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With the success of agile methodologies more and more projects develop large test
suites to ensure that the system is behaving as expected. Not only do tests ensure
correctness, but they also offer a live documentation for the code. However, as the
system evolves, the tests need to evolve as well to keep up with the system, and as the
test suite grows larger, the effort invested into maintaining tests is a significant activity.
In this context, the quality of tests becomes an important issue, as developers need
to assess and understand the tests they have to maintain. In this paper we present
TestLint, an approach together with an experimental tool for qualifying tests. We
define a set of criteria to determine test quality, and we evaluate our approach on a
large sample of unit tests found in open-source projects.

1 INTRODUCTION

Testing is an important activity in the development of today’s software projects [1,
2, 3]. Automated tests (e.g., unit tests) help the developer to assure code quality and
to detect possible bugs and flaws in the application code [13, 14, 22]. Furthermore,
tests can also be seen as live documentation, and be used to understand foreign code
[7].

Following an agile development process, the body of tests grows together with
the source code. However, due to refactorings and changing requirements, code
might start to erode [10, 25]. The same quality erosion also happens to test code: it
becomes long, complex and obscure [31]. Although such tests might still serve the
purpose of checking the correctness of the system at present time, they can easily
break when further adaptations to the application code are required.

A large body of research has been carried out to assess the quality of tests from
different perspectives:

e Code Coverage provides a quantitative measure [19, 27, 36].
e Mutation Analysis gives insights to code stability [17, 23, 24, 34, 35].

e Test Ordering shows the interconnection of tests [12, 15, 16, 26].
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Although all those methodologies differently contribute in assessing the quality
of tests, they all do it on a rather abstract level, and they do not focus on the actual
test code.

We propose an approach to analyze the code found in the test implementations
(i.e., test-classes and test-methods!) to identify problems that influence their main-
tenance. The decayed parts of the application code are often referred to as Code
Smells [11, 32]. In the same way, Test Smells refers to test code that is difficult to
maintain [22]. As only little research has been spent on understanding and detecting
Test Smells [8, 30, 31], we chose to systematically study a large set of tests and to
learn the different characteristics that influence readability and maintainability.

The basis of our research is a case study consisting of 4834 test-methods and
742 test-classes taken from the Squeak? open-source community. Our study was
conducted in three steps:

1. The first step was to harvest the tests and collect a list of problems found in
the tests through manual inspection. Due the large number of tests we did
not analyze all of them, but rather focused on a sample of approximately 500
test-methods that were known to be good or bad based on input from the
Squeak community.

2. In the second step we clustered the problems to identify commonalities and
differences, and we distilled the lessons in automatic queries that we imple-
mented in a tool called TestLint. We have employed several techniques: static
analysis of the test code and dynamic analysis including code manipulation
and instrumentation.

3. In the third step we have applied our queries on all the tests in our case study
and manually inspected the detected Test Smells to identify false positives.

The result of our approach is a list of 27 abstract and fine-grained Test Smells
that we empirically collected and checked against our case study. We believe that the
automatic analysis of the quality of tests is an important activity in the development
and testing process, and we see our list of Test Smells and detection rules as a starting
point for a test analysis tool.

The rest of the paper is structured as follows. Section 2 briefly explains Test
Smells, and Section 3 details our approach to detect them. Section 4 reveals our list
Test Smells, and provides details for a selection of them. In Section 5 we present the
results of our case study. In Section 6 we present the related work, and we conclude
in Section 7.

!By test-class we refer to a class inheriting from TestCase, and by test-method we refer to a
method that encodes a particular test (typically those that have a “test” prefix).
2Squeak is a Smalltalk dialect. For further details, please check: http://www.squeak.org/
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2 Test Smells IN A NUTSHELL

Test Smells are, in general, signs of flaws in the design or code of a test. They
describe tests that are too long, complex, include unnecessary redundancy, exposing
or breaking encapsulation of the application code, run unnecessarily slow, or make
inappropriate assumptions on external resources. The consequence of such tests is
that they are hard to understand, hard to maintain, and they badly document the
application. Furthermore, they typically become unstable, or even become unused
or deprecated.

Test Smells mostly appear due to frequent changes in the application code. A
factor that makes the test code brittle to changes in the application code is the
duplication in test code, as this leads to developers not updating all the tests.
Further aggravating factors for the maintenance of tests are the complexity of the
code to be tested, and the lack of time of the developers.

Below we give three examples of Test Smells as can be found in the work of
Meszaros [22]. A more detailed description together with code examples are given
in [27]:

e An Fager Test is a test that verifies too much functionality. It is mostly, but
not necessarily, a test with a large amount of statements and assertions. It is
normally difficult to understand, and it offers a poor documentation.

e (Conditional Logic breaks the linear execution path of a test, making it less ob-
vious which parts of the tests get executed. This increases a test’s complexity
and maintenance costs.

e A Large Fixture provides a large amount of data to the tests, making it difficult
to understand the state of a unit under test and also obfuscating the purpose
of the tests. Furthermore setup and teardown require a large amount of time
slowing down the execution of the tests.

Test Smells are a recent research topic but have attained interest, especially from
researchers being active in research about refactoring code [6, 9, 11, 18, 29] and tests
[8]. Test Smells have been categorized and described informally [8]. Meszaros [22]
decomposed and further subdivided them, explaining the reasons for their appear-
ance as well as their consequences. Some Test Smells were formalized using heuristics
and metrics [20, 21] to gain insights about their significance [30, 31].

3 TestLint

Our approach to detect Test Smells started by first collecting a large set of tests
from SqueakSource, an open-source code repository of the Squeak community. We
have selected 67 packages containing 4834 test-methods and 742 test-classes.
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In a second step we systematically analyzed the tests, starting with packages
known to have very good and very bad code or tests. During this analysis we
created an extensive list of common problems. We then categorized the detected
problems into already known Test Smells, and also formalized new types of smells
or extended existing ones. Table 1 presents a small selection of all Test Smells we
gathered and checked in this paper’s case study.

Based on our analysis we determined that most Test Smells consist of several
diverse smelling aspects. For example, an Fager Test is a test referencing and exe-
cuting many different methods, but it can also be long and include many comments.
We also noticed that Test Smells are partially interconnected, as they share some of
their characteristics with one another:

e Obscure tests are hard to understand and badly document the application due
to their complexity.

e Long tests are most of the times obscure. However, obscure tests are not
necessarily long.

e Frratic are those tests that alternate the result of the test. Erratic tests are
also obscure tests, but rather seldom the other way around.

We implemented an approach to automatically detect a set of smells in a tool
called TestLint. TestLint contains a rule-based engine, similar to Smalllint [9]. We
decided for such a rule-based technique as it allows us to analyze Test Smells in a
fine-grained and flexible way. Each rule in TestLint can either map to a complete
Test Smell as known from the literature [8, 22] or just to a part of its characteristics.
Furthermore, due the interconnection of Test Smells a rule can be reused in the
detection of several Test Smells.

We characterize the rules according to different aspects. From the point of view
of the analysis goal, a rule can be applied to either test-methods or test-classes.
From the point of view of the analysis, a rule can encode a static analysis, can
encode a dynamic analysis test-method (i.e., they run the test to gather additional
information during runtime), or can combine static and dynamic analysis.

4 TEST SMELLS

In this section we give a brief overview of Test Smells and the rules we define to detect
them. A first section covers static smells, and the second gives examples of dynamic
ones. We give a short description for each smell. In particular we summarize the
smelling aspects and explain how they appear in the code, what consequences they
might have and how we detect them using TestLint. As we performed our experiment
in Squeak we give examples using Smalltalk syntax.
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During our process of gathering and analyzing Test Smells we implemented ap-
proximately 70 partially overlapping rules to automatically identify Test Smells.
Table 1 gives an overview of 27 smells for which we have formalized useful and ro-
bust detection rules, and which we validated in our case study. An extensive list of

Test Smells and rules including more detailed descriptions is presented in [27].

Test Smell

Description

Guarded Test

conditional test including branches like ifTrue:aBlock or ifFalse:aBlock

Overreferencing

test creating unnecessary dependencies and causing duplication

Assertionless Test

pretending to assert data and functionality, but does not

Proper Organization

violating testing conventions by using bad organization of methods

Test-MethodCategory Name

method categories having a meaningless name

Anonymous Test

test-methods having a meaningless name

Long Test

tests including too many statements

Mixed Selectors

violating common organizational testing conventions by mixing up
testing and non-testing methods

Likely ineffective Object-Comparison

objects comparisons which can never fail

Unclassified MethodCategory

methods not being organized by any method-category

Test-Class Name

test-class having meaningless name

Unused Shared-Fixture Variables

parts of the fixture that are never used

Early Returning Test

test returning a value and too early, maybe dropping assertions

Unusual Test Order

tests calling each other explicitly (unusual for unit tests)

Under-the-carpet Assertion

some assertions put into comments

Comments Only Test

all test-code put into comments

Overcommented Test

test having too many comments

Under-the-carpet failing Assertion

failing assertions put into comments

Control Logic

test controlling the execution flow by using methods like debug or halt

Max Instance Variables

large or oversized fixture

Teardown Only Test

test-suite only defining teardown (unusual for unit tests)

Abnormal UTF-Use

test-suite overriding the default behavior of the unit testing framework

Empty Shared-Fixture

fixture defined, but empty

Transcripting Test

test writing and logging to the console

Empty MethodCategory

empty method categories

Returning Assertion

assertions returning a value (unusual for unit tests)

Empty Test-MethodCategory

empty testing method categories

Table 1: A selection of Test Smells used in our analysis and case-study (see Figure 6)

Static Smells

TestLint handles static smells by scanning for specific patterns. It parses the code,
analyses the source tree to detect specific node items, and also computes metrics on
the test code. This analysis can be done without actually running or instrumenting
the test.

Assertionless Test. This rule checks whether a test contains at least one walid
assertion. A valid assertion is either one provided by the underlying unit testing
framework or is a user defined one that is composed of valid assertions. The following
code shows an example of a valid user defined assertion, containing an assertion
provided by the unit testing framework:
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UserDefined TestCase>>userDefinedNotNilAssertion: anObject
self assert: anObject isNil not

A test not containing at least one valid assertion is just a piece of executable code
that can either succeed or throw an error but can never throw an assertion failure,
unless thrown explicitly, which should not be done. Such a test is a weak one,
because the only thing it tests and documents is that the code of the application
does not throw an error for a particular run. The following example shows an
Assertionless Test:

ICCreateCalendar>>TesttestCreatingSeveralCalendars
self addCalendarWithName: 'new Calendar 1'.
self addCalendarWithName: 'new Calendar 2'.
self addCalendarWithName: 'new Calendar 3'.
self addCalendarWithName: 'new Calendar 1'.
self addCalendarWithName: 'new Calendar 2'.
self addCalendarWithName: 'new Calendar 3'.

We can detect most of those tests by statically analyzing the parse-tree, including
all referenced methods. If none of them is known as a valid assertion to the system,
then we probably found an Assertionless Test. False positives might appear in a
dynamic language like Smalltalk as we cannot retrieve the implementor of a method
by doing a static analysis. A dynamic analysis could eliminate this uncertainty.

Guarded Test. This rule is detecting tests implementing conditional branches,
e.g., ifTrue: or ifFalse:.

The consequence of using branches could be that certain assertions are not ex-
ecuted. In the worst case an actual failing test would return a success letting the
developer believe the test is green. Also, conditionals are problematic because they
make the test less predictable, and harder to understand.

We identify Guarded Tests by scanning the abstract syntax tree of a test-method
for all occurrences of any conditional logic. The following code-example would be
detected as a Guarded Test:

testRendering
self shouldRun ifFalse: [ ~ true |.
self assert: ...

We further notice at this point that many projects we harvested use conditionals
on purpose to drop slow tests, tests that are platform-dependent or tests that can
only run in a special environment. As this is always done in the same way we
can identify this need for Conditional Tests as a missing design pattern for unit
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testing. Therefore Guarded Test, when used by such purposes, can be regarded as
false positives. However because of the following reasons we regard the way these
tests are realized as a Test Smell:

e Conditional code is repeated like a pattern all over the tests and pollutes the
test code, making a test harder to comprehend.

e Standard unit-testing frameworks are not aware of the condition and its mean-
ing and purpose. Therefore conditional tests always return a success although
they did not run any code or assertions.

We therefore recommend to extend any unit testing framework to become aware
of such tests and the condition under which they can be executed, without the need
of polluting the test code with conditional branches. Like that a developer would
be notified which and why tests were not executed.

Overreferencing Test. This rule is testing whether a test is referencing many
times classes from the application code.

The main problem with an Quverreferencing test is that it distracts from the goal
of the test. In our experiments, such tests were rather long and obscure. We have
also detected overreferencing as a source for subtle duplication in the test code:
slightly different fixtures are present in different test-methods.

Figure 1 shows how overreferencing can be detected. The first condition checks
for referenced types. The second one counts how often the same type is referenced
in the code. From our experiment, we have found 3 to be a good value for the
thresholds.

number of
referenced types T;

[ Types >3 ]

- N OR Overreferencing
maximum appearance of

reference type T;

[ max(T;)>=3 ] i

Figure 1: The Overreferencing Test rule.

Applying this rule on the example below, we would get the value 3 for the first
condition and 3 for the second one. Therefore the test would have the problem of
Querreferencing:
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testLibrary
trackl := MP3Track new.
track2 := WAV Track new.
track3 := MP3Track new.
track4 := MP3Track new.
library := Library new.

Anonymous Test. This rule is analyzing the signature of a test-method to find
out whether the test has a meaningful name within its context.

Anonymous Tests are Test Smells as they do not or only badly document the goal
of a test, making the test-suite obscure. Furthermore such tests require the developer
and tester to read all the code to understand its purpose, wasting unnecessary
attention. Therefore all tests should have a good name documenting what they are
about.

For that, we split the test-method name following sequences of numbers and
literals including camel-case notation. We then check whether all the obtained
tokens are found in the names of the application classes or methods.

As an example, the rule to detect Anonymous Tests rejects method names like
testl to test31l, but might allow testSHA256 if its context defines it. The context
could be the current package defining a class or method whose name is similar to
SHA, 256 or SHA256.

False positives are inevitable as the analysis of names and their meaning heavily
depends on the context and the algorithm used for calculating similarities. In our
implementation we apply a basic pattern matching on each part of the name within
the context. As context we use the package under test.

Dynamic Smells

Dynamic smells require the test to be run. For most rules it is already enough to
run the test once, but there are also rules that require to run the test multiple times.
Almost all dynamic smells also include static analysis. For these rules we instrument
parts of the application code, the fixture or the tests. The instrumentation includes
an uncertainty factor as not all code can be successfully instrumented.

Under-the-carpet Failing Assertion. This rule is checking whether a successful
test might contain hidden failures that have been commented out. This rule parses
the source-tree for assertions put into comments, safely removes any comment-tokens
around valid code and asserting statements and runs the whole test again. If it fails
a hidden failure has been detected (see Figure 2).

For example, the following test shows an Under-the-carpet Assertion that raises
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run test with
unmodified source

[ Test result = Success ]

AND Under-the-carpet failing

run test with Assertion
assertions un-commented

[ Test result = Failure ]

Figure 2: Schematics of Under-the-carpet failing Assertion

an Error if we removed the comment-tokens.

ICImporterTest >> #testimport
... self assert: eventAtDate textualDescription = 'blabla’.”
self assert: eventAtDate categories anyOne
= (calendar categoryWithSummary: 'business’).
"self assert: ...

At a closer analysis we find out that the method categoryWithSummary: can
throw an Error if aString is not detected in categories.

ICClaendar >> #categoryWithSummary: aString
" self categories detect: [ :each — each summary = aString]

This rule is important as developers obviously often comment out failing asser-
tions due to several reasons. We have encountered assertions that were commented
in the course of debugging activities, and later got forgotten to be removed. We
have also detected commented assertions that were just obsolete and tests that were
completely commented because they run slowly, require a special environment, or
just for the sake of making the test green.

Badly Used Fixture. This rule is instrumenting all methods inside a test-class
including tests and instance variables of a test-case to find out which method is
actually reading or writing (directly and indirectly) which instance variable while a
particular test is running. Figure 4 shows an example of a badly used shared fixture.

Having this information about the shared fixture it is possible to make a very
precise analysis about its usage and necessary refactorings e.g., to decide whether it
is sufficiently used by the tests, used at all or whether a fresh fixture might be more
appropriate.

The first simple condition in Figure 3 says that at least 75% of all tests should
use the fixture. The second condition requires that on average all tests should use
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Tests using the Fixture

[ avg( Tests ) <0.75

- N OR Badly Used Flixture
Variables used by each Test T;

[ avg( Vars(T;) ) <0.50 ] I

—/

Figure 3: Schematics of Badly Used Fixture

at least 50% of the variables defined within the fixture. When we apply this to the
example of Figure 4 then the first condition would evaluate to 0.25 (=1/4), same
for the second condition (=(0+0+14-0)/4)

5
testA Fixture

testD

Figure 4: Example: Tests using the shared fixture

False positives cannot be totally excluded as the purpose of an instance variable
is difficult to estimate, therefore this rule is quite sensitive to the context of the test.
Furthermore the threshold we’ve chosen for both conditions is rather restrictive and
might not work for all situations. For example we might encounter a false positive
for very abstract high level test requiring a large fixture.

5 CASE STUDIES

The basis of the case study is a Squeak 3.9 distribution with Christo Code Coverage
[27] and TestLint [27] installed. During the validation phase we analyzed all the
tests methods that we extracted from 67 packages containing a total of about 4834
test-methods originating from SqueakSource, an open source code repository for
Squeak.
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Overview

To get a first overview on the detected Test Smells, we collected all smells for each
test in the case study by applying all available TestLint-rules to the tests. We then
clustered the tests by the number of smells detected (see Table 2).

Smells per Tests \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6-9
Distribution |61% [20% | 11% | 4% [ 2% [ 1% | <05 %

Table 2: Distribution of Smells per Test

The result shows that 39% of all tests are affected by at least one detected Test
Smell — possible false positives included. Furthermore we discover that most tests
have exactly one issue (20%), followed by tests having two (11%) and so on. Tests
having more than 4 problems can be regarded as an exception.

The reason why a test can be affected by multiple smells is due to our fine-grained
rules. For example, a test might have commented assertions, might be complex and
it can contain guarding conditionals in the same time. The more problems show up
in a test the more likely it has a serious problem. However, we could not conclude
the opposite from our experiment.

From the manual inspection we identified the false positives. Figure 5 shows
the success rate of a selection of rules, sorted descending by the total number of
detections.

First, we determine that certain rules (e.g., Anonymous Test) work better than
other ones (e.g., Proper Organization). However, most rules produce false posi-
tives. This can have multiple reasons: the rules are not well enough specified or the
contextual sensitivity cannot appropriately be addressed.

We also notice that the clearer the goal of the smell, the more precise the rule.
For example, Comments Only Test has no false positives as it is easy to make a very
precise formalization. As another example, the detection of Proper Organization is
less precise than for Anonymous Test as there is no clear understanding for what
makes a good organization for tests.

Second, we discovered that Test Smells are not equally distributed. There are
smells that appear more often than other ones. For example most test code imple-
ments more problems like Assertionless Test than Under-the-carpet failing Assertion
which means there are more tests detected without assertions than such with a fail-
ing assertion put in comments.

Based on the data gathered by TestLint we can also map detected Test Smells
to each package in the case study. Figure 6 shows a small selection of well known
packages, sorted descending by the density of smells per test on the x-axis. As we
are interested in a quality measure for the packages we cut the y-axis at one smell
per test.
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Figure 5: Detected Test Smells (orange) by rules including false positives (dark red).
The list of Test Smells together with a short description can be found in Table 1.

We discover packages with qualitatively good tests (on the right side, below the
x-axis), having less than one smell per test, and ones with rather problematic tests
(left side, above the x-axis), having more than one smell per test. We determine that
the results shown in Figure 6 mostly and in general conforms to our earlier manual
analysis of the tests as well as the input from the community. As an example, the
packages Magritte or Aconcagua are known to have good tests whereas packages like
ToolBuilder or SMBase are rather regarded as hacks, not containing very good or
reliable tests.

We go a step further and sort all packages by the number of tests and correlate
this number with the number of totally detected Test Smells, shown in Figure 7.
We enrich the graphics with exponential curves to globally approximate tests and
Test Smells.

An interesting fact is that packages defining more tests also have more smells.
However the exponential approximations show that the amount of smells per test is
increasing less than the amount of tests written. Based on this we might conclude
that developers writing more tests, therefore having and acquiring more testing
experience, also tend to write better tests.

To check this assumption, we show in Figure 8 a similar graphic, only in this
case showing the amounts of tests and Test Smells per author. The diagram of
shows the relation between the number of tests (primary x-axis), number of smells
per tests (secondary x-axis), and the authors writing them sorted ascending by
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Figure 6: Test Smells per Test and Package

the number of tests. In this case too, tests and Test Smells are approximated
using an exponential curves. We notice that the curve approximating Test Smells is
monotonically decreasing whereas the one of the number of tests is increasing very
strongly.

As a result, we conclude that testing does, at least in long terms, scale extremely
well as the quality of tests increases with the experience of writing tests. Qual-
itatively good test in turn have again a positive effect on the application and so
on.

In the following sections we discuss the interesting results of a small selection of
well-known packages: Aconcagua, Magritte, Refactoring Engine, and Cryptography.

Aconcagua

Aconcagua is a project about reifying measures as first class objects whereas measure
is a number with a unit. Aconcagua encounters about 549 tests which are mostly
very good and short in general (Figure 6). The major Test Smells are Quverreferenc-
1ng causing a lot of code duplication and Magic Literals obfuscating the code a bit.
However as Magic Literals have a stronger contextual dependency in tests, they of-
ten cause many false positives. We therefore expected many of them as Aconcagua
depends a lot of numbers and units. The problem of Overreferencing could have
been solved by using more example or factory methods instead of referencing classes
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700 -

Number of Tests & Smells

Packages sorted ascending by Number of Tests

= Tests Smells on Tests — Expon. (Tests) Expon. (Smells on Tests)

Figure 7: Packages sorted (ascending) by number of tests (blue) on the x-axis. The
y-axis shows the number of tests (blue) and smells (orange)

for object creations all over the tests.

The automatic analysis using TestLint mostly agrees to our manual inspection.
However the high quality of the tests produce more false positives for Aconcagua
then for other packages. The reason for this is probably the fuzziness of the rules
as well as the contextual sensitivity of Test Smells.

Magritte

Magritte [28] is a meta-description framework to build user-interfaces, reports,
queries and persistency. It defines a large amount of tests (1778), most of them
being very good and easy to understand. Using the results of our case study we
encountered that only about 2% of all tests have Test Smells, false positives not
counted.

Our analysis and the one by TestLint of Magritte concludes that the tests are
in general very well designed. However, there are a several tests using Conditionals
like self shouldSkipStringTests ifTrue: [ “self | to drop tests. The manual inspection
also revealed that one test in the class MAAutoSelectorAccessorTest is overriding
the default behavior of the underlying unit testing framework, however this is not
regarded as a flaw. There are also some cases of Querreferencing which actually
show some code duplications and missing generic methods.
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Figure 8: Authors sorted (ascending) by the number of tests (blue) on the x-axis.
The primary y-axis shows the number of tests (blue) and the secondary y-axis the
number of smells per test (orange)

Refactoring Engine

The Refactoring Engine is a package including Smalllint [9], Refactoring Browsers
and other related tools. In general, it lies in the average of all projects. Nevertheless,
we have found several problems (Table 3) using TestLint.

Test Smell Occurences
Transcripting Test 2
Overreferncing Test 20
Guarded Tests 10
Long Tests 23
Overcommented 7
Code in Comments 11
Under-the-carpet Assertion 2
Under-the-carpet failing Assertion 1

Table 3: The Test Smells found in the Refactoring Engine.

TestLint further recommends to use explicit fresh fixtures in RefactoringTest in-
stead of the large implicit and shared one. The shared fixtures in Refactoring Engine
are not always fully used.
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The results gathered by TestLint fully agrees to our previous manual analysis.
Furthermore, TestLint found a number of problems which we did not detect by
looking at the code (e.g., Under-the-carpet failing Assertion).

Cryptography

Cryptography defines a set of well known and frequently used Cryptographic algo-
rithms and protocols. It is a rather large package (247 classes), but contains only
very few tests (39). The main problem of Cryptography tests are Magic Literals.
Although they are expected in such a package they appear far too often. Every
single test is heavily “infected”, making the tests difficult to understand, especially
the purpose of the data. The following Smalltalk code gives an example.

CryptoRigndaelCBCTest >> #testRFC3602Case2
| result |
((CBC on: (Rijndael new keySize: 16;
key: (ByteArray fromHexString: '06A9214036B8A15B512E03D534120006')))
initialVector: (ByteArray fromHexString: '3DAFBA429D9EB430B422DA802CIFAC41"))
encryptBlock: (result * 'Single block msg’ asByteArray).
self assert: result hex = 'E353779C1079AEB82708942DBE77181A’

A database, examples or factory methods for tests would clean up many of the
test and would also document them and make them easier to understand. Further-
more, using TestLint we detected one Under-the-carpet Assertion in testSHA256,
but not a failing one. TestLint also found out that most tests are badly organized,
as it found missing method categories or ones with bad or meaningless names. Fur-
thermore, several test methods are mixed up with non test methods.

Our manual analysis and the result by TestLint are very similar. Especially the
bad organization of tests make it difficult to understand the model behind and how
it is designed and structured. Furthermore we expected many Magic Literals, still
we believe the amount could be reduced by a better design of the test data.

6 RELATED WORK

Moonen and Van Deursen [8] as well as Meszaros [22] started researching Test Smells
by analyzing and describing them informally and in a much broader domain of
software testing. Rompaey, Demeyer at al. [30, 31] formalize them and characterize
their significance using software metrics.

There are many other methodologies trying to analyze and assess the quality
of tests. Code Coverage [19, 4, 36] was introduced in the early 70s to measure the
degree to which the source code of an application is tested. It is one of the first
techniques being developed to more systematically and thoroughly test of a software
systems.
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Moor at al. [23] introduced Mutation Analysis [5, 17, 24] to measure the stability
of tests and achieve a qualitatively better measure for the coverage of tests. They
apply Mutation Operators on primitives like Boolean, String or Integer within the
source to check whether the test still succeeds, in which the test would be a bad one.
Yu-Seung at al. [33, 35] altered the original approach of Moor and further extended
and improved it. They focus only on method- and class-based Mutation Operators
as they argue and conclude that this is a better and more reliable way of of doing
Mutation Analysis.

Gaelli at al. [12] propose a new taxonomy of tests [14]. They propose a way of
automatically classifying and categorizing tests as well as analyzing their relations
using partial ordering of tests [16, 15]. However their approach does not return a
formal or concrete measure for the quality of a test respectively the code of a test,
either.

7 CONCLUSIONS

In this paper, we have reported on our approach to detect Test Smells. We have
started from the informal and rather abstract descriptions available in the literature,
and extracted a set of automatic rules based on manually inspecting a set of known
tests. Our rules make use of both static and dynamic analysis. We have evaluated
our rules against a large body of tests, and we then manually identified the false
positives.

The results of our case study show that Test Smells exist and appear quite often,
also by people writing many of tests. Therefore it is important for developers to
quickly detect Test Smells. Furthermore, we also revealed that developers that
write more tests tend also to write better tests. Hence, we conclude that one way
to increase testing quality is to write more tests.

The result of our approach is a first list of key TestSmell that we validated in a
real and pragmatic setup. We believe that such a list can be the core of future test
analysis frameworks.

During the experimentation process, we encountered several problems. First,
finding a large enough test set was not a trivial task. Second, Test Smells are
defined in the literature on an abstract and informal level. However, at a fine-
grained level the Test Smells are interconnected. When we found characteristics of
one Test Smell, we might also find evidence for another, and that makes it hard
to distinguish between the different encountered smells. Third, many Test Smells
depend on contextual information that is hard to formalize. Fourth, there is no clear
consensus on what makes a Test Smell, as some smells are regarded differently by
different people.

However, our experiments showed promising results as only few false positives
have been found. In the future, we intend to continue our research on Test Smells.
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We plan to extend the list of smells we can detect. For example, we will target at
Test Smells like Test Duplication or Fager Tests.

We have performed our experiments on Smalltalk code. We expect the rules we
built to need adaption for other languages, but we believe that their backbones are
language independent. That is why, in the future, we plan to implement and apply
our detections to Java.
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