can be provided later.

Homogeneous Language Integration. Language boxes use the abstract code
representation of the host language, different languages can be arbitrarily
composed, access the same data and pass control to each other.

Homogeneous Tool Integration. The IDE, and especially the debugging tools,
continue to work and actively support the language extensions. Stepping
through a mixture of code from different languages poses no problem ei-
ther. Changing and recompiling the source code on the fly from within the
debugger is viable, this being an inherited feature from the host language.

Language boxes provide a model to extend the host language and as such are
well suited to define embedded DSLs [27]. Language boxes are implemented in
the host language, and are thus an internal domain-specific language themselves.
This makes our approach adaptable to new requirements, as well as enabling a
close integration with the host language.

The language box compiler is twice as slow as the traditional compiler, be-
cause a custom parser has to be composed for every compilation context. The



parsing itself is not noticeably slower than with the LALR parser and there is
no visible lag even for syntax highlighting, as methods tend to be short and
memoizing packrat parsers guarantee linear time. To improve the speed of batch
compilation, i.e., when loading an external package, we plan to add grammar
caches in a further release.

Different language boxes can potentially influence or conflict with each other
and the host language. We could rarely observe this problem in practice though,
since most language changes are clearly scoped and often affect different parts of
the original grammar. Two language boxes that add new literal types could result
in a potentially ambiguous grammar where one language extension hides another
one. In this case the language extension that was loaded last will take precedence
over the language extension loaded earlier. This could introduce unexpected side-
effect into the code of the user. As future work we plan to investigate into ways
of detecting and notifying the user about such problems upfront.

Language boxes are not yet used in industrial projects, but we have success-
fully applied them to a variety of problems in our own domain. For example the
definition of the grammars and the quasiquoting functionality in the language
boxes implementation itself is implemented using language boxes. As future work
we plan to validate our approach on a wide variety of other language extensions
that we have collected from an industrial context. We also want to look into
ways to automatically refactor code from the host language towards a DSL.

Furthermore, we plan to apply the language box model on other programming
languages. We currently have a prototypical pre-compiler for Java that can be
used to parse a file with a transformed grammar and to pretty print the result to
standard Java code. While this does not provide the necessary tool integration
and fine-grained scoping rules yet, it demonstrates that our language box model
is viable for statically typed languages with a considerably more complex syntax.
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