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LOOSE Research Group
University of Timişoara
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Abstract

1 As systems evolve and their structure decays, maintain-
ers need accurate and automatic identification of the design
problems. Current approaches for automatic detection of
design problems are not accurate enough because they an-
alyze only a single version of a system and consequently
they miss essential information as design problems appear
and evolve over time. Our approach is to use the historical
information of the suspected flawed structure to increase the
accuracy of the automatic problem detection. Our means is
to define measurements which summarize how persistent the
problem was and how much maintenance effort was spent
on the suspected structure. We apply our approach on a
large scale case study and show how it improves the accu-
racy of the detection ofGod ClassesandData Classes, and
additionally how it adds valuable semantical information
about the evolution of flawed design structures.

Keywords: software maintenance, software evolution,
software metrics, quality assurance, object-oriented pro-
gramming

1 Introduction

Maintenance effort is reported to be more than half of the
overall development effort and most of the maintenance ef-
fort is spent in adapting and introducing new requirements,
rather than in repairing errors [2][27]. One important source
of maintainability problems is the accumulation of poor or
improper design decisions. This is the reason why, during
the past years, the issue of identifying and correcting de-
sign problems became an important concern for the object-
oriented community [13][26][9].

Various analysis approaches [6][22] have been devel-
oped to automatically detect where the object-oriented de-

1Proceedings of CSMR 2004 (European Conference on Software Main-
tenance and Reengineering), 2004, pp. 223–232

sign problems are located, yet these approaches only make
use of the information found in the last version of the sys-
tem (i.e., the version which is maintained). For example,
we look for improper distribution of functionality among
classes of a system without asking whether or not it raised
maintenance problems in the past.

We argue that the evolution information of the problem-
atic classes over their life-time can give useful information
to system maintainers. We propose a new approach which
enriches the design problems detection by combining the
analysis based on a single version with the information re-
lated to the evolution of suspected flawed classes over time.

We show how we apply our approach when detecting two
of the most well known design flaws:Data ClassandGod
Class. Marinescu [21] [22] detected these flaws by apply-
ing measurement-based rules on a single version of a sys-
tem. He named these rulesdetection strategies. The result
of a detection strategy is a list ofsuspects: design structures
(e.g.,classes) which are suspected of being flawed. We en-
large the concept of detection strategies by taking into ac-
count the history of the suspects (i.e., all versions of the
suspects). We define history measurements which summa-
rize the evolution of the suspects and combine the results
with the classical detection strategies.

We applied our detection on three systems: two in-house
projects, and a large open source framework. In this paper,
we present and discuss the results we obtained on the latter
case study.

After we present the metaphor of our approach, we
briefly describe the concept ofdetection strategyand dis-
cuss the detection ofData ClassesandGod Classes. We
define the history measurements needed to extend the de-
tection strategies and discuss the way we use historical in-
formation in detection strategies. We then apply the new
detection strategies on a large open source case study and
discuss in detail the results. Before concluding and pre-
senting the future work, we give an overview of the related
work.



2 The Evolution of Design Flaw Suspects

Design flaws (e.g., God Classor Data Class) are like hu-
man diseases – each of them evolve in a special way. Some
diseases are hereditary, others are gained during the life-
time. The hereditary diseases are there since we were born.
If the physicians are given a history of our health status over
time they can give the diagnostic in a more precise way.
Moreover there are diseases with which our organism is ac-
customed and thus represent no danger for our health and
we don’t even consider them to be diseases any more.

In a similar fashion we use the system’s evolution to in-
crease the accuracy of design flaws detection. We analyze
the history of the suspects to see whether the flaw caused
problems in the past. If in the past the flaw proved not to
be harmful then it is less dangerous. For example, in many
cases, the generated code needs no maintenance so the sys-
tem which incorporates it can live a long and serene life no
matter how the generated code appears in the sources (e.g.,
large classes or unreadable code).

The design flaws evolve with the system they belong
to. As systems get older their diseases are more and more
prominent and need to be more and more taken into account.

3 Detection Strategies

A detection strategy is a generic mechanism for analyz-
ing a source code model using metrics. It is defined by its
author [22] asthe quantifiable expression of a rule, by which
design fragments that are conformant to that rule can be de-
tected in the source code.

Detection strategies allow us to work with metrics on a
more abstract level, which is conceptually much closer to
our real intentions in using metrics (e.g., for detecting de-
sign problems). The result of a detection strategy is a list
of suspects (i.e., suspected design structures). Using this
mechanism it became possible [22] to quantify several de-
sign flaws described in the literature [26] [13].

We present below the detection strategies forData Class
and God Class. Their presentation will also clarify the
structure of a detection strategy.

3.1 God ClassDetection Strategy

God Class“refers to those classes that tend to centralize
the intelligence of the system. An instance of a god-class
performs most of the work, delegating only minor details to
a set of trivial classes and using the data from other classes“
[22].

To detect aGod Classwe look for classes which use a
lot of data from the classes around them while either be-
ing highly complex or having a large state and low cohe-
sion between methods. TheGod Classdetection strategy is

a quantified measurement-based rule expressing the above
description (see Equation 1). We introduce below the mea-
surements used:

• Access to Foreign Data (ATFD) represents the number
of external classes from which a given class accesses
attributes, directly or via accessor-methods [22].

• Weighted Method Count (WMC) is the sum of the stat-
ical complexity of all methods in a class [5]. We con-
sidered the McCabes cyclomatic complexity as a com-
plexity measure [23].

• Tight Class Cohesion (TCC) is the relative number of
directly connected methods [3].

• Number of Attributes (NOA) [20].

3.2 Data ClassDetection Strategy

Data Classes“are classes that have fields, getting and
setting methods for the fields, and nothing else. Such
classes are dumb data holders and are almost certainly being
manipulated in far too much detail by other classes” [13].

To detect aData Classwe look for classes which have
a low complexity and high exposure to their internal state
(i.e., a lot of either accessor methods or public attributes).
The Data Classdetection strategy in Equation 2 uses the
following measurements:

• Weight of a Class (WOC) is the number of non-
accessor methods in the interface of the class divided
by the total number of interface members [21].

• Number of Methods (NOM) [20].

• Weighted Method Count (WMC) [5].

• Number of Public Attributes (NOPA) is defined as the
number of non-inherited attributes that belong to the
interface of a class [21].

• Number of Accessor Methods (NOAM) is defined as
the number of the non-inherited accessor-methods de-
clared in the interface of a class [21].

3.3 Detection Strategy Discussion

As shown in the Equation 1 and Equation 2 the detec-
tion strategies are based on a skeleton of measurements
and thresholds for each measurement (e.g.,ATFD > 40).
While the measurements skeleton can be obtained by trans-
lating directly the available informal rules (e.g.,heuristics
or bad smells), the particular sets of thresholds are mainly
chosen based on the experience of the analyst. As this expe-
rience can differ from person to person the thresholds rep-
resent the weak point of the detection strategies.



GodClass(S) = S′

∣∣∣∣∣∣
S′ ⊆ S,
∀C ∈ S′

(ATFD(C) > 40) ∧ ((WMC(C) > 75) ∨ ((TCC < 0.2) ∧ (NOA > 20)))
(1)

DataClass(S) = S′

∣∣∣∣∣∣
S′ ⊆ S,
∀C ∈ S′

((WMC(C)
NOM(C) < 1.1) ∧ (WOC(C) < 0.5)) ∧ ((NOPA(C) > 4) ∨ (NOAM(C) > 4))

(2)

Detection strategies are not a fully automated mecha-
nism. The result of a detection strategy is a list of suspects
which requires further human intervention to verify the flaw.

4 History Measurements

We define ahistory to be a sequence of versions of the
same kind of a particular entity (e.g.,class history, system
history, etc.). By a version we understand a snapshot of an
entity at a certain point in time (e.g.,class version, system
version, etc.).

Example. In Figure 4 we use a simplified example of
the Evolution Matrix [18] to display an example of a system
history. A column of the matrix represents a version of the
system (there are 4 versions displayed) and a line represents
a class history. A square represents a version of a class.

We refine the detection of design flaws by taking into
consideration howstablethe suspects were in the past and
how long they have been suspected of being flawed. We
namepersistent2 the entities which were suspects a large
part of their life-time (i.e.,more than 95% of their life time).
Thus we further introduce two measurements applied on the
history of a suspect:Stab andPers.

1 2 3 4

Class 
History A

Class
History B

Class
History C

Figure 1. Example of a system history dis-
played in an Evolution Matrix.

2The adjective persistent is a bit overloaded. In this paper we use its
first meaning:existing for a long or longer than usual time or continuously.
Merriam-Webster Dictionary

4.1 Measuring the Stability of Classes

We consider that a class was stable with respect to a mea-
surementM between versioni − 1 and versioni if there
was no change in the measurement. Thus we defineStabi

measurement applied on a class historyC with respect to a
measurementM and related to versioni (see Equation 3).

(i > 1)

Stabi(C,M) =
{

1, Mi(C)−Mi−1(C) = 0
0, Mi(C)−Mi−1(C) 6= 0 (3)

Furthermore, as an overall indicator of stability, we de-
fine theStab1..n measurement applied on a class historyC
as a fraction of the number of versions in which a class was
changed over the total number of versions (see Equation 4).

(n > 2) Stab1..n(C,M) =
∑n

i=2 Stabi(C,M)
n− 1

(4)

The classes functionality of the system is defined in their
methods. In this paper, we consider that a class was changed
if at least one method was added or removed. Thus, we will
useStab with respect to the number of methods of a class
(NOM).

4.2 Measuring the Persistency of a Design Flaw

We define thePers measurement of a flawF for a class
history C with n versions,i.e., 1 being the oldest version
andn being the most recent version (see Equation 5).

(i ≥ 1)

Suspecti(C,F ) =

 1, Ci is suspect of flaw F
0, Ci is not suspect

of flaw F

(n > 2) Pers1..n(C,F ) =
∑n

i=1 Suspecti(C,F )
n

(5)



Measuring the persistency of a flaw we can find in what
measure the birth of the flaw is related with the design stage
or with the evolution of the system.

2 2 4
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Legend:

x a class version with x methods
a class version having a property P

Figure 2. Examples of the computation of Stab
and Pers.

Stab

Pers(F)

2/4 = 50%

4/5 = 80%

4 4 3 3A 7

1 001

1110 1

Figure 3. Detailed computation of Stab and
Pers for class history A.

Example. Figure 2 presents 5 class histories and the re-
sults of theStab andPers measurements. Figure 3 shows
in details how we obtain the values for the two measure-
ments. We can interpret the persistent flaws in one of the
following ways:

1. The developers are conscious about these flaws and
they could not avoid making them. This could hap-
pen because of particularities of the modeled system -
the essential complexities [4] or the need to meet other
quality characteristics (e.g.,efficiency).

2. The developers are not conscious about the flaws. The
cause for this can be either the lack of expertise in

object-oriented design or the trade-offs the program-
mers had to do due to external constraints (e.g., time
pressure).

The flaws which are not persistent are the result of the
system’s evolution. These situations are usually malign be-
cause they reveal the erosion of the initial design. They have
two major causes:

1. The apparition of new (usually functional) require-
ments which forced the developers to modify the initial
design to meet them.

2. The accumulation of accidental complexity [4] in cer-
tain areas of the system due to the changing require-
ments.

We can observe that, from the maintainers’ point of view,
we are interested mainly in the second aspects regarding to
the apparition of flaws in the two cases presented above, as
in the first situations we can not correct these design flaws
because they are enforced by the modeled system.

5 Detection Strategies Enriched with Histor-
ical Information

We use the history measurements to enrich theGod
ClassandData Classdetection strategies3. Due to space
limitations of this paper, we only indicate the way we define
StableGodClassand PersistentGodClass(see Equation 6
and Equation 7), the rest of the detection strategies used fur-
ther being defined in a similar fashion. The only difference
is that while stability is measured for a class in isolation,
the instability for a class is measured relatively to the other
classes within the system.

StableGC(S1..n) = S′

∣∣∣∣∣∣
S′ ⊆ GodClass(Sn),
∀C ∈ S′

Stab(C) > 95%
(6)

PersGC(S1..n) = S′

∣∣∣∣∣∣
S′ ⊆ GodClass(Sn),
∀C ∈ S′

Pers(C,GodClass) > 95%
(7)

God Classesand Stability. God Classesare big and com-
plex classes which encapsulate a great amount of system’s
knowledge. They are known to be a source of maintainabil-
ity problems [26]. However, not allGod Classesraise prob-
lems for maintainers. The stableGod Classesare a benign

3The detection strategies used in this paper are based on the work from
[25]



part of theGod Classsuspects because the system’s evolu-
tion was not disturbed by their presence. For example, they
could implement a complex yet very well delimited part of
the system containing a strongly cohesive group of features
(e.g.,an interface with a library).

On the other hand, the changes of a system are driven by
changes in its features. Whenever a class implements more
features it is more likely to be changed.God Classeswith
a low stability were modified many times during their life-
time. Therefore, we can identifyGod Classeswhich raised
maintenance problems during their life from the set of all
God Classesidentified within the system. The unstableGod
Classesare the malign sub-set ofGod Classsuspects.

God Classesand Persistency. The persistentGod Class
are those classes which have been suspects for almost their
entire life. Particularizing the reasons given above for per-
sistent suspects in general, a class is usually bornGod Class
because one of the following reasons:

1. It encapsulates some of the essential complexities of
the modeled system. For example, it can address per-
formance problems related to delegation or it can be-
long to a generated part of the system.

2. It is the result of a bad design because of the proce-
dural way of regarding data and functionality, which
emphasis a functional decomposition instead of a data
centric one.

It is obvious thatGod Classeswhich are problematic belong
only to the last category because in the first category the
design problem can not be eliminated.

God Classsuspects which are not persistent, obtained the
God Classstatus during their lifetime. We argue that per-
sistentGod Classesare less dangerous than those which are
not persistent. The former were designed to be large and
important classes from the beginning and thus are not so
dangerous. The later more likely occur due to the accumu-
lation of accidental complexity resulted from the repeated
changes of requirements and they degrade the structure of
the system.

Data Classesand Stability. Data Classesare lightweight
classes which contain only few functionality. WhileGod
Classescarry on the work,Data Classesare only dumb data
providers whose data is used from within other (possible
many) classes. Modifications withinData Classesrequire
a lot of work from programmers, as the principle oflocal-
ity of changeis violated. Thus, regarding the efforts implied
by their change, programmers are less likely to changeData
Classes. Based on this, we infer that the more relevant func-
tionality aData Classcontains the higher are its chances to
become the subject of a change. From this point of view,

“classic” Data Classes, which are nothing else but dumb
data carriers with a very light functionality, should be rather
stable.

Data Classesand Persistency. PersistentData Classes
represent those classes which were born with this disease.
They break from the beginning of their life the fundamental
rule of object-oriented programming which states that data
and its associated functionality should stay together. Par-
ticularizing the reasons which could lead to persistentData
Classeswe obtain that:

1. The class is used only as a grouping mechanism to
put together some data. For example such a class can
be used where is necessary to transmit some unrelated
data through the system.

2. There was a design problem asData Classesdo not
use any of the mechanisms specific to object-oriented
programming (i.e., encapsulation, dynamic binding or
polymorphism). The data of these classes belong to-
gether but the corresponding functionality is some-
where else.

Data Classeswhich are not persistent are classes which
got to beData Classduring their life. A class can become
aData Classeither by requirements change in the direction
of functionality removal or by refactorings. Functionality
removal while keeping the data is unlikely to happen. Fur-
thermore by properly applying the refactorings as defined
in [13] we can not get classes with related data but no func-
tionality (i.e., the malign set ofData Classes). The only
Data Classeswe are likely get are those which belong to the
harmless category where the class is used only as a modu-
larization mechanism for moving easily unrelated data.

6 Experiment

6.1 Experimental Setup

We applied our approach on three case studies: two in-
house projects and Jun4, a large open source 3D-graphics
framework written in Smalltalk. The Jun project, started
in 1996, is still under development and we have access to
more than 500 of its versions. As experimental data we
chose every 5th version starting from version 5 (the first
public version) to version 200. In the first analyzed version
there were 160 classes while in the last analyzed version
there were 694 classes. There were 814 different classes
which were present in the system over this part of its history.
Within these classes 2397 methods were added or removed
through the analyzed history.

4See http://www.srainc.com/Jun/ for more information.



Suspect P NP S U
JunHistogramModel * *
JunLispCons * *
JunLispInterpreter * *
JunSourceCodeDifference * *
JunSourceCodeDifferenceBrowser* *
JunChartAbstract * *
JunOpenGLGraph * *
JunOpenGLDisplayModel * *
JunOpenGLShowModel * *
JunUNION * *
JunImageProcessorclass *
JunOpenGLRotationModel *
JunUniFileModel *
JunVoronoi2dProcessor *
JunMessageSpy * *
JunOpenGLDisplayLight * *
Jun3dLine * *
JunBodyclass * *
JunEdge * *
JunLoop * *
JunOpenGL3dCompoundObject * *
JunOpenGL3dObjectclass * *
JunPolygon * *
JunBody *

24 14 10 7 12

Table 1. God Classesdetected in version 200 of
Jun case-study and their history-related prop-
erties

Legend: P – Persistent; NP – Not Persistent;
S – Stable; U – Unstable

We first applied the detection strategies and then the sus-
pects were both manually inspected at the source-code level
and looked-up in Jun’s user manual. Based on the manual
inspection we determined which suspects were false posi-
tives, however we did not have access to any internal exper-
tise.

6.2 Results Analysis

Next we present and analyze the concrete results of ap-
plying our approach on the Jun case-study. The history
information allowed us to distinguish among the suspects
provided by single-version detection strategies, theharmful
andharmlessones. This distinction among suspects drives
the structure of the entire section.

The analysis shows how, by adding information related
to the evolution of classes, the accuracy of the detection re-
sults was improved on this case-study, both forGod Classes
andData Classes. Additionally, it shows that the history of
the system adds valuable semantical information about the
evolution of flawed design structures.

HarmlessGod Classes. TheGod Classeswhich areper-
sistentand stableduring their life are the most harmless
ones. They lived in symbiosis with the system along its en-
tire life and raised no maintainability problems in the past.

When taking a closer look at the Table 1 which present
theGod Classsuspects we observe that more than 20% of
them are persistent and stable (5 out of 24). These classes in
spite of their large size, did not harm the system’s maintain-
ability in the past so it is unlikely that they will harm it in
the future. Almost all of these classes belong to particular
domains which are weakly related with the main purpose
of the application. We can observe this even by looking at
their names. In Jun these classes belong to a special cate-
gory named “Goodies”.

• JunLispInterpreteris a class that implements a Lisp
interpreter, one of the supplementary utilities of Jun.
This is an example of a GodClass that models a ma-
tured utility part of the system.

• JunSourceCodeDifferenceBrowseris used to support
the evolution of Jun. It belongs to the effort of the de-
velopers to support the evolution of the library itself.

Continuing to look at the Table 1 we notice that some of
the God Classeswere stable during their lifetime even if
they were not persistent. The manual inspection revealed
that some of these classes were born as skeletons ofGod
Classclasses and waited to be filled with functionality at
later time. Another part of them was not detected to be
persistent because of the noise which interfered during the
analysis. We can consider these classes to be a less danger-
ous category ofGod Classes.

• JunOpenGLDisplayLightis a GUI class (i.e.,a descen-
dant of UI.ApplicationModel), which suddenly grew
in version 195.

• JunMessageSpyis a helper class which is used for dis-
playing profiling information for messages. It also be-
longs to the ’Goodies’ category. This class was de-
tected as not persistent only because of some noises
which interfered in the measurements.

Harmful God Classes. TheGod Classeswhich were both
not-persistentand unstableare the most dangerous ones.
Looking at the Table 1 we can easily see that almost 30% of



theGod Classesare harmful (7 out of 24). They grew as a
result of complexity accumulation over the system’s evolu-
tion and presented a lot of maintainability problems in the
past. The inspection of non-persistent unstableGod Classes
reveals that they all belong to the core of the modeled do-
main, which is in this case graphics.

• JunOpenGL3dCompoundObjectimplements the com-
position of more 3D objects. Its growth is the result of
a continuous accumulation of complexity from version
75 to version 200.

• JunBodymodels an element which represents a sin-
gle solid. Between version 100 and 150 its complexity
grew by a factor of 3.

• JunEdgeelement represents a section where 2 faces
meet. It had a continuous growth of WMC complexity
between versions 10 and 155.

Suspect P NP S U
JunParameter * *
JunPenTransformation * *
JunVoronoi2dTriangle * *
JunVrmlTexture2Node * *
Jun3dTransformation *
JunVrmlIndexedFaceSetNode20*
JunVrmlTransformNode *
JunHistoryNode *
JunVrmlMaterialNode *
JunVrmlNavigationInfoNode *
JunVrmlViewPointNode *

11 7 4 4 0

Table 2. Data Classesdetected in version 200 of
Jun case-study and their history-related prop-
erties

Legend: P – Persistent; NP – Not Persistent;
S – Stable; U – Unstable

HarmlessData Classes. We consider non persistentData
Classesto be less dangerous. The manual inspection re-
vealed that the accessor methods of these classes are not
used from exterior classes. They are used only as local
wrappers for their instance variables or as instance initializ-
ers from their meta-classes.

Suspects Total False Positives
ClassicGod ClassSuspects 24
HarmlessGod Classes 5 0
HarmfulGod Classes 7 0
Not ClassifiedGod Classes 12

ClassicData ClassSuspects 11
HarmfulData Classes 7 4
HarmlessData Classes 4 0
Not ClassifiedData Classes 0

Table 3. Summary of the results

Harmful Data Classes The most dangerousData Classes
are those which were designed like that from the beginning.
The manual inspection revealed that 3 out of 7 of theseData
Classes(i.e., almost 50% of persistentData Classes) are
used from within other classes.

• JunVoronoi2dTrianglehas its accessors used from
within JunVoronoi2dProcessor which is a persistent
God Class.

• Jun3dTransformation which is used from
JunOpenGL3dObjectclass which is a not persis-
tentGod Class.

• JunParameter is used from within JunParameter-
Model.

The other 4 persistentData Classsuspects proved to be
false positives as the manual inspection of the suspects
proved that their accessors are used only from within their
class or for initialization from their meta-class.

6.3 Results Summary

Table 3 summarises the results of the case-study analy-
sis, showing explicitly the accuracy improvement compared
with the single-version detection strategies.

From the total of 24 classes which were suspect of be-
ing God Classesusing the classic detection strategies, there
were 5 of them detected to be harmless and 7 of them de-
tected to be harmful. After the manual inspection, no false
positives were found. There were 12 suspects beingGod
Classeswhich were not classified as being either harmful or
harmless. This category of suspects require manual inspec-
tion as the time information could not improve the classic
detection.

The classicData Classdetection strategies detected 11
suspects. 7 of these were detected as being harmful and the
other 4 detected to be harmless. After the manual inspec-
tion, we found 4 false positives out of 7 of theData Classes
detected as being harmful.



7 Variation Points of the Approach

During the experiments we had to choose among many
different possibilities to deal with the time-information. We
consider necessary a final discussion centered on the possi-
ble variations of this work. Thus, the purpose of this section
is to put the chosen approach in a larger context driving in
the same time the directions for future work.

Variation of the Stab measurement. We consider a class
unstable ifat leastone method was added or removed re-
gardless of the kind of method. Therefore, we ignored the
changes produced at a lower level (e.g.,bug-fixes) and do
not distinguish the quality of changes. A possible solution
here would be to sum the number of changes in successive
versions and complement theStab measurement with size
information.

Also,Stab measurement considers all changes equal, re-
gardless of the period of time in which they appeared. An-
other possible extension here is to consider just the latest
changes by weighting each change with the distance from
the last version analyzed.

Variations in the number of analyzed versions. The
more number of versions we consider in our analysis, the
more we favor the capture of the small changes in theStab
measurement.

Variations in the starting point of the analyzed history.
We found out that persistent and stableGod Classesare
harmless because they usually implement a collateral stan-
dalone feature. These classes are part of the initial design,
as persistency means the existence of the flaw almost since
the very beginning of the class life. Therefore, if we con-
sider the analyzed period to be from the middle of their
actual life, we cannot detect whether they were really per-
sistent. Therefore, for persistency we need to consider the
history from the beginning of the system’s history.

Variations of threshold values. The thresholds represent
the weakest point of the detection strategies because they
are established mainly using the human experience. In this
work and in [25] the time information is used to supplement
the lack of precision for particular sets of thresholds.

8 Related Work

During the past years, different approaches have been
developed to address the problem of detecting design flaws.
Ciupke employed queries usually implemented in Prolog to
detect “critical design fragments” [6]. Tourweet al. also ex-
plored the use of logic programming to detect design flaws.

vanEmdenet al. detected bad smells by looking at code pat-
terns [28]. As mentioned earlier, Marinescu defined detec-
tion strategies which are measurement-based rules aimed to
detect design problems [22] [21]. Visualization techniques
have also been used to understand design [7].

These approaches have been applied on one single ver-
sion alone, therefore missing useful information related to
the history of the system. Our approach is to complement
the detection of design fragments with history information
of the suspected flawed structure.

Pioneering work to measure systems history has been
carried out by Lehmann who analyzed the evolution of the
IBM OS/360 system [19]. In [24], the authors explored the
use of measurement when analyzing the software evolution.
Demeyeret al. analyzed the history of three systems to de-
tect “refactorings via change metrics” [8]. Krajewski de-
fined a methodology [17] for analyzing the history of soft-
ware systems.

These approaches used measurements as an indicator of
changes from one version to another. We consider history
to be a first class entity and define history measurements
which summarize the entire evolution of that entity.

Visualization techniques in combination with measure-
ments were also used to understand history information [18]
[16] [15]. As opposed to visualization, our approach is more
automatic and it reduces the scope of analysis, yet we be-
lieve that the two approaches are complementary.

In [12] the authors used information outside the code his-
tory and looked for feature tracking, thus gaining semantical
information for understanding. Our approach differs as we
only make use of the code history. Another approach was
developed by Gallet al. to detect hidden dependencies be-
tween modules [14], but they considered the module as unit
of analysis while we base our analysis on detail information
from the code.

Jun has been the target of evolution research [1], however
the focus of the article was to use the history information
to describe the development process and the lessons learnt
from developing Jun.

9 Implementation - Van and Moose

We made the experiments usingVan, our history analysis
tool which is based on theMoose[11] reengineering plat-
form. Van is an implementation of theHisMo history meta
model which is an extension of theFAMIX [10] language
independent meta model.

In Figure 4 we present schematically the relationship be-
tween HisMo and FAMIX. HisMo recognizes the history as
being a first-class entity which is formed by multiple ver-
sions, each version having a one-to-one relationship with a
FAMIX entity.
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Figure 4. The HisMo meta model is an exten-
sion of the FAMIX meta model (This a reduced
schema of the meta model)

10 Conclusions and Future Work

In this paper, we refined the original concept ofdetec-
tion strategy, by using historical information of the sus-
pected flawed structures. Using this approach we showed
how the detection ofGod ClassesandData Classescan be-
come more accurate. We applied our approach on a large
case study and presented the results and accompanied them
by detailed discussions.

Our approach refines the characterisation of suspects,
which lead to a twofold benefit:

1. Elimination of false positivesby filtering out, with the
help of history information, the harmless suspects from
those provided by a single-version detection strategy.

2. Identification of most dangerous suspectsby using ad-
ditional information on the evolution of initial suspects
over their analyzed history.

In order to consolidate and refine the results obtained on
the Jun case-study, the approach needs to be applied on fur-
ther large-scale systems. We also intend to extend our in-
vestigations towards the usage of historical information for
detecting other design flaws.

The Stab measurement as defined previously, does not
take into consideration the sizes of the change. We would
like to investigate how this indicator of stability could be
improved by considering the number of methods changed
between successive versions. Other interesting investiga-
tion issues are: the impact on stability of other change mea-
surements (e.g.,lines of code) and the detection of periodic
appaearing and disappearing of flaws.
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