Using History Information to Improve Design Flaws Detection

Daniel Ratiu Stephane Ducasse TudoirBa Radu Marinescu
LOOSE Research Group Software Composition Group LOOSE Research Group
University of Timigoara University of Berne University of Timigoara
Romania Switzerland Romania
ratiud@cs.utt.ro {ducasse, girda@iam.unibe.ch radum@cs.utt.ro
Abstract sign problems are located, yet these approaches only make

use of the information found in the last version of the sys-
1 As systems evolve and their structure decays, maintain-tem (.e., the version which is maintained). For example,
ers need accurate and automatic identification of the designwe look for improper distribution of functionality among
problems. Current approaches for automatic detection of classes of a system without asking whether or not it raised
design problems are not accurate enough because they anmaintenance problems in the past.

alyze only a single version of a system and consequently e argue that the evolution information of the problem-
they miss essential information as design problems appearysic classes over their life-time can give useful information
and evolve over time. Our approach is to use the historical 1, system maintainers. We propose a new approach which
information of the suspected flawed structure to increase thegriches the design problems detection by combining the
accuracy of the automatic problem detection. Our means is analysis based on a single version with the information re-

to define measurements which summarize how persistent thgyie o the evolution of suspected flawed classes over time.

problem was and how much maintenance effort was spent)
We show how we apply our approach when detecting two

on the suspected structure. We apply our approach on a h Il k desian I dGod
large scale case study and show how it improves the accy-0f the most well known design flaw®ata ClassandGo

racy of the detection oGod ClasseandData Classesnd ~ ©1asS Marinescu [21] [22] detected these flaws by apply-

additionally how it adds valuable semantical information ing measurement-based rules ona smgle_ version of a sys-
about the evolution of flawed design structures. tem. He named these ruldstection strategiesThe result

of a detection strategy is a list sfispectsdesign structures
(e.g.,classes) which are suspected of being flawed. We en-
large the concept of detection strategies by taking into ac-
count the history of the suspectse(, all versions of the
suspects). We define history measurements which summa-
) rize the evolution of the suspects and combine the results
1 Introduction with the classical detection strategies.

_ . We applied our detection on three systems: two in-house
Maintenance effort is reported to be more than half of the projects, and a large open source framework. In this paper,

overall development effort and most of the maintenance ef-we present and discuss the results we obtained on the latter
fortis spent in adapting and introducing new requirements, case study.

rather than in repairing errors [2][27]. One important source
of maintainability problems is the accumulation of poor or
improper design decisions. This is the reason why, during
the past years, the issue of identifying and correcting de-
sign problems became an important concern for the object-
oriented community [13][26][9].

Various analysis approaches [6][22] have been devel-
oped to automatically detect where the object-oriented de-

Keywords: software maintenance, software evolution,
software metrics, quality assurance, object-oriented pro-
gramming

After we present the metaphor of our approach, we
briefly describe the concept ofetection strategynd dis-
cuss the detection dbata Classesand God Classes We
define the history measurements needed to extend the de-
tection strategies and discuss the way we use historical in-
formation in detection strategies. We then apply the new
detection strategies on a large open source case study and
discuss in detail the results. Before concluding and pre-

Lproceedings of CSMR 2004 (European Conference on Software Main- S€Nting the future work, we give an overview of the related
tenance and Reengineering), 2004, pp. 223-232 work.

2 The Evolution of Design Flaw Suspects a quantified measurement-based rule expressing the above
description (see Equation 1). We introduce below the mea-
Design flaws €.9., God Classr Data Clas$ are like hu- surements used:
man diseases — each of them evolve in a special way. Some
diseases are hereditary, others are gained during the life-
time. The hereditary diseases are there since we were born.
If the physicians are given a history of our health status over

time they can give the diagnostic in a more precise way. e Weighted Method Count (WMC) is the sum of the stat-

e Access to Foreign Data (ATFD) represents the number
of external classes from which a given class accesses
attributes, directly or via accessor-methods [22].

Moreover there are diseases with which our organism is ac- ical complexity of all methods in a class [5]. We con-
customed and thus represent no danger for our health and sidered the McCabes cyclomatic complexity as a com-
we don’t even consider them to be diseases any more. plexity measure [23].

In a similar fashion we use the system’s evolution to in- _)))
crease the accuracy of design flaws detection. We analyze ® Tight Class Cohesion (TCC) is the relative number of
the history of the suspects to see whether the flaw caused directly connected methods [3].
problems in the pest. If in the past the flaw proved_ notto o Number of Attributes (NOA) [20].
be harmful then it is less dangerous. For example, in many
cases, t.he generated co.de needs no maintenance so_the SY¥$2 Data ClassDetection Strategy
tem which incorporates it can live a long and serene life no
matter how the generated code appears in the soweaps (

large classes or unreadable co_de). setting methods for the fields, and nothing else. Such
The design flaws evolve with the system they belong ¢ jasqeq are dumb data holders and are almost certainly being

to. Ae systems get older their diseases are more and mor?nanipulated in far too much detail by other classes” [13].
prominent and need to be more and more taken into account. To detect aData Classwe look for classes which have

a low complexity and high exposure to their internal state
3 Detection Strategies (i.e., a lot of either accessor methods or public attributes).
The Data Classdetection strategy in Equation 2 uses the
A detection strategy is a generic mechanism for analyz- following measurements:
ing a source code model using metrics. It is defined by its
author [22] aghe quantifiable expression of a rule, by which
design fragments that are conformant to that rule can be de-
tected in the source code.
Detection strategies allow us to work with metrics ona 4 Number of Methods (NOM) [20].
more abstract level, which is conceptually much closer to
our real intentions in using metrice.g.,for detecting de- e Weighted Method Count (WMC) [5].

sign problems). The result of a detection strategy_is a "_St e Number of Public Attributes (NOPA) is defined as the
of suspectsife., suspected design structures). Using this number of non-inherited attributes that belong to the

mechanism it became possible [22] to quantify several de- :
sign flaws described in the literature [26] [13]. interface of a class [21].

Data Classesare classes that have fields, getting and

e Weight of a Class (WOC) is the number of non-
accessor methods in the interface of the class divided
by the total number of interface members [21].

We present below the detection strategiedfata Class e Number of Accessor Methods (NOAM) is defined as
and God Class Their presentation will also clarify the the number of the non-inherited accessor-methods de-
structure of a detection strategy. clared in the interface of a class [21].

3.1 God ClassDetection Strategy 3.3 Detection Strategy Discussion

God Class'refers to those classes that tend to centralize ~ As shown in the Equation 1 and Equation 2 the detec-
the intelligence of the system. An instance of a god-classtion strategies are based on a skeleton of measurements
performs most of the work, delegating only minor details to and thresholds for each measuremeng (AT FD > 40).

a set of trivial classes and using the data from other classes'While the measurements skeleton can be obtained by trans-
[22]. lating directly the available informal rule®.g., heuristics

To detect aGod Classwe look for classes which use a or bad smells), the particular sets of thresholds are mainly
lot of data from the classes around them while either be- chosen based on the experience of the analyst. As this expe-
ing highly complex or having a large state and low cohe- rience can differ from person to person the thresholds rep-
sion between methods. Ti@od Clasgdetection strategy is resent the weak point of the detection strategies.

ST C 8,

GodClass(S)=S"| VC € §’ (1)
(ATFD(C) > 40) A (WMC(C) > 75) V ((TCC < 0.2) A (NOA > 20)))
s’ CS,
DataClass(S) = 8" | VC € S’ 2

(WML < 1.1) A (WOC(C) < 0.5)) A ((NOPA(C) > 4) V (NOAM(C) > 4))

NOM(C)

Detection strategies are not a fully automated mecha-4.1 Measuring the Stability of Classes
nism. The result of a detection strategy is a list of suspects

which requires further human intervention to verify the flaw.

4 History Measurements

We define ahistoryto be a sequence of versions of the
same kind of a particular entitye(g.,class history, system

We consider that a class was stable with respect to a mea-
surement)M between version — 1 and version if there
was no change in the measurement. Thus we définé;
measurement applied on a class histOryith respect to a
measurement/ and related to version(see Equation 3).

history, etc.). By a version we understand a snapshot of an (i>1)

entity at a certain point in timez(g.,class version, system
version, etc.).

Example. In Figure 4 we use a simplified example of
the Evolution Matrix [18] to display an example of a system

1, M;(C)— M;-1(C)

Stab; (C, M) = { 0, M;(C)— Mi_1(C)

0@

Furthermore, as an overall indicator of stability, we de-

history. A column of the matrix represents a version of the fine theStab; ,, measurement applied on a class history
system (there are 4 versions displayed) and a line representss a fraction of the number of versions in which a class was

a class history. A square represents a version of a class.

We refine the detection of design flaws by taking into

consideration hovetablethe suspects were in the past and

how long they have been suspected of being flawed. We
namepersistent the entities which were suspects a large

part of their life-time {.e., more than 95% of their life time).

changed over the total number of versions (see Equation 4).

>, Stabi(C, M)

(n>2) Staby ,(C,M) =

4

n—1

The classes functionality of the system is defined in their

Thus we further introduce two measurements applied on themethods. In this paper, we consider that a class was changed

history of a suspectStab and Pers.

CI 1 1
HistsfySA HEREENN

[

Class 1 1
History B |:| : |:| :
__________ Femmq—mm— e ——— =
Ciass 00 g
History C 1 1
1 1
1—2 —3 —4 »

Figure 1. Example of a system history dis-
played in an Evolution Matrix.

2The adjective persistent is a bit overloaded. In this paper we use its

first meaningexisting for a long or longer than usual time or continuously.
Merriam-Webster Dictionary

if at least one method was added or removed. Thus, we will
useStab with respect to the number of methods of a class
(NOM).

4.2 Measuring the Persistency of a Design Flaw

We define thePers measurement of a flaw for a class
history C' with n versions,i.e., 1 being the oldest version
andn being the most recent version (see Equation 5).

(1=1)
1, C;is suspect of flaw F
0, C;isnot suspect

of flaw F

Suspect;(C, F) =

B i, Suspect;(C, F)

(n>2) Pers;.,(C,F)=

n

®)

Measuring the persistency of a flaw we can find in what object-oriented design or the trade-offs the program-
measure the birth of the flaw is related with the design stage mers had to do due to external constrairgg(time
or with the evolution of the system. pressure).

The flaws which are not persistent are the result of the
Stab Pers(F) system’s evolution. These situations are usually malign be-

A 50% 80% cause they reveal the erosion of the initial design. They have
two major causes:

B 66% 50% 1. The apparition of new (usually functional) require-
ments which forced the developers to modify the initial

c 50% 33% design to meet them.

D 100% 0% 2. The accumulation of accidental compIeX|ty.[4] in cer-
tain areas of the system due to the changing require-

E @ 0% 0% ments.

{_—95_3_4—5 We can observe that, from the maintainers’ point of view,
Legend: we are interested mainly in the second aspects regarding to

the apparition of flaws in the two cases presented above, as

a class version with x methods in the first situations we can not correct these design flaws

[J aclass version having a property P because they are enforced by the modeled system.
Figure 2. Examples of the computation of Stab 5 Detection Strategies Enriched with Histor-
and Pers. ical Information

We use the history measurements to enrich Gul
ClassandData Classdetection strategies Due to space
limitations of this paper, we only indicate the way we define
StableGodClassnd PersistentGodClasg¢see Equation 6

1 0 1 0
and Equation 7), the rest of the detection strategies used fur-
A ther being defined in a similar fashion. The only difference
1 1 1 1

Stab 2/4 = 50%

is that while stability is measured for a class in isolation,
the instability for a class is measured relatively to the other
classes within the system.

Pers(F) 0 4/5 = 80%

Figure 3. Detailed computation of Stab and S’ C GodClass(Sy)

Pers for class hiStOfy A. StableGC(Sln) =S| vCegs (6)
Stab(C) > 95%

Example. Figure 2 presents 5 class histories and the re-
sults of theStab and Pers measurements. Figure 3 shows
in details how we obtain the values for the two measure-
ments. We can interpret the persistent flaws in one of the
following ways:

S’ C GodClass(Sy),
PersGC(Sy.n) = §'| VO € §)
Pers(C,GodClass) > 95%

1. The developers are conscious about these flaws an
they could not avoid making them. This could hap-
pen because of particularities of the modeled system -
the essential complexities [4] or the need to meet other
quality characteristice(g.,efficiency).

Cbod Classeand Stability. God Classesare big and com-
plex classes which encapsulate a great amount of system’s
knowledge. They are known to be a source of maintainabil-
ity problems [26]. However, not abod Classesgaise prob-
lems for maintainers. The stab®&od Classesire a benign

2. The develop(_ars are not qonSCiOUS about the ﬂaW_S- The 3The detection strategies used in this paper are based on the work from
cause for this can be either the lack of expertise in [25]

part of theGod Classsuspects because the system’s evolu- “classic” Data Classeswhich are nothing else but dumb
tion was not disturbed by their presence. For example, theydata carriers with a very light functionality, should be rather
could implement a complex yet very well delimited part of stable.

the system containing a strongly cohesive group of features

(e.g..an interface with a library). _ Data Classesand Persistency. PersistentData Classes

On the other hand, the changes of a system are driven bytepresent those classes which were born with this disease.
changes in its features. Whenever a class implements morerhey preak from the beginning of their life the fundamental
features it is more likely to be change@od Classesvith je of object-oriented programming which states that data
a low stability were modified many times during their life- - anq its associated functionality should stay together. Par-

time. Therefore, we can identifgod Classesvhich raised ticylarizing the reasons which could lead to persisiata
maintenance problems during their life from the set of all ¢|35sesve obtain that:

God Classeglentified within the system. The unstal@ed

Classesare the malign sub-set @od Classsuspects. 1. The class is used only as a grouping mechanism to
put together some data. For example such a class can
God Classeand Persistency. The persistenGod Class be used where is necessary to transmit some unrelated

are those classes which have been suspects for aimost their ~ data through the system.
entire life. Particularizing the reasons given above for per-
sistent suspects in general, a class is usually Garth Class
because one of the following reasons:

2. There was a design problem Bsita Classegio not
use any of the mechanisms specific to object-oriented
programming i¢e., encapsulation, dynamic binding or

1. It encapsulates some of the essential complexities of polymorphism). The data of these classes belong to-
the modeled system. For example, it can address per- gether but the corresponding functionality is some-
formance problems related to delegation or it can be- where else.

long o a generated part of the system. Data Classesvhich are not persistent are classes which

2. It is the result of a bad design because of the proce-90t to beData Classduring their life. A class can become
dural way of regarding data and functionality, which aData Classeither by requirements change in the direction

emphasis a functional decomposition instead of a dataOf functionality removal or by refactorings. Functionality
centric one. removal while keeping the data is unlikely to happen. Fur-

thermore by properly applying the refactorings as defined

Itis obvious thaGod Classesvhich are problematic belong in [13] we can not get classes with related data but no func-
only to the last category because in the first category thetionality (i.e., the malign set oData Classes The only
design problem can not be eliminated. Data Classesve are likely get are those which belong to the

God Classuspects which are not persistent, obtained the harmless category where the class is used only as a modu-
God Classstatus during their lifetime. We argue that per- larization mechanism for moving easily unrelated data.
sistentGod Classeare less dangerous than those which are
not persistent. The former were designed to be large and6 Experiment
important classes from the beginning and thus are not so
dangerous. The later more likely occur due to the accumu- .
lation of accidental complexity resulted from the repeated 6.1 Experimental Setup

changes of requirements and they degrade the structure of . .]
the system. We applied our approach on three case studies: two in-

house projects and Jtina large open source 3D-graphics
framework written in Smalltalk. The Jun project, started
in 1996, is still under development and we have access to
more than 500 of its versions. As experimental data we
chose every 5th version starting from version 5 (the first
public version) to version 200. In the first analyzed version
there were 160 classes while in the last analyzed version
there were 694 classes. There were 814 different classes
which were present in the system over this part of its history.
Within these classes 2397 methods were added or removed
through the analyzed history.

Data Classeand Stability. Data Classesre lightweight
classes which contain only few functionality. Whi&od
Classe<arry on the workData Classesire only dumb data
providers whose data is used from within other (possible
many) classes. Maodifications withiData Classesequire

a lot of work from programmers, as the principlelotal-

ity of changes violated. Thus, regarding the efforts implied
by their change, programmers are less likely to chdbafa
ClassesBased on this, we infer that the more relevant func-
tionality aData Classcontains the higher are its chances to
become the subject of a change. From this point of view, “See http://www.srainc.com/Jun/ for more information.

Suspect NP
JunHistogramModel
JunLispCons

JunLisplinterpreter
JunSourceCodeDifference
JunSourceCodeDifferenceBrows
JunChartAbstract
JunOpenGLGraph
JunOpenGLDisplayModel
JunOpenGLShowModel
JunUNION
JunimageProcessafass
JunOpenGLRotationModel
JunUniFileModel
JunVoronoi2dProcessor
JunMessageSpy
JunOpenGLDisplayLight
Jun3dLine

JunBodyclass

JunEdge

JunLoop
JunOpenGL3dCompoundObject
JunOpenGL3dObjeatlass
JunPolygon

JunBody

24 [14] 12

Table 1. God Classesletected in version 200 of
Jun case-study and their history-related prop-
erties

Legend: P — Persistent; NP — Not Persistent;
S — Stable; U — Unstable

We first applied the detection strategies and then the sus

The analysis shows how, by adding information related
to the evolution of classes, the accuracy of the detection re-
sults was improved on this case-study, bothGod Classes
andData ClassesAdditionally, it shows that the history of
the system adds valuable semantical information about the
evolution of flawed design structures.

Harmless God Classes The God Classesvhich areper-
sistentand stable during their life are the most harmless
ones. They lived in symbiosis with the system along its en-
tire life and raised no maintainability problems in the past.
When taking a closer look at the Table 1 which present
the God Classsuspects we observe that more than 20% of
them are persistent and stable (5 out of 24). These classes in
spite of their large size, did not harm the system’s maintain-
ability in the past so it is unlikely that they will harm it in
the future. Almost all of these classes belong to particular
domains which are weakly related with the main purpose
of the application. We can observe this even by looking at
their names. In Jun these classes belong to a special cate-
gory named “Goodies”.

e JunLispinterpreters a class that implements a Lisp
interpreter, one of the supplementary utilities of Jun.
This is an example of a GodClass that models a ma-
tured utility part of the system.

¢ JunSourceCodeDifferenceBrowserused to support
the evolution of Jun. It belongs to the effort of the de-
velopers to support the evolution of the library itself.

Continuing to look at the Table 1 we notice that some of
the God Classesvere stable during their lifetime even if
they were not persistent. The manual inspection revealed
that some of these classes were born as skeleto@odf
Classclasses and waited to be filled with functionality at
later time. Another part of them was not detected to be
persistent because of the noise which interfered during the
analysis. We can consider these classes to be a less danger-

ous category ood Classes

pects were both manually inspected at the source-code level
and looked-up in Jun’s user manual. Based on the manual e JunOpenGLDisplayLighs a GUI classi(e.,a descen-

inspection we determined which suspects were false posi-
tives, however we did not have access to any internal exper-

tise.

6.2 Results Analysis

Next we present and analyze the concrete results of ap-
plying our approach on the Jun case-study. The history

information allowed us to distinguish among the suspects
provided by single-version detection strategies hHaemful
andharmlessones. This distinction among suspects drives
the structure of the entire section.

dant of Ul.ApplicationModel), which suddenly grew
in version 195.

e JunMessageSpy a helper class which is used for dis-
playing profiling information for messages. It also be-
longs to the 'Goodies’ category. This class was de-
tected as not persistent only because of some noises
which interfered in the measurements.

Harmful God Classes TheGod Classes/hich were both
not-persistentand unstableare the most dangerous ones.
Looking at the Table 1 we can easily see that almost 30% of

the God Classeare harmful (7 out of 24). They grew as a
result of complexity accumulation over the system'’s evolu-
tion and presented a lot of maintainability problems in the
past. The inspection of non-persistent unst&lde Classes
reveals that they all belong to the core of the modeled do-
main, which is in this case graphics.

e JunOpenGL3dCompoundObjentplements the com-
position of more 3D objects. Its growth is the result of
a continuous accumulation of complexity from version
75 to version 200.

JunBodymodels an element which represents a sin-
gle solid. Between version 100 and 150 its complexity
grew by a factor of 3.

JunEdgeelement represents a section where 2 faces
meet. It had a continuous growth of WMC complexity
between versions 10 and 155.

Suspect NP
JunParameter
JunPenTransformation
JunVoronoi2dTriangle
JunVrmlTexture2Node
Jun3dTransformation
JunVrmlindexedFaceSetNode20¢
JunVrmlTransformNode
JunHistoryNode
JunVrmlMaterialNode
JunVrmlINavigationinfoNode
JunVrmlViewPointNode

11 (774740

Table 2. Data Classesletected in version 200 of
Jun case-study and their history-related prop-
erties

Legend: P — Persistent; NP — Not Persistent;
S — Stable; U — Unstable

HarmlessData Classes We consider non persisteData
Classesto be less dangerous. The manual inspection re-
vealed that the accessor methods of these classes are n

Suspects Total | False Positives
ClassicGod ClassSuspects| 24

HarmlessGod Classes 5 0
Harmful God Classes 7 0

Not ClassifiedGod Classes| 12

ClassicData ClassSuspects| 11

Harmful Data Classes 7 4
HarmlesdData Classes 4 0

Not ClassifiedData Classes| 0

Table 3. Summary of the results

Harmful Data Classes The most dangerou3ata Classes
are those which were designed like that from the beginning.
The manual inspection revealed that 3 out of 7 of tHes&
Classes(i.e., almost 50% of persisteribata Classepare
used from within other classes.

e JunVoronoi2dTrianglehas its accessors used from
within JunVoronoi2dProcessor which is a persistent
God Class

e Jun3dTransformation which is used from
JunOpenGL3dObjeatlass which is a not persis-
tentGod Class

e JunParameteris used from within JunParameter-
Model.

The other 4 persisteriData Classsuspects proved to be
false positives as the manual inspection of the suspects
proved that their accessors are used only from within their
class or for initialization from their meta-class.

6.3 Results Summary

Table 3 summarises the results of the case-study analy-
sis, showing explicitly the accuracy improvement compared
with the single-version detection strategies.

From the total of 24 classes which were suspect of be-
ing God Classesising the classic detection strategies, there
were 5 of them detected to be harmless and 7 of them de-
tected to be harmful. After the manual inspection, no false
positives were found. There were 12 suspects b&nogd
Classesvhich were not classified as being either harmful or
harmless. This category of suspects require manual inspec-
tion as the time information could not improve the classic
detection.

The classidata Classdetection strategies detected 11
suspects. 7 of these were detected as being harmful and the

used from exterior classes. They are used only as localother 4 detected to be harmless. After the manual inspec-

wrappers for their instance variables or as instance initializ-
ers from their meta-classes.

tion, we found 4 false positives out of 7 of tbaita Classes
detected as being harmful.

7 Variation Points of the Approach vanEmderet al. detected bad smells by looking at code pat-
terns [28]. As mentioned earlier, Marinescu defined detec-
During the experiments we had to choose among manytion strategies which are measurement-based rules aimed to

different possibilities to deal with the time-information. We detect design problems [22] [21]. Visualization techniques

consider necessary a final discussion centered on the posshave also been used to understand design [7].

ble variations of this work. Thus, the purpose of this section ~ These approaches have been applied on one single ver-

is to put the chosen approach in a larger context driving in sion alone, therefore missing useful information related to

the same time the directions for future work. the history of the system. Our approach is to complement
the detection of design fragments with history information

Variation of the Stab measurement. We consideraclass ©f the suspected flawed structure.
unstable ifat leastone method was added or removed re- ~ Pioneering work to measure systems history has been
gardless of the kind of method. Therefore, we ignored the carried out by Lehmann who analyzed the evolution of the
changes produced at a lower levelg, bug-fixes) and do ~ 1BM OS/360 system [19]. In [24], the authors explored the
not distinguish the quality of changes. A possible solution Use of measurement when analyzing the software evolution.
here would be to sum the number of changes in successivdeémeyeret al. analyzed the history of three systems to de-
versions and complement ttf#ab measurement with size tect “refactorings via change metrics” [8]. Krajewski de-
information. fined a methodology [17] for analyzing the history of soft-
Also, Stab measurement considers all changes equal, re-Ware systems.
gardless of the period of time in which they appeared. An- These approaches used measurements as an indicator of
other possible extension here is to consider just the latestchanges from one version to another. We consider history
changes by weighting each change with the distance fromto be a first class entity and define history measurements
the last version analyzed. which summarize the entire evolution of that entity.
Visualization techniques in combination with measure-
Variations in the number of analyzed versions. The ments were also used to understand history information [18]

more number of versions we consider in our analysis, the [18][15]- As opposed to visualization, our approach is more

more we favor the capture of the small changes inghé automatic and it reduces the scope of analysis, yet we be-
measurement. lieve that the two approaches are complementary.

In [12] the authors used information outside the code his-
Variations in the starting point of the analyzed history. Fory andllooked for feature t.racklng, thus gaining semantical
information for understanding. Our approach differs as we

We found out that persistent and stalded Classesre | K th de hist Anoth h
harmless because they usually implement a collateral stanON'Y Make use ot the code history. Another approach was

dalone feature. These classes are part of the initial designdevelOped by Gaiet al. to detect hidden dependencies be-

as persistency means the existence of the flaw almost sincg’;’eenlqumﬁ? [14]’;““ they cons||d(_ered tgetnjlo_dgle ast_unlt
the very beginning of the class life. Therefore, if we con- of analysis while we base our analysis on detail information

sider the analyzed period to be from the middle of their from the code. .
actual life, we cannot detect whether they were really per- Jun has been the target of evolution research [1], however

sistent. Therefore, for persistency we need to consider thet€ focus of the article was to use the history information
history from the beginning of the system’s history. to describe the development process and the lessons learnt

from developing Jun.

Variations of threshold values. The thresholds represent
the weakest point of the detection strategies because the® Implementation - Van and Moose
are established mainly using the human experience. In this
work and in [25] the time information is used to supplement

- . We made the experiments usi¥gn our history analysis
the lack of precision for particular sets of thresholds. b an y y

tool which is based on thkloose[11] reengineering plat-

form. Van is an implementation of theisMo history meta

8 Related Work model which is an extension of tHAMIX [10] language
independent meta model.

During the past years, different approaches have been In Figure 4 we present schematically the relationship be-
developed to address the problem of detecting design flawstween HisMo and FAMIX. HisMo recognizes the history as
Ciupke employed queries usually implemented in Prolog to being a first-class entity which is formed by multiple ver-
detect “critical design fragments” [6]. Tourve¢al. also ex- sions, each version having a one-to-one relationship with a
plored the use of logic programming to detect design flaws. FAMIX entity.

Acknowledgments

fl}lssttz; 1 2! Class History |1 3 '\I-Illiesttr::::
1 i i Ducasse and Girba gratefully acknowledge the financial
support of the Swiss National Science Foundation for the
. . projects “Tools and Techniques for Decomposing and Com-
System Class Version Method posing Software” (SNF Project No. 2000-0.67855.02,. Oct.
Version Version 2002 - Sept. 2004) and “RECAST: Evolution of Object-
1 1 1 Oriented Applications” (SNF Project No. 620-066077,
Sept. 2002 - Aug. 2006).
1 1 1 Ratiu would like to thank CHOOSE, and Girba would
FAMIX Model FAMIX Class FAMIX like to thank European Science Foundation for the financial
Method
support.
Figure 4. The HisMo meta model is an exten- References

sion of the FAMIX meta model (This a reduced
schema of the meta model)

10 Conclusions and Future Work

In this paper, we refined the original conceptdsitec-
tion strategy by using historical information of the sus-
pected flawed structures. Using this approach we showed
how the detection oBod ClasseandData Classegsan be-
come more accurate. We applied our approach on a large

case study and presented the results and accompanied thend”!

by detailed discussions.
Our approach refines the characterisation of suspects,
which lead to a twofold benefit:

1. Elimination of false positiveBy filtering out, with the
help of history information, the harmless suspects from
those provided by a single-version detection strategy.

2. ldentification of most dangerous suspdyausing ad-
ditional information on the evolution of initial suspects
over their analyzed history.

In order to consolidate and refine the results obtained on
the Jun case-study, the approach needs to be applied on fur-

ther large-scale systems. We also intend to extend our in-[10]

vestigations towards the usage of historical information for
detecting other design flaws.

The Stab measurement as defined previously, does not [11]

take into consideration the sizes of the change. We would
like to investigate how this indicator of stability could be
improved by considering the number of methods changed

between successive versions. Other interesting investiga-[17)

tion issues are: the impact on stability of other change mea-
surementsd.g.,lines of code) and the detection of periodic
appaearing and disappearing of flaws.

[1] A.Aoki, K. Hayashi, K. Kishida, K. Nakakoji, Y. Nishinaka,

B. Reeves, A. Takashima, and Y. Yamamoto. A case study of
the evolution of jun: an object-oriented open-source 3d mul-
timedia library. InProceedings of International Conference
on Software Engineering (ICSE)001.

[2] K.Bennettand V. Rajlich. Software maintenance and evolu-
tion:a roadmap. IMCSE - Future of SE Traclpages 73-87,
2000.

[3] J. Bieman and B. Kang. Cohesion and reuse in an object-
oriented system. IiProceedings ACM Symposium on Soft-
ware ReusabilityApr. 1995.

[4] F.P.Brooks. No silver bulletEEE Computer20(4):10-19,

Apr. 1987.

S. R. Chidamber and C. F. Kemerer. A metrics suite for

object oriented designEEE Transactions on Software En-

gineering 20(6):476-493, June 1994.

[6] O. Ciupke. Automatic detection of design problems in
object-oriented reengineering. Rroceedings of TOOLS 30
(USA) pages 18-32, 1999.

[7] S. Demeyer, S. Ducasse, and M. Lanza. A hybrid reverse
engineering platform combining metrics and program visu-
alization. In F. Balmas, M. Blaha, and S. Rugaber, edi-
tors, Proceedings WCRE '99 (6th Working Conference on
Reverse Engineering)EEE, Oct. 1999.

[8] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding refac-
torings via change metrics. IRroceedings of OOPSLA
2000 (International Conference on Object-Oriented Pro-
gramming Systems, Languages and Applicatiopsiges
166-178, 2000. 26 accepted papers on 142 (18%).

[9] S.Demeyer, S. Ducasse, and O. Nierstr&@izect-Oriented

Reengineering Patterndlorgan Kaufmann, 2002.

S. Demeyer, S. Tichelaar, and P. Steyaert. FAMIX 2.0 — the

FAMOOS information exchange model. Technical report,

University of Bern, Aug. 1999.

S. Ducasse, M. Lanza, and S. Tichelaar. Moose: an exten-

sible language-independent environment for reengineering

object-oriented systems. Rroceedings of the Second Inter-
national Symposium on Constructing Software Engineering

Tools (CoSET 2000yune 2000.

M. Fischer, M. Pinzger, and H. Gall. Analyzing and relating

bug report data for feature tracking. Rroceedings of the

10th Working Conference on Reverse Engineering (WCRE),

to appear Nov. 2003.

(13]

(14]

(15]

(16]

(17]

(18]

(19]
(20]

(21]

(22]

(23]

(24]

(25]

(26]
[27]

(28]

M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.
Refactoring: Improving the Design of Existing Codeldi-

son Wesley, 1999.

H. Gall, K. Hajek, and M. Jazayeri. Detection of logical
coupling based on product release history.Phaceedings

of the International Conference on Software Maintenance
1998 (ICSM '98) pages 190-198, 1998.

M. Jazayeri. On architectural stability and evolution. In
Reliable Software Technlogies-Ada-Europe 2qies 13—
23. Springer Verlag, 2002.

M. Jazayeri, H. Gall, and C. Riva. Visualizing software re-
lease histories: The use of color and third dimension. In
ICSM '99 Proceedings (International Conference on Soft-
ware Maintenance)pages 99-108. IEEE Computer Society,
1999.

J. Krajewski. QCR - A methodology for software evolu-
tion analysis. Master’s thesis, Information Systems Institute,
Distributed Systems Group, Technical University of Vienna,
Apr. 2003.

M. Lanza and S. Ducasse. Understanding software evolution
using a combination of software visualization and software
metrics. InProceedings of LMO 2002 (Langages et Mieb

a Objets pages 135-149, 2002.

M. M. Lehman and L. BeladyProgram Evolution — Pro-
cesses of Software Chandeondon Academic Press, 1985.
M. Lorenz and J. Kidd.Object-Oriented Software Metrics:

A Practical Guide Prentice-Hall, 1994.

R. Marinescu. Detecting design flaws via metrics in object-
oriented systems. IRroceedings of TOOLSages 173—
182, 2001.

R. MarinescuMeasurement and Quality in Object-Oriented
Design Ph.D. thesis, Department of Computer Science,
"Politehnica” University of Timisoara, 2002.

T. McCabe. A measure of complexityEEE Transactions
on Software Engineerin@(4):308-320, Dec. 1976.

T. Mens and S. Demeyer. Future trends in software evolu-
tion metrics. InProceedings IWPSE2001 (4th International
Workshop on Principles of Software Evolutipppges 83—
86, 2002.

D. Ratiu. Time-based detection strategies. Master’s thesis,
Faculty of Automatics and Computer Science, "Politehnica”
University of Timisoara, Sept. 2003.

A. J. Riel. Object-Oriented Design HeuristicsAddison
Wesley, 1996.

I. Sommerville. Software Engineering Addison Wesley,
sixth edition, 2000.

E. van Emden and L. Moonen. Java quality assurance by
detecting code smells. IRroc. 9th Working Conf. Reverse
Engineering pages 97-107. IEEE Computer Society Press,
Oct. 2002.

