
Magritte – A Meta-Driven Approach to
Empower Developers and End Users?

Lukas Renggli1, Stéphane Ducasse2, and Adrian Kuhn1

1 Software Composition Group, University of Bern, Switzerland
{renggli,akuhn}@iam.unibe.ch

2 LISTIC, University of Savoie & INRIA Futurs Lille, France
stephane.ducasse@free.fr

Abstract. Model-driven engineering is a powerful approach to build
large-scale applications. However, an application’s metamodel often re-
mains static after the initial development phase and cannot be changed
unless a new development effort occurs. Yet, end users often need to
rapidly adapt their applications to new needs. In many cases, end users
would know how to make the required adaptations, if only the application
would let them do so. In this paper we present how we built a runtime-
dynamic meta-environment into Smalltalk’s reflective language model.
Our solution offers the best of both worlds: developers can develop their
applications using the same tools they are used to and gain the power of
meta-programming. We show in particular that our approach is suitable
to support end user customization without writing new code: the adap-
tive model of Magritte not only describes existing classes, but also lets
end users build their own metamodels on the fly.

Keywords: Meta-Modeling, Meta-Data, Adaptive Object Model, Busi-
ness Application Development, Smalltalk

1 Introduction

As a result of our experience with developing dynamic web applications at an
industrial scale3, we recognized the need to introduce a meta-layer to provide us
with more flexibility. Describing domain entities is not a new idea [1–5]. How-
ever, often meta-descriptions remain static after the initial development phase
and cannot be changed unless a new development effort occurs. Yet, end users
often need to rapidly adapt their applications to new business needs [6] and in
many cases, they would know how to make the required adaptations, if only the
application would let them do so [7].

Application requirements usually do not remain static after the initial de-
velopment phase. Changing business plans typically boils down to minor modi-
fications to domain objects and behavior, for example new input fields have to
? In Model Driven Engineering Languages and Systems, Gregor Engels, Bill Opdyke,

Douglas C. Schmidt and Frank Weil (Eds.), LNCS, vol. 4735, Springer-Verlag,
September 2007, pp. 106-120.

be added, configured differently, rearranged or removed. Unfortunately most of
today’s applications don’t provide this ability to their end users. The situation
is even more striking in the context of web applications that are typically built
for a lot of different people with varying needs. Furthermore it is often the case
that software systems have a static object model: one that has been defined by
the software architect at implementation time and that cannot be changed later
without changing and recompiling the source-code.

Generative techniques should be avoided, as they prevent the metamodel
from being dynamically changed at runtime. Also, the introduction of meta-
descriptions should not disrupt the normal way of programming and the tools
used to program. The development tools (refactorings, version control, unit test-
ing, debugger, etc.) should continue to work as if there were no meta-descriptions
[9]. The approach should be integrated as closely as possible into the object-
oriented paradigm, the tools and the programming environment. In our case we
use Squeak4, an open-source Smalltalk [10, 11], and Seaside5, an open-source
web application framework [12].

Domain Model

Metamodel

Meta-
Metamodel

Magritte
Developer

<described-by>

<described-by>

Developer

End User
Magritte
End User

Fig. 1. Magritte is self-described and features metamodel changes at runtime. This
allows end users not only to interact with the application data, but also change the
metamodel without having to write code.

3 The first author of this paper is an independent consultant and software architect.
In the context of his Master thesis [8] he invented and developed the Magritte frame-
work, which is used in several large-scale industry and open-source projects.

4 http://www.squeak.org
5 http://www.seaside.st

2

This publication reports on our experience with using the Magritte meta-
descriptions framework. Magritte has been originally developed for web appli-
cations, but its applicability goes beyond that context. The Magritte meta-
descriptions are integrated into the reflective metamodel of Smalltalk to sup-
port the development of flexible applications. As the Magritte metamodel is
self-described, it is possible to apply the same editors for both domain data and
its corresponding metamodel. As illustrated on Figure 1 this enables a Magritte
user to work on two meta-levels at the same time. This applies to both the
end user and the developer. With Magritte we can reap the benefit of the two
worlds: On the one hand we keep our efficient and dynamic object-oriented pro-
gramming with an excellent tooling context, and at the same time we gain the
flexibility and compactness of meta-descriptions to factor repetitive tasks of our
application development.

This paper is structured as follows: Section 2 introduces the Magritte frame-
work and presents an example how Magritte descriptions are specified. In Sec-
tion 3 we present different interpreters that have been written for Magritte. Sec-
tion 4 explains how Magritte is self-described and how this enables end users to
customize their applications. Section 5 compares Magritte to related frameworks
and Section 6 evaluates our approach and discusses the lessons learnt.

2 Describing Domain Objects

Magritte is a meta-description framework, describing domain classes and their
respective attributes, relationships and constraints [4]. Magritte augments the
reflective metamodel of Smalltalk [13] with additional means to reason about
the structure and behavior of objects. The Smalltalk programming language is
used to define Magritte meta-entities and their behavior. An attribute descrip-
tion contains the type information, the way the attribute is accessed, and some
optional information such as a comment and label, relationships and validation
conditions.

In the following sections we use the example of a meta-described person
domain-model. The Person class defines the instance variables name and birth-

day. In Sections 4 and 6 we present more realistic examples used in productive
applications.

Example. To describe the entities in this model we need corresponding descrip-
tion instances, that can be either built from the source-code at development
time, dynamically at run-time, or a combination of the two approaches. Either
way, the code to build the descriptions looks the same. To describe the name, we
create an instance of StringDescription, define an access strategy (in this case the
getter method #name is used), provide a label and add the constraint that this
is a required value6.

(StringDescription new)
selectorAccessor: #name;
label: ’Name’;
beRequired

3

Note that descriptions provide much more information than just type in-
formation. A date description, for example, knows how the attribute should be
displayed (June 11, 1980, 11 June 1980, 06/11/1980), edited (text-input fields,
drop-down boxed, date-picker), and validated. Moreover descriptions do not nec-
essarily describe instance variable attributes, but might also describe derived
attributes that are dynamically calculated on demand.

2.1 Structural Descriptions

The Essential Meta-Object Facility (EMOF) is a standard for model driven
engineering defined by the Object Management Group (OMG). Similar to EMOF
Magritte is not designed as a layered architecture. Magritte descriptions live in
a flat world and there is no distinction drawn between objects in the meta-
metamodel (M3), the metamodel (M2), the model (M1) and the instances (M0).

Contrary to EMOF Magritte has no notion of instantiation, inheritance and
classes. We describe objects that have already been instantiated. Magritte is
tightly embedded into the Smalltalk object model. Smalltalk is used to instanti-
ate, configure and compose the descriptions, as well as to model the behavior of
the meta-descriptions. In Magritte objects are not tightly connected with a sin-
gle description. Descriptions can be shared, exchanged and applied to different
instances and classes.

Description

Container ElementDesc.

MagnitudeDesc. StringDesc. ReferenceDesc.

DateDesc. NumberDesc. OptionDesc. RelationDesc.

ToOneDesc. ToManyDesc.SingleDesc. MultipleDesc.

attributes

BooleanDesc.

reference

Fig. 2. The Description Hierarchy of Magritte

As seen in Figure 2 the description classes define a type hierarchy. This is
similar to the subclasses of Type in EMOF, where a distinction between classes

6 In Smalltalk messages follow the pattern receiver methodName: argument, which
is equivalent to the Java syntax receiver.methodName(argument). Hence String-
Description new sends the message new to the class StringDescription that returns
a new instance of the receiving class. Subsequently the messages selectorAccessor:,
label: and beRequired are sent to this instance.

4

and primitive types is made. An instantiated Magritte description is similar to
an EMOF property.

Magritte defines multiplicities using the Composite design pattern. The class
ReferenceDescription knows another description, that is used to describe the ref-
erenced object. Whether the elements are ordered and/or unique is determined
as a property in ReferenceDescription. Upper and lower bounds of are specified
using constraints. In EMOF multiplicities are part of the type information. Our
approach has shown to be more straightforward when automatically building
editors and reports.

Option Descriptions. The SingleOptionDescription models an 1 : 1 relationship.
The class MultipleOptionDescription models a 1 : n relationship. In both cases
the referenced objects must be chosen from a list of existing objects satisfying
the reference description.

Relationship Descriptions. The ToOneRelationshipDescription models an 1 : 1
relationship. The ToManyRelationshipDescription models an 1 : ∗ relationship.
In both cases any object can be referenced that satisfies the reference de-
scription.

The architecture of Magritte, i.e., describing Smalltalk class with descrip-
tions, is not new and can be seen as a validation of the nowadays well-known
distinction between two conceptually different kinds of instance-of relationships:
(1) a traditional and implementation driven one where an instance is an instance
of its class, and (2) a representation one where an instance is described by an-
other entity [14]. Atkinson and Kühne named these two forms: form vs. contents
or linguistic and logical [15, 16].

2.2 Executability and Constraints

Magritte does not provide specific functionality to describe behavioral aspects,
such as operations, their parameters and return values [17, 9]. This is not nec-
essary, as methods in Smalltalk are objects that can be described as any other
object. Then using the reflective facilities it is possible to retrieve a list of invok-
able method sends (first class method invocations) that are available on a par-
ticular class. On request these methods can be invoked with arguments provided
by end users. This shows how Magritte integrates with the reflective facilities of
Smalltalk. Furthermore Magritte directly supports constraint objects on its de-
scriptions, that are similar to the constraints part of the Complete Meta-Object
Facility (CMOF). We avoided introducing a specific constraint language, such
as OCL, but use plain Smalltalk expressions. This simplifies the development, as
developers can use the well known tools and don’t have to learn a new language.
As OCL was influenced by Smalltalk, our constraint expressions resemble those
of OCL.

Example. To add a size constraint to a string description we use a block closure
(anonymous function) to ensure a maximal size of 5 characters. In case the
condition is not satisfied the error message “too long” is displayed:

5

aDescription addCondition: [:value | value size <= 5] label: ’too long’

3 Interpreting Descriptions

Magritte descriptions can be interpreted in many different ways. Simple inter-
preters just iterate over the descriptions and perform different tasks on the as-
sociated model. In more generic cases we exploit the Visitor design pattern to
walk trough the description graph. The most immediate use case is the one to
automatically build views, editors and reports.

3.1 Building a View

The simplest interpreter that can be written is one that iterates over all descrip-
tions of a domain model and prints the label and the current values onto a text
stream. The following code shows everything that is needed to accomplish this
task on any described domain-model as aModel in the following:

aModel description do: [:desc |
aStream

nextPutAll: (desc label);
nextPutAll: ’: ’;
nextPutAll: (desc toString: (desc accessor readFrom: aModel));
cr].

First we ask the model for its description, then we iterate over its individual
attributes. Within the loop, we first print the label, then we ask the accessor of
the description to return the associated attributes from aModel and transform
this value to a string, so that it can be appended to the output. The resulting
output might look like:

Name: John Lennon
Birthday: 9 October 1940

Since every description knows how to convert its values to strings, we get
a readable list of all the described attributes of our domain-model. By defining
a different string-conversion strategy in descriptions, we are able to change the
way values are printed. When adding, removing or changing descriptions in the
domain-model, the above code will still print the correct output without having
to change a single line of the interpretation code.

3.2 Building an Editor

Most business applications today consist of a large number of input-dialogs that
need to be built and validated manually. One of the goals of Magritte was that
developers could specify how their domain objects can be modified, so that
it becomes possible to automatically build editors for different user-interfaces
frameworks, as seen in Figure 3.

6

Fig. 3. Interpreting descriptions for different GUI frameworks: the web (left) and Mor-
phic Squeak (right)

Sending the message asComponent to a domain model returns a ready-to-
use Seaside component that can be plugged into the web application. As in
Section 3.1, Magritte will iterate over the descriptions and compose an editor.
The default interpreter creates XHTML markup that is annotated with a variety
of CSS classes, so that the layout and look can adapted to most needs by only
using a different style-sheet. For specific cases it is always possible to subclass
the interpreter or to define a different XHTML generation strategy on a per
meta-description bases.

During an edit operation, Magritte works on copies of the values being edited,
so that the original data remains untouched. Before actually committing the
changes, Magritte checks if the model satisfies all its validation conditions. More-
over the framework ensures that there are no edit conflicts caused by other people
editing the same objects at the same time, and, if necessary, shows a warning.

All this is very convenient for software developers, as they don’t have to do
the caching, the validation and the conflict detection for every editor manually.
Not only does this increase the development speed, but it also makes the software
more robust, since all editing concerns are handled at a single place and are not
spread across all editors in the system.

3.3 Other Interpreters

Over the past few years many Magritte interpreters have been written:

Validate, Verify and Setup Objects. Whenever user input is requested incoming
data has to be validated. Existing graphs of objects need to be verified from
time to time to ensure validity. Complex graphs of objects need to be built and
initialized with default values. All these tasks can be accomplished by walking
trough a description graph and validate or build these objects on the fly.

Persistency, Indexing and Querying. Making objects persist is one of the most
daunting tasks. Magritte description are able to tell a interpreter how a graph of
domain models should be stored and loaded. For example Magritte can generate
SQL statements to retrieve and update objects in a relational database. In the
context of object databases it is crucial to build indexes to be able to efficiently
query that data. With Magritte these tasks can be automated.

7

Introspection, Reflection. The metamodel of Magritte provides additional infor-
mation that can be used to improve the development processes, for example in
the debugger and in the inspector a high level view can be provided instead of
a straight memory dump of the object layout.

4 End Users Customizability

Often dialogs in applications remain static after the initial development phase
and cannot be changed unless a new development effort occurs. Yet end users of-
ten need to rapidly adapt their applications to new business needs. In many cases
they would know how to make the required adaptations, if only the application
would let them do so.

name
birthday

Person

name = 'John'
birthday = 9 Oct 1940
email = 'john@..'

john :Person

<instance of>

Meta-MetamodelDomain Data

:Description

:Description

<described by>

<described by>

Metamodel

:Description<described by>

<described by>

<reified by>

Fig. 4. The meta-levels of the Magritte metamodel.

As shown in Figure 4 there are different spots to specify, reify and interpret
the Magritte metamodels. The domain class Person is written by the application
developer. The class is described by a set of Magritte descriptions that are com-
mon to all instances of Person. These descriptions are either hardcoded into the
source-code of the application or have been specified at runtime by an end user.

john is an instance of the class Person. The instance itself references a set of
instance specific descriptions used to reify the class-based descriptions. These
descriptions are either dynamically built from the application logic or have been
manually specified by an end user using an editor as seen in Figure 5. Instances
that do not use instance-specific descriptions simply reference the set of class
descriptions. Furthermore to avoid the need to introduce an instance variable to
hold the instance-specific descriptions on all objects, we propose the use of an
adaptive model as presented in the next section.

Figure 5 shows a description editor that is part of a commercial workflow def-
inition and runtime engine. The editor opened on a specific workflow task allows
end users to customize the existing metamodel to suit their particular needs.
Moreover, the end user is able to specify validation and transition conditions in

8

Fig. 5. A Magritte description editor that allows end users to change the metamodel
without writing code.

different sections of the user interface. When interpreted by the runtime engine,
see Figure 6, the specified metamodel is used to collect the data from the users
and to operate the workflow execution. Therefore, an end user can adapt forms
on the fly and see its effects directly. Furthermore the customized metamodel is
exploited to operate reporting and querying facilities on running workflows. It is
Magritte too, that is responsible to make all the meta-data and data persistent.

Fig. 6. An automatically built editor from runtime customized meta-descriptions dis-
playing if the form conditions are satisfied.

As we have illustrated in Figure 1, the possibility to work on two meta-
level applies to both end users and developers. This, and the fact that Magritte
describes itself, are the key concepts to enable end users to modify the metamodel
on their own.

9

4.1 Adaptive Model: Enabling end user editable Meta-Descriptions

Adaptive
Model

Description

Object

+ copy()

Copies the values, but
not necessarily associated
descriptions.

d
es

cr
ip

tio
ns

va
lu

es
Fig. 7. An adaptive model, mapping a set of descriptions to actual model values.

To enable instance specific metamodels, Magritte introduces a generic object
model mapping descriptions to actual values, as seen in Figure 7. The Adaptive-

Model has two instance variables, the first being used to refer to the descriptions
of the instance and the other one to keep a list of the actual values of the model.
Transforming the class of the adaptive model into a Trait [18] allows us turn any
existing class into an adaptive model and to combine the descriptions defined in
the class with the ones provided by the instance.

End users are able to edit the adaptive model at two different levels, at the
model and at the metamodel level:

Domain Data Editing. Since the adaptive model is described, an editor can
be built automatically (see Figure 6). The only difference is that the described
values are not stored in instance variables of the model, but are kept within a
hash table inside the adaptive model, mapping descriptions to their actual values.
This gives much better flexibility when descriptions are added and removed.

Metamodel Editing. The descriptions of an adaptive model can change on the fly,
since they are stored as part of the model-data. The descriptions can be either
changed programmatically by the developer, or through end user interactions
from a description editor. Since descriptions are described as well (see Figure 4),
it is possible to let Magritte build a meta-editor (see Figure 5).

Descriptions can be shared among different adaptive model instances or can
be unique to every instance. Therefore when copying an adaptive model one has
to specify if the descriptions should be copied as well. If descriptions are shared,
editing the metamodel affects all its associated instances.

5 Related Work

Yoder et al propose the type-square design pattern [19], based on the type object
that separates the entity from its entity type [20]. Magritte uses these patterns

10

as well, but it makes some generalizations, as seen in Figure 8: the distinction
between components and properties is not made. A component and a property
are just any kind of object. It is the same for component-types and property-
types. They are all descriptions with the same superclass.

Component
Type

Component

Property
Type

Property

1 *
1

*

*1

*

1

Type
Object

Type
Object

(a) Type-Square

Object

Description

Ty
p

e
O

b
je

ct

*

*

d
es

cr
ip

tio
n

attributes

1 *

(b) Magritte

Fig. 8. (a) The type-square, and (b) the meta-recursive model of Magritte are both
making extensive use of the type-object design pattern.

JavaBeans [5] includes a property framework similar to the description hier-
archy of Magritte. However JavaBeans properties are solely based on the static
type signature of the instance variable. Other settings, such as if the value is read-
only, is determined implicitly through the absence of a write-accessor. JavaBeans
properties do not describe themselves.

One reason that most frameworks do not describe themselves is that they all
tend to be very domain-specific: some concentrate on the modeling of a specific
business model, others concentrate on a specific output format, such as for a
web framework. Unfortunately this leads to a model that is not able to describe
itself. Therefore a lot of additional work is required if end users should be able to
modify the adaptive-models. Magritte tries to consolidate everything by enabling
meta-editing using itself.

Muller et al [21] present an approach to platform-independent web applica-
tion modeling and development in the context of model-driven engineering. A
specific metamodel (and associated notation) is introduced and motivated for the
modeling of dynamic web specific concerns. Web applications are represented via
three independent but related models (business, hypertext and presentation). A
kind of action language (based on OCL and Java) is used on these models to
write methods and actions, specify constraints and express conditions.

WebML [22] enables the high-level description of a web site according to dis-
tinct orthogonal dimensions: its data content (structural model), the pages that
compose it (composition model), the topology of links between pages (naviga-
tion model), the layout and graphic requirements for page rendering (presen-
tation model), and the customization features for one-to-one content delivery

11

(personalization model). WebML goes in the same direction as Netsilon: An ap-
plication is modeled using different perspectives and generated. Our approach
is different. Our object-oriented applications are implemented in Smalltalk but
meta-described, and this connected meta-description is used to support the gen-
eration of web user interface, queries and persistency. There is no automatic
code generation involved in our approach, therefore if the metamodel changes,
all the users of the metamodel behave the new way automatically.

6 Evaluation and Lessons Learned

SmallWiki

Model

1561 LOC

44%

View

1983 LOC

56%

Pier

Model

3078 LOC

63%

View

1812 LOC

37%

Fig. 9. Comparison of two web applications: SmallWiki and Pier (meta-described).

Figure 9 compares two web-based content management systems, SmallWiki7

and Pier8. Both open-source systems have been written by the first author and
make it possible to collaboratively build web sites. SmallWiki does not have a
metamodel, all its features, such as the different views, the search engine, and the
persistency, are hardcoded. Conversely Pier, the successor version of SmallWiki,
is built from ground up using the Magritte metamodel. While the code base of
Pier is noticeably bigger, it also provides functionality that was not possible in
SmallWiki:

– As opposed to SmallWiki, Pier has a low coupling between model and view.
Different views are interchangeable and their implementations are relatively
small, as they only consist of Magritte glue code and some view specific
functionality.

– Pier is easily extensible as the entities of the model are specified declaratively.
The search engine, the persistency layer and user interface builders all take
advantage of the Magritte descriptions.

– Most aspects of Pier can be customized by end users at runtime without
having to write code. Additional data fields can be added to any page, to
make it simple to collect and display structured data on the web.

7 http://smallwiki.unibe.ch/smallwiki
8 http://www.lukas-renggli.ch/smalltalk/pier

12

As stated by Ralph Johnson [6] a metamodel introduces additional complex-
ity to an application and therefore inexperienced developers might have concep-
tual problems. Another problem might be a reduced execution speed, as there
are additional indirections introduced through the interpretation of the meta-
model. Comparing the execution speed of two systems like SmallWiki and Pier
is difficult, as their features and implementation details don’t exactly match.
Most of the time other factors such as the network connection and persistency
back-ends are more critical than the use of an underlying metamodel.

To evaluate the speed penalty when using a metamodel we benchmarked the
text search of the two frameworks. Both frameworks are using the Visitor pattern
to walk over the object graph: in SmallWiki this is hard coded, while in Pier this
makes extensive use of meta-descriptions. For the benchmark we created a test
setup of 100 pages and run 100 queries on both implementation. As expected
SmallWiki performed better with a cumulated search time of 2456 ms. In Pier
the search took 8190 ms, so the meta-driven search is about 30% slower than
the hard coded one. Given the number of involved objects (a single page consists
of hundreds of described objects) text search is a hard task for the meta-driven
approach, as many descriptions have to be traversed and matched on the fly. We
expect a much better performance for other use-cases and we plan to perform
compile-time caching if necessary.

We have described our experience of using a metamodel integrated in the
reflective metamodel of Smalltalk to support the development of flexible appli-
cation. Our metamodel is self-described which enables end user customization.

6.1 Lessons Learned

As we have observed while developing several real world applications, having a
meta-framework such as Magritte greatly reduces recurrent work, such as im-
plementing different views, editors and persistency. Often it is much simpler
to write a generic interpreter of the metamodel than to manually build spe-
cific implementations of the functionality in different places of the application.
Developers only change the description at one single place in the source-code
without having to refactor all places that deal with the object. More important
end users are enabled to reify the choices of the developer through a convenient
interface without having to know anything about the implementation and the
underlying programming language. Hence, the use of Magritte not only supports
the developers, but it makes the application more adaptable to changing needs
of end users and reduces the need for development iterations.

Extending the existing Smalltalk metaclass does not allow to keep the meta-
model independent of the actual implementation of the class. It should be pos-
sible to exchange the metamodel on the fly, and even use multiple metamodels
at the same time for the same underlying domain object. Moreover we would
like to let end users customize these model, without that they have to know the
underlying programming language.

The fact that descriptions are used to describe Magritte itself, makes the
system even more versatile: it gives end users the possibility to customize existing

13

models or to build new ones, without having to write a single line of code. The
interpreting software system can easily control how far this meta-customization
should go. We observed that exposing a small subset of Magritte to end users
greatly reduces complexity and increases productivity. Having adaptive models
is the key for customizable applications, to allow end users build their own data-
models.

As future work, we would like to investigate how the control flow of applica-
tions could be meta-described with Magritte. Especially in the context of web
application it would be interesting to model the flow between pages as a meta-
described graph, and again end user should be empowered to customize it on
the fly.

Acknowledgments

We thank Oscar Nierstrasz for his careful review of a draft of this paper. We
gratefully acknowledge the financial support of the Swiss National Science Foun-
dation for the project “Analyzing, Capturing and Taming Software Change”
(SNF Project No. 200020-113342, Oct. 2006 - Sept. 2008) and of the french
ANR (National Research Agency) for the project “COOK: Réarchitecturisation
des applications industrielles objets” (JC05 42872).

References

1. Group, O.M.: Common warehouse metamodel. Technical report, Object Manage-
ment Group (2003)

2. Group, O.M.: Meta object facility (MOF) 2.0 core final adopted specification.
Technical report, Object Management Group (2004)

3. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.: Eclipse Modeling
Framework. Addison Wesley Professional (2003)

4. Union, I.T.: Abstract syntax notation one (ASN.1). Technical report, International
Telecommunication Union (2002)

5. Hamilton, G.: Javabeans. Technical report, Sun Microsystems (1997)
6. Yoder, J.W., Johnson, R.: The adaptive object model architectural style. In:

Proceeding of The Working IEEE/IFIP Conference on Software Architecture 2002
(WICSA3 ’02). (2002)

7. Atkinson, B.: Hypercard. Hypercard (1987)
8. Renggli, L.: Magritte – meta-described web application development. Master’s

thesis, University of Bern (2006)
9. Ducasse, S., Gı̂rba, T.: Using Smalltalk as a reflective executable meta-language.

In: International Conference on Model Driven Engineering Languages and Systems
(Models/UML 2006). Volume 4199 of LNCS., Berlin, Germany, Springer-Verlag
(2006) 604–618

10. Goldberg, A., Robson, D.: Smalltalk 80: the Language and its Implementation.
Addison Wesley, Reading, Mass. (1983)

11. Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., Kay, A.: Back to the future: The
story of Squeak, A practical Smalltalk written in itself. In: Proceedings OOPSLA
’97, ACM SIGPLAN Notices, ACM Press (1997) 318–326

14

12. Ducasse, S., Lienhard, A., Renggli, L.: Seaside — a multiple control flow web
application framework. In: Proceedings of 12th International Smalltalk Conference
(ISC’04). (2004) 231–257

13. Rivard, F.: Smalltalk: a reflective language. In: Proceedings of REFLECTION ’96.
(1996) 21–38

14. Bézivin, J., Gerbé, O.: Towards a precise definition of the OMG/MDA framework.
In: Proceedings Automated Software Engineering (ASE 2001), Los Alamitos CA,
IEEE Computer Society (2001) 273–282

15. Atkinson, C., Kuehne, T.: Concepts for comparing modeling tool architecture. In:
Proceedings of the UML Conference. Number 3713 in LNCS (2005) 19–33

16. Atkinson, C., Kuehne, T.: The essence of multilevel metamodeling. In: Proceedings
of the UML Conference. Number 2185 in LNCS (2001) 19–33

17. Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving executability into object-
oriented meta-languages. In L. Briand, S.K., ed.: Proceedings of MOD-
ELS/UML’2005. Volume 3713 of LNCS., Montego Bay, Jamaica, Springer (2005)
264–278

18. Schärli, N., Ducasse, S., Nierstrasz, O., Black, A.P.: Traits: Composable units of
behavior. Technical Report IAM-02-005, Institut für Informatik, Universität Bern,
Switzerland (2002) Also available as Technical Report CSE-02-014, OGI School of
Science & Engineering, Beaverton, Oregon, USA.

19. Yoder, J., Balaguer, F., Johnson, R.: Architecture and design of adaptive object
models. In: Conference on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA ’01). (2001) 50–60

20. Johnson, R., Wolf, B.: Type object. In Martin, R.C., Riehle, D., Buschmann, F.,
eds.: Pattern Languages of Program Design 3. Addison Wesley (1998) ISBN:0-201-
31011-2.

21. Muller, P.A., Studer, P., Fondement, F., Bézivin, J.: Independent web application
modeling and development with netsilon. Software and System Modeling 4 (2005)
424–442

22. Ceri, S., Fraternali, P., Bongio, A.: Web modeling language (WebML): a mod-
eling language for designing web sites. In: Ninth International World Wide Web
Conference. (2000)

15

