
A Process-Oriented Software Architecture Reconstruction Taxonomy

Stéphane Ducasse Damien Pollet Loı̈c Poyet

LISTIC - Language and Software Evolution Group
Université de Savoie, France

Accepted to CSMR 2007

Abstract

To maintain and understand large applications, it is cru-
cial to know their architecture. The first problem is that
architectures are not explicitly represented in the code as
classes and packages are. The second problem is that suc-
cessful applications evolve over time so their architecture
inevitably drifts. Reconstructing and checking whether the
architecture is still valid is thus an important aid. While
there is a plethora of approaches and techniques support-
ing architecture reconstruction, there is no comprehensive
state of the art and it is often difficult to compare the ap-
proaches. This article presents a first state of the art in soft-
ware architecture reconstruction, with the desire to support
the understanding of the field.

1. Introduction

Software architecture acts as a shared mental model of
a system expressed at a high-level of abstraction [49]. By
leaving details aside, this model plays a key role as a bridge
between requirements and implementation [32]. It allows
one to reason architecturally about a software application
during the various steps of the software life cycle. Accord-
ing to Garlan [32], software architecture plays an important
role in at least six aspects of software development: under-
standing, reuse, construction, evolution, analysis and man-
agement.

Software architecture is thus crucial for software devel-
opment. The first problem is that architectures are not ex-
plicitly represented in the code as classes and packages are.
The second problem is that successful software applications
are doomed to continually evolve and grow [67]; and as a
software application evolves and grows, so does its archi-
tecture. The conceptual architecture often becomes inaccu-
rate with respect to the concrete architecture; this results in
architectural erosion [75, 88], drift [88], mismatch [33], or
chasm [96].

Software architecture reconstruction (SAR) is the re-

verse engineering process that aims at reconstructing vi-
able architectural views of a software application. Krikhaar
specified five SAR maturity levels [62]. While SAR is ra-
rely an end in itself, it improves software development by
providing high-level views of the investigated software ap-
plication [43]. For example, these views help identify prod-
uct line commonalities and variabilities [109] or check their
conformance to the source code [82].

Several approaches and techniques have been proposed
in the literature to support SAR. Mendonça et al. presented
a first raw classification of SAR environments based on a
few typical scenarios [78]. O’Brien et al. surveyed SAR
practice needs and approaches [85]. Still, there is no com-
prehensive state of the art and it is often difficult to com-
pare the approaches. This article presents a first state of
the art in SAR, with the desire to help understand the field
and to identify the current approaches, techniques and tools.
The presented taxonomy takes the perspective of a reverse-
engineer who would like to reconstruct the architecture of
an existing application and would like to know which tools
or approach to take. The taxonomy takes into account the
goals, the process, the inputs, the techniques and the outputs
of SAR.

Section 2 first stresses some key vocabulary definitions
and the challenges addressed in the field. Section 3 de-
scribes the criteria that we adopted in our taxonomy; sec-
tions 4 to 8 then cover each of these criteria, and we con-
clude.

2. SAR Challenges

Before going in more depth into the challenges of SAR,
we feel the need to clarify the vocabulary.

2.1. Vocabulary

Software architecture. IEEE defines software architec-
ture as “the fundamental organization of a system embodied
in its components, their relationships to each other, and to
the environment, and the principles guiding its design and

1



evolution”[52]; this is closely related to the definition of
Shaw, Perry and Garlan [102, 35].

Architectural style. A software architecture often con-
forms to an architectural style that is a class of architec-
tures, or a pattern of structural organization: “a vocabulary
of components and connector types, and a set of constraints
on how they can be combined” [102].

Architectural views and viewpoints. We can view a soft-
ware architecture from several viewpoints since the different
system stakeholders have different expectations or concerns
about the system [64, 52]:
View: “a representation of a whole system from the per-

spective of a related set of concerns.”
Viewpoint: “a specification of the conventions for con-

structing and using a view. A pattern or a template
from which to develop individual views by establishing
the purposes and audience for a view and the tech-
niques for its creation and analysis.”

Conceptual architecture. It refers to the architecture
that exists in human minds or in the software documenta-
tion [120, 96]. In the literature, this kind of architecture
is also qualified as idealized [43], intended [132, 96], as-
designed [57, 120] or logical [76].

Concrete architecture. It refers to the architecture that
can be derived from source code [120, 96]. It is also known
as the as-implemented [57, 96], as-built [120, 43], real-
ized [132] or physical [76] architecture.

Software architecture reconstruction (SAR). SAR is
the reverse engineering approach that aims at reconstruct-
ing viable architectural views of a software application. The
literature uses several other terms to refer to SAR: reverse
architecting, or architecture extraction, mining, recovery or
discovery. The last two terms are more specific than the
others [75]: recovery refers to a bottom-up process while
discovery refers to a top-down process (see Section 5).

2.2. Challenges

SAR is a multidisciplinary activity which covers several
research areas dealing with information processing: extrac-
tion, abstraction, modeling and presentation of the results.

On the one hand, human expertise is primordial to treat
architectural concepts. Knowledge of business goals, re-
quirements, product family reference architectures, or de-
sign constraints is useful to assist SAR. However, when we
take human knowledge into consideration, several problems
appear:

• Because of the experts turnover and the lack of com-
plete, up-to-date documentation, the conceptual archi-
tecture in human minds is often obsolete, inaccurate,
incomplete, or at an irrelevant abstraction level. SAR
should take into account the quality of the information.

• When reconstructing an architecture, system stake-
holders have various concerns such as performance, re-
liability, portability or reusability; SAR should support
multiple architectural viewpoints.

• Reverse engineers are sometimes lost in the increas-
ing software complexity. SAR needs to be interactive,
iterative and parametrized.

On the other hand, source code is one of the few trust-
worthy reliable sources of information about the software
application which contains its actual architecture. However,
reconstructing the architecture from the source code raises
several problems:

• The large amount of data held by the source code raises
scalability issues.

• Since the considered systems are typically large, com-
plex and long-living, SAR should handle development
methods, languages and technologies that are often
heterogeneous and sometimes interleaved.

• Architecture is not explicitly represented at the source
code level. In addition, language concepts such as
polymorphism, late-binding, delegation, or inheritance
make it harder to analyze the code [130, 14]. How to
identify the relevant information to reach an architec-
tural level?

• The nature of software raises the questions of whether
dynamic information should be extracted as the sys-
tem is running, and then how do the behavioral aspects
appear in the architecture.

To summarize this section, the major challenge of SAR is
in abstracting, identifying and displaying higher-level views
from lower-level and often heterogeneous information.

3. SAR Taxonomy Axes

Mendonça et al. [78] classified SAR environments and
distinguished five families: filtering and clustering, com-
pliance checking, analysers generators, program under-
standing and architecture recognition. O’Brien et al. sur-
veyed SAR practice needs and approaches [85]. Gallagher
et al. [30] proposed a framework to assess architectural vi-
sualization tools. Guéhéneuc et al. [38] proposed a compar-
ative framework for design recovery tools. We propose a
more elaborated classification based on the life-time of SAR
presented in Figures 1 and 2): intended goals, followed pro-
cesses, required inputs, used techniques and expected out-
puts.

2



Goals

Processes

Techniques

Outputs

InputsSAR

Hybrid

Bottom-Up
Top-Down

Semi-Automatic
Quasi-Manual

Quasi-Automatic
Abstraction
Investigation

Construction
Exploration

Architecture
Conformance
Analysis

Redocumentation
Reuse
Conformance

Analysis
Co-Evolution

Evolution

Related Artifacts

Non-Architectural 

Architectural 
Styles
Viewpoints

Graph Pattern Matching 
Recognizers

State Engine 
Maps 

Horizontal
Vertical

Source Code

Dynamic Information

Historical Information

Physical Organization

Human Expertise

Human Organization

Textual Information

Graph Queries

Logic Queries 
Programs 
Lexical Queries 

Relational Queries

Figure 2. A process-oriented taxonomy

Goals

Inputs Techniques

Processes

Outputs

Figure 1. A process-oriented taxonomy flow

Goals. SAR is considered by the community as a proac-
tive approach realized to answer stakeholder business goals.
The reconstructed architecture is the basis for redocumen-
tation, reuse investigation and product line migration, or
implementation and architecture co-evolution. Some ap-
proaches do not extract the architecture itself but related and
orthogonal artifacts that provide valuable extra information
to engineers such as design patterns, roles or features.

Processes. We distinguish three kinds of SAR processes:
bottom-up, top-down or hybrid.

Inputs. Most SAR approaches are based on source code
information and human expertise. However, other kinds of
information can be exploited: dynamic information or his-
torical information. In addition, not all approaches support
the specification and use of architectural styles and view-
points which are the paramount of architecture.

Techniques. The research community has explored var-
ious techniques to reconstruct architecture that can be
roughly classified according to their automation level.

Outputs. While all SAR approaches intend to provide
architectural views, some of them however produce other
valuable outputs like conformance data.

4. SAR Goals

We discuss now the goals of SAR as well as related arti-
facts.

4.1. Goals

Several authors categorized architecture roles in software
development [32]; in particular, Kazman et al. have a prag-
matic categorization of business goals [55]. In the context

3



of maintenance, a SAR process answers stakeholder busi-
ness objectives. It must be considered as a proactive pro-
cess realized for future forward engineering tasks. SAR ap-
proaches match various often interleaved intentions:

Redocumentation and understanding: The primary goal
of SAR is to re-establish software abstractions. Re-
covered architectural views document software appli-
cations and help reverse engineers understand them.
For instance, the software bookshelf introduced by
Finningan et al. illustrates this goal [28]. Svetinovic
et al. state that not only the recovered architecture
is important, but also its rationale, i.e. why it is as
it is [114]. They focus on the architecture rationale
forces to recover the decisions made, their alternatives,
and why each one was or was not chosen.

Reuse investigation and product line migration:
Systematic reuse has not yet been achieved. Software
product lines allow one to share commonalities among
products while getting custom products. Architec-
tural views are useful to identify commonalities and
variabilities among products in a line [109, 93, 18, 23].

Conformance: To evolve a software application, it seems
hazardous to use the conceptual architecture because
it is often inaccurate with respect to the concrete one.
In this case, SAR is a means to check conformance
between the conceptual and the concrete architectures.
Murphy et al. introduced the reflexion model and RM-
Tool to bridge the gap between high-level architec-
tural models and the system’s source code [82]. Using
SAR, reverse engineer can check conformance of the
reconstructed architecture against rules or styles like
in the SAR tool [62], Nimeta [96], DiscoTect [136],
Focus [16, 76] and DAMRAM [75].

Co-evolution: Architecture and implementation are two
levels of abstraction that evolve at different speeds.
Ideally these abstractions should be synchronized to
avoid architectural drift. Tran et al. propose a method
to repair evolution anomalies between the conceptual
and the concrete architectures, possibly altering either
the conceptual architecture or the source code [120].
To dynamically maintain this synchronization, Wuyts
promotes logic meta-programming [134], and Mens
et al. exploit intensional source-code views and re-
lations through Intensive [134, 80]; Favre promotes
metaware [25]; Huang et al. propose a reflection me-
chanism too [51].

Analysis: In ArchView [89, 92], SAR and evolution anal-
ysis activities are interleaved. QADSAR is analysis-
oriented too [110, 111]. An analysis framework steers
a SAR framework so that it provides required architec-
tural views to compute architectural quality analyses.
This analysis assists stakeholders in their decision-
making processes. Moreover, flexible SAR environ-

ments such as Dali [57, 84] or Gupro [19] support
architectural analysis methods like SAAM [56] or
ATAM [58] thanks to exportation facilities.

Evolution and maintenance: SAR is also a first step to-
wards software evolution and maintenance. Focus is
one of these approaches [16, 76]. Its strength is that the
SAR scope is reduced to the system part which should
evolve. Krikhaar et al. also introduced a two-phase ap-
proach for evolving architecture based on SAR and on
change impact analyses [62, 63]. Huang et al. also
consider SAR in an evolution and maintenance per-
spective [51].

4.2. Related and Orthogonal Artifacts

Some approaches do not extract the architecture in it-
self but architectural correlated or side-effect artifacts that
crosscut or complement the architecture such as design pat-
terns, concerns, features, aspects, or roles and collabora-
tions. While such information is not directly related to the
architecture (i.e. view points, architecture), it provides valu-
able extra information [4]. These approaches consider that
higher level knowledge is necessary to extract valuable in-
formation at the architectural level and to improve the ex-
pressiveness of the reconstructed architectural views. Due
to space limitation, this topic is only briefly surveyed in this
paper.

It is well acknowledged that patterns play a key role
in software engineering and this whatever their abstraction
level [4, 8]. Some reverse engineering approaches conse-
quently are based on design pattern identification activi-
ties [1, 3, 46, 128, 5, 39].

Concerns are the stakeholders’ criterion for modulariz-
ing a software application into manageable and comprehen-
sible parts [98, 12]. Features and aspects are more specific
kinds of concerns. Features are considered in [131, 21, 87,
96, 36, 106] and aspect mining techniques in [10, 59, 83].

Source code artifacts interact together to fulfill software
behaviors. Wu et al. highlight that source code is structured
according a design in mind where software artifacts play
conceptual roles inside collaborations [133]. The recovery
of collaborations and roles was also explored in [95].

5. SAR Processes

SAR follows either a bottom-up, a top-down or an hybrid
opportunistic process.

5.1. Bottom-Up Processes

Bottom-up processes start with low-level knowledge to
recover architecture. From source code models, they pro-

4



gressively raise the abstraction level until a high-level un-
derstanding of the application is reached [7, 112].

Also called architecture recovery processes, bottom-up
processes are closely related to the well-known extract-
abstract-present cycle described by Tilley et al. [119].
Source code analyses populate a repository, which is
queried to yield abstract system representations, which are
then presented in a suitable interactive form to reverse engi-
neers.

Examples. Several tools support a bottom-up process
characterized by the extract-abstract-present metaphor:
PBS [28], Rigi [81, 113], Gupro [19], Dali [57, 84].

As an example, Dali works as follows: (1) Heteroge-
neous low-level knowledge is extracted from the software
implementation, fused and stored in a relational database.
(2) Using Rigi, one visualizes and manually abstracts this
information. (3) A reverse engineer can specify patterns us-
ing SQL queries and Perl expressions. The former selects
a set of source model entities and the latter treats this set
to abstract it. To summarize, Dali is a flexible workbench
around a central model storage. Based on Dali, Guo et al.
proposed ARM [40].

In Intensive, Mens et al. apply logic intension to group
related source-code entities structurally in a view [134, 80].
Reverse engineers incrementally define views and rela-
tions by means of intensions specified as Smalltalk or Soul
queries. Intensive classifies the views and displays consis-
tencies and inconsistencies with the code and between ar-
chitectural views.

Other bottom-up approaches for instance include
ArchView [89, 92], Revealer [90, 91] and ARES [23, 22].

5.2. Top-Down Processes

Top-down processes start with high-level knowledge
such as requirements or architectural styles and aim to dis-
cover architecture by formulating conceptual hypotheses
and by matching them to the source code [103, 112]. The
term architecture discovery often describes such a process.

Examples. The Reflexion Model of Murphy et al. falls
into this category [82]. First, the reverse engineer defines
his high-level hypothesized views of the application. Sec-
ond, he specifies how his view maps to the source model.
Finally, RMTool identifies consistencies and inconsisten-
cies. Like that, the reverse engineer iteratively interprets
and computes successive reflexion models until satisfied.

Lungu et al. built both a method and a tool called Soft-
warenaut [71] to interactively explore hierarchical decom-
positions of software applications. Their method differs
from other classical exploration tools: to construct an archi-
tectural view on the fly, they enhance the exploration pro-

cess in guiding the reverse engineer towards the relevant hi-
erarchical parts. They characterize packages based on their
relation with the other ones and on their internal structure.

Categorizing such an approach shows the limit of a strict
classification. The approach takes into account physical en-
tities such as packages and does not check the conformance
to predefined views as in the Reflexion Model. Still, we
put it in this category since we considered that it flows from
abstract to concrete entities: the exploration activity starts
with the most abstract packages and iteratively open sub-
packages until to reach a relevant box and arrow view of the
software application.

5.3. Hybrid Processes

Hybrid processes combine the previous two [112]. On
the one hand, low-level knowledge is abstracted up us-
ing various techniques. On the other hand, high-level
knowledge is refined. This kind of process is fre-
quently used to stop architectural erosion by reconciling
the conceptual and concrete architectures. Hybrid ap-
proaches often use hypothesis recognizers. Recognizer-
based tools provide bottom-up reverse engineering strate-
gies to support top-down exploration of architectural hy-
pothesis. ManSART [43, 137], ART [29], X-ray [79],
ARM [40] and DiscoTect [136] are examples of this ap-
proach. In ManSART, a top-down recognition engine maps
a style-compliant conceptual view with a system overview
which was defined using a visualization tool in a bottom-up
fashion.

Examples. Sartipi implemented a pattern-based SAR ap-
proach in Alborz [100, 101]. The architecture reconstruc-
tion consists of two phases. During the first bottom-up
phase, the source code is parsed, presented as a graph, then
divided in cohesive graph regions using data mining tech-
niques. This model is at a higher abstraction level than
the code. During the second top-down phase, the reverse
engineer iteratively specifies his hypothesized views of the
architecture in terms of patterns. These patterns are approx-
imately mapped with previous graph regions using graph
matching and clustering techniques. Finally, the reverse en-
gineer decides to proceed or not to a new iteration based on
the partially reconstructed architecture and evaluation infor-
mation provided by Alborz.

Christl et al. present an evolution of the Reflexion
Model [11]. They enhance it with automated clustering to
facilitate the mapping phase. As in the Reflexion Model, the
reverse engineer defines his hypothesized view of the archi-
tecture in a top-down process. However, instead of man-
ually mapping hypothetic entities with concrete ones, the
new method introduces clustering analysis to partially au-
tomate this step. The clustering algorithm groups currently

5



unmapped concrete entities with concrete entities already
mapped to hypothesized entities.

To assess the creation of product lines, Stoermer et al.
introduce the MAP method [109]. MAP combines (1) a
bottom-up process, to recover the concrete architectures of
existing products; (2) a top-down process, to map architec-
tural styles onto recovered architectural views; (3) an ap-
proach to analyze commonalities and variabilities among
recovered architectures. They stress the ability of architec-
tural styles to act as the structural glue of the components,
and to highlight architecture strengths and weaknesses.

Other hybrid processes for instance include Focus [16,
76] and Nimeta [96].

6. SAR Inputs

SAR essentially works on source code representations.
However, other kinds of information are sometimes consid-
ered such as dynamic information extracted from a system
as it is running or historical data held by version control
system repositories. In addition a few approaches take into
account architectural elements such as styles or viewpoints
as input to SAR. The current trend is to feed SAR with het-
erogeneous information of diverse abstraction levels.

6.1. Non-Architectural Inputs

Source Code Constructs. The source code is an om-
nipresent trustworthy source of information that most ap-
proaches consider. Some of them query directly the source
code text like in RMTool [82]. However, most of them
are not directly based on the source code but represent
source code abstractions using different metamodels. These
metamodels cope with the paradigm of the analyzed soft-
ware. For instance, the language independent metamodel
Famix is used for reverse engineering object-oriented appli-
cations [15]; its concepts include classes, methods, calls or
accesses. Famix is used in ArchView [92, 89], Software-
naut [71] and Nimeta [96]. Other metamodels such as the
Dagstuhl Middle Metamodel [68] or GXL [50] have been
proposed.

Symbolic Textual Information. Some approaches con-
sider the symbolic information available in the com-
ments [90, 91] or in the name of the methods [65].

Dynamic Information. Static information is often insuf-
ficient for SAR since it only provides a limited insight into
the run-time nature of the analyzed software; dynamic in-
formation is more relevant to understand behavioral system
properties. Some SAR approaches use dynamic informa-
tion only [127, 136, 41] while others mix static and dy-
namic knowledge [54, 94, 97, 126, 69, 51, 89]. DiscoTect

uses runtime events such as method calls, CPU utilization
or network bandwidth consumption [136]. Huang et al. also
considered this kind of information because it may inform
reverse engineers on system security properties or system
performance aspects.

Some works focus more on dynamic software informa-
tion visualization [54, 116]; Hamou-Lhadj et al. present a
deeper survey of this domain [42]. There are approaches
based on dynamic information in areas adjacent to SAR:
feature extraction [21, 99, 36], design pattern localiza-
tion [128, 46], collaboration and role identification [95,
133]. Most of the time, dynamic information is generated
from instrumented source code and use-cases.

Physical Organization. ManSART [43, 137] and Soft-
warenaut [71] take into account the structural organization
of physical elements such as files, folders, or packages.

Human Organization. According to Conway [13]: “Or-
ganizations which design systems are constrained to pro-
duce designs which are copies of the communication struc-
tures of these organizations”. Inspired by Conway’s thesis,
Bowman et al. use the developer organization to form an
ownership architecture that helps reconstruct the software
architecture [6].

Historical Information. Historical information is rarely
used in SAR. Still ArchView is a recent approach that ex-
ploits source control system data and bug reports to analyze
the evolution of recovered architectural views [89, 92]. To
assist a reverse engineer to understand underlined depen-
dency gaps in a reflexion model [82], Hassan et al. annotate
entity dependencies with sticky notes. These sticky notes
record dependency evolution and rationale with information
extracted from version control systems [44].

Human Expertise. Although one cannot entirely trust
human knowledge, it is very helpful when it is available.
At high abstraction levels, SAR is iterative and requires
human knowledge to validate results and to guide it. As
Ivkovic et al. state [53], a SAR approach involves strat-
egy and knowledge of the domain and the application itself.
They propose to systematically update a knowledge base
that would become an helpful collection of domain-specific
architectural artifacts.

In current SAR approaches, it is frequent to specify a
conceptual architecture [82, 44, 76]. To define this architec-
ture, reverse engineers have to study system requirements,
read available documentation, interview stakeholders, re-
cover design rationale, investigate hypotheses and analyze
the business domain.

6



Human expertise is also required when specifying view-
points, selecting architectural styles (Section 6.2), or inves-
tigating orthogonal artifacts (Section 4.2).

6.2. Architectural Inputs

Architectural styles and viewpoints are the paramount of
software architecture, therefore we analyzed whether SAR
consider them.

Styles. Architectural styles are popular since like de-
sign patterns, they represent recurrent architectural situa-
tions [60]. They are valuable, expressive, and accepted ab-
stractions for SAR and more generally for software under-
standing. Recognizing them is however a challenge because
they basically span several architectural elements and can
be implemented in various ways [91]. The question that
turns up is whether SAR helps reverse engineers specify and
extract architectural styles.

Examples. Ding et al. proposed to use architectural styles
in Focus to infer a conceptual architecture that will be
mapped to a concrete architecture extracted from the source
code [16, 76].

Closely related to this work, Medvidovic et al. intro-
duced an approach to stop architectural erosion. In a top-
down process, requirements serve as high-level knowledge
to discover the conceptual architecture [75]. In a bottom-up
process, system implementation serves as low level knowl-
edge to recover the concrete architecture. Both the concep-
tual and the concrete architectures are incrementally built.
The reverse engineer reconciles the two architectures, based
on architectural styles. To select the most appropriate one,
they characterize each architectural style according to sev-
eral criteria. Their approach considers architectural styles
as key design idioms since they capture a large number of
design decisions, the rationale behind them, effective com-
positions of architectural elements, and system qualities that
will likely result from the style’s use.

Finally, DiscoTect considers architectural styles
too [136]. It generates program traces by running the
instrumented application. Then, it filters the traces and uses
a state engine that incrementally recognizes interleaved
execution patterns. In this way, DiscoTect reconstruct style-
compliant architecture since by choosing a state machine,
the reverse engineer defines and refines which hypothesized
architectural style the tool should look for [114].

ManSART [43, 137] and MAP [109] are other style-
based SAR approaches.

Viewpoints. As Holt states it: the architecture of a sys-
tem acts as a mental model shared among stakeholders [49].

Since the stakeholders’ interests in reverse engineering di-
verge, we must consider various viewpoints in SAR [52,
107]. Viewpoint catalogues were built to address this issue:
the 4 + 1 viewpoints of Kruchten [64]; the four viewpoints
of Soni et al. [47, 108], the build-time viewpoint introduced
by Tu et al. [122] or the implicit viewpoints inherent to the
UML standard [123]. While most SAR approaches recon-
struct architectural views only according to a single view-
point or according to a few preselected ones, Smolander
et al. highlight that viewpoints cannot be standardized but
have to be selected or defined according to the environment
and the situation [107]. O’Brien et al. notably present the
View-Set Scenario pattern that helps determine which ar-
chitecture views sufficiently describe the system and cover
stakeholder needs [85].

Examples. The Symphony approach devised by
van Deursen et al. aims at reconstructing software ar-
chitecture using appropriate viewpoints [124]. Viewpoints
are selected from a catalogue or defined if they don’t exist.
Moreover, they evolve throughout the process. Chosen
viewpoints constrain SAR to provide architectural views
compliant to stakeholders’ expectations, ideally allowing
an immediate use of these views. For example, Symphony
authors highlight through four case studies some SAR
motivations such as checking the conformance of family
products to architectural rules. To do this they need to
provide to reverse engineers architectural views according
the viewpoints these reverse engineers typically use during
design. Riva proposed a view-based SAR approach called
Nimeta based on the Symphony one [96].

Favre outlines a generic SAR metamodel-driven ap-
proach called CacOphoNy [26]. Like Symphony, Ca-
cOphoNy recognizes the need to identify which viewpoints
are relevant for stakeholder concerns and have to be con-
sidered in SAR. Contrary to Symphony, CacOphoNy states
that metamodels are keys for representing viewpoints.

The QADSAR approach both reconstructs the architec-
ture of a system and drives quality attribute analyses on
it [110, 111]. To do this, QADSAR allows reverse engi-
neers to formulate their interests in reconstructing the ar-
chitecture by means of concrete quality attribute scenarios.
This results in the definition of relevant architectural view-
points.

ARES [23, 22] and SAR [62] also take viewpoints into
account.

7. SAR Techniques

Techniques and the data they operate on are often cor-
related. For example, input information is represented re-
spectively as facts [80] or graphs [19] to use logic or graph
queries.

7



SAR approaches use different techniques that we classi-
fied according to their automation level: quasi-manual, the
reverse engineer manually identifies architectural elements
using a tool to assist him to understand his findings; semi-
automatic, the reverse engineer manually instructs the tool
how to automatically discover refinements or recover ab-
stractions. quasi-automatic, the tool has the control and the
reverse engineer steers the iterative recovery process. Of
course, the boundaries between the classifications are not
clear-cut.

7.1. Quasi-Manual Techniques

SAR is a reverse engineering activity which faces scala-
bility issues in manipulating knowledge. In response to this
problem, researchers have proposed slightly assisted SAR
approaches; we considered two categories.

Construction-based Techniques. These techniques re-
construct the software architecture by manually abstract-
ing low-level knowledge, thanks to interactive and expres-
sive visualization tools — Rigi [81, 113], PBS [28], Code-
Crawler [66].

Exploration-based Techniques. These techniques give
reverse engineers an architectural view of the system by
guiding them through the highest-level artifacts of the im-
plementation, like in Softwarenaut [71]. The architectural
view is then closely related to the developer’s view. Instead
of providing guidance, the SAB browser [24] allows re-
verse engineers to assign architectural layers to classes and
to navigate the resulting architectural views.

Gallagher et al. [30] surveyed other architecture visu-
alization tools: ArchView1 [27], the Searchable Book-
shelf [105], SoftArch [37], SoFi [9], LePUS [20] and Arch-
Vis [45].

7.2. Semi-Automatic Techniques

Here the techniques automate repetitive aspects of SAR.
The reverse engineer steers the iterative refinement or ab-
straction leading to the identification of architectural ele-
ments.

Abstraction-based Techniques. These techniques are
based on technologies allowing reverse engineers to spec-
ify reusable abstraction rules and to execute them automat-
ically. They aim to map low-level concepts with high-level
concepts. Explored approaches are:

1Different of Pinzger’s approach [89, 92], though homonymous.

Graph queries: Gupro queries graphs using a specialized
declarative expression language called GReQL [19].
Rigi is based on graph transformations written in
Tcl [81, 113].

Relational queries: Often, relational algebra engines ab-
stract data of entity-relation databases. Dali uses SQL
queries to define grouping rules [57, 84]. Relational
algebra is used to define a repeatable set of transforma-
tions such as abstraction or decomposition for creating
a particular architectural view. Holt et al. propose the
Grok relational expression calculator to reason about
software facts [48]. Krikhaar presents a SAR approach
based on a Relational Algebra extension [62].

Logic queries: Mens and Wuyts uses Prolog as a meta pro-
gramming language to extract intensional source-code
views and relations in Intensive [134, 80]. Richner also
chose a logic query based approach to reconstruct ar-
chitectural views from static and dynamic facts [94].

Programs: Some approaches build analyses as programs.
For example, the analyses made in the Moose envi-
ronment are performed as object-oriented programs
that manipulate models representing the various in-
puts [17].

Lexical and structural queries: Some approaches are di-
rectly based on the lexical and structural information
in the source code. Pinzger et al. state that some hot-
spots clearly localize patterns in the source code and
consider them as the starting point of SAR [90, 91]. To
drive a pattern-supported architecture recovery, they
introduce a pattern specification language and the Re-
vealer tool.

Investigation-based Techniques. These techniques map
high-level concepts with low-level concepts. The high-level
concepts considered cover a wide area from architectural
descriptions, styles, and patterns to design patterns, con-
cerns, aspects, and features, that are orthogonal concepts to
architecture and that we do not treat in this paper for space
reasons (Section 4.2). Explored approaches are:
Recognizers. ManSART [43, 137], ART [29], X-ray [79]

and ARM [40] are based on a set of architectural
style or pattern recognizers written in a query lan-
guage. More precisely, pattern definitions in ARM are
progressively refined and finally transformed in SQL
queries exploitable in Dali [57, 84].

Graph pattern matching. In ARM, pattern definitions
can also be transformed into pattern graphs to match
with a graph-based source code representation like in
Alborz [100, 101].

State engine. In DiscoTect state machines are defined to
check architectural styles conformance [136]. A state
engine tracks at run-time the system execution and out-
puts architectural events when the execution satisfies

8



the state machine description.
Maps. SAR approaches based on the Reflexion Model [82]

use rules to map hypothesized high-level entities with
source code entities.

7.3. Quasi-Automatic Techniques

Pure automatic techniques failed in reconstructing soft-
ware architectures, and even if current techniques tend to-
wards an automatic process, reverse engineers must still
steer them. Concept, dominance, and cluster analysis tech-
niques are often combined.

The Bunch tool [73, 74] uses clustering algorithms to au-
tomatically partition software products into cohesive clus-
ters that are loosely interconnected [129]. Clustering al-
gorithms, based on hill climbing and genetic algorithms,
are applied on module dependency graphs extracted from
source code. The Bunch tool was extended to take into ac-
count human knowledge [74].

According to Xiao et al. [135], clustering techniques ap-
plied to dynamic analysis are as efficient as those applied
to static analysis, and this research area is promising and
unexplored.

The Bauhaus environment implements a wide number of
clustering techniques [61, 21, 11]. Koschke emphasizes the
need to refine existing clustering techniques, first by com-
bining them, and second by integrating the reverse engineer
as a conformance supervisor of the reconstruction process.

Adhering to Koschke’s thesis, Trifu unifies cluster and
dominance analysis techniques for the recovery of architec-
tural components in object-oriented legacy systems [121].
Similarly, Lundberg et al. outline a unified approach cen-
tered around dominance analysis [70]. On one hand,
they demonstrate how dominance analysis identifies passive
components. On the other hand, they state that dominance
analysis is not sufficient to recover the complete architec-
ture: it requires other techniques such as concept analysis to
take component interactions into account. Concept analysis
techniques were explored by Siff et al. [104], van Deursen
et al. [125], Arévalo [3, 2] or Eisenbarth et al. [21] and sur-
veyed by Tilley et al. [118].

8. SAR Outputs

While most approaches focus on producing presenta-
tions of software architectures, some provide valuable ad-
ditional information, like conformance data. It is not sur-
prising since SAR outputs are clearly related with goals that
lead to perform such an activity. In this section we highlight
some key aspects of these outputs.

8.1. Architecture

Since SAR approaches are understanding-oriented, they
tend to present reconstructed architectural views to stake-
holders. As the code evolves some approaches focus on
the co-evolution of the reconstructed architectures: Inten-
sive [134, 80] synchronizes the architecture with its imple-
mentation; Focus [16, 76] or SAR [63] evolve the applica-
tion.

Visualization. Rigi [81, 113] is widely used to visualize
graph representations of software static views [28, 57, 18,
61, 91, 100, 96]. Rigi owes its success to its information
manipulation features—since it was originally intended to
reconstruct architectures—but also to its navigation capabil-
ities and to its RSF exchange format. The SHriMP visual-
ization technique enhances its navigation capabilities [113].

Several recent SAR tools [92, 80, 71] use Code-
Crawler [66] and its underlying polymetric view technique.
Riva [96] takes advantage of the strengths of different tar-
get visualization tools: SoftViz [117] and GraphViz [31]
for graph browsing and manipulating, Hava [97] for static
and dynamic information, and Rational Rose for UML di-
agrams. Focus [16, 76], Gupro [19], and the SWAGKit
pipeline [28] respectively use Rational Rose, GraphViz also
used in [74, 79], and LSEdit [115]. The SAB browser
is a dedicated graphical editor to navigate layer [24]. Pa-
cione proposed both a software-oriented visualization tool
Vanessa, and a taxonomy in which he surveyed related
tools [86].

As shown in Section 6, some SAR approaches focus on
the behavior of software. Hamou-Lhadj et al. surveyed
some of these tools dealing with visualization among oth-
ers considerations [42].

Description. Architecture Description Languages
(ADLs) have been proposed both to formally define archi-
tectures and to support architecture-centric development
activities [77]. In the scope of this paper, Darwin [72]
serves in X-ray [79] to define reconstructed architectural
views. It was also extended by Eixelsberger et al. for their
SAR approach [23, 22]. Acme [34] has ADL-like features
and is used in DiscoTect [136]. Huang et al. specify
architectures with the ABC ADL [51].

As said in Section 6.2, the notion of software architecture
heavily depends on the stakeholders’ interests. Since ADLs
have difficulty in taking different viewpoints into account
and focus on the module viewpoint, they are rarely used to
express reconstructed architectural views. To drive SAR in
CacOphoNy, Favre proposed to precisely define viewpoints
using metamodels [26].

9



8.2. Conformance

We consider architecture conformance between similar
abstraction levels (horizontal conformance) and between
different abstraction levels (vertical conformance).

Horizontal Conformance is checked between two recon-
structed views, or between a conceptual and a concrete ar-
chitecture, or between a product line reference architecture
and the architecture of a given product. For example, SAR
approaches oriented towards a product line migration iden-
tify commonalities and variabilities among products, like in
MAP [109]. Sometimes SAR requires to define a concep-
tual architecture and to compare it with the reconstructed
concrete one [40, 120]. Sometimes, an architecture must
conform to architectural rules or styles; this was discussed
in Nimeta [96], the SAR tool [62], Focus [16, 76] and
DAMRAM [75] and DiscoTect [136].

Vertical Conformance assesses whether the recontructed
architecture conforms to the implementation. Both Reflex-
ion Model-based [82] and co-evolution-oriented [80] ap-
proaches revolve around vertical conformance.

8.3. Analysis

Reverse engineers use modularity quality metrics either
to iteratively assess current results and steer the process, or
to get cues about reuse, system improvement Rigi [81, 113],
Bauhaus [61, 21, 11] or Alborz [100, 101] provide such
results.

A few SAR approaches are more analysis-oriented.
Archview [89, 92] provides structural and evolutionary
properties of a software application. Eixelsberger et al. in
ARES [23, 22], and Stoermer in QADSAR [110, 111] re-
construct software architectures to highlight properties like
safety, concurrency, portability or other high-level statis-
tics [51].

Approaches taking architectural patterns or orthogonal
artifacts into consideration highlight them. For instance,
ARM [40], Revealer [90, 91] or Alborz [100, 101] highlight
architectural patterns.

9. Conclusions

In this paper we surveyed research works in the field of
software architecture reconstruction (SAR). To structure the
paper, we followed the general process of SAR: what are
the stakeholders’ goals; how does the general reconstruc-
tion proceed; what are the available sources of information;
based on this, which techniques can we apply, and finally
what kind of knowledge does the process provide. As usual
it is hard to classify research works in a multidisciplinary
domain, so in this paper we focused on the approaches most
related to architecture reconstruction; as future work several

related artifacts should be examined: design pattern identifi-
cation, aspect mining. We also plan to identify lacks and fu-
ture research axes in the field as well as providing an analy-
sis of the pros and cons of the categorized approaches when
it is possible.

Acknowledgments. We gratefully acknowledge the fi-
nancial support of the french ANR (National Research
Agency) for the project “COOK: Réarchitecturisation des
applications industrielles objets” (JC05 42872). We would
like to thanks Tudor Girba and Orla Greevy for the early
feedback on the paper.

References

[1] Antoniol, Fiutem, and Cristoforetti. Design pattern recov-
ery in object-oriented software. In IWPC, pp. 153–160,
1998.

[2] Arévalo. High Level Views in Object-Oriented Systems us-
ing Formal Concept Analysis. PhD thesis, Univ. Berne,
Berne, Jan. 2005.

[3] Arévalo, Buchli, and Nierstrasz. Detecting implicit collab-
oration patterns. In WCRE, pp. 122–131. IEEE CS, Nov.
2004.

[4] Beck and Johnson. Patterns generate architectures. In
ECOOP, vol. 821 of LNCS, pp. 139–149, 1994.

[5] Beyer and Lewerentz. CrocoPat: A tool for efficient pattern
recognition in large object-oriented programs. Tech. Report
I-04/2003, Univ. Cottbus, 2003.

[6] Bowman and Holt. Software architecture recovery using
conway’s law. In CASCON, p. 6, 1998.

[7] Brooks. Towards a theory of the comprehension of com-
puter programs. Int’l Journal of Man-Machine Studies, pp.
543–554, 1983.

[8] Buschmann, Meunier, Rohnert, Sommerlad, and Stad.
Pattern-Oriented Software Architecture — A System of Pat-
terns. 1996.

[9] Carmichael, Tzerpos, and Holt. Design maintenance: Un-
expected architectural interactions. vol. 00, p. 134. IEEE
CS, 1995.

[10] Ceccato, Marin, Mens, Moonen, Tonella, and Tourwe. A
qualitative comparison of three aspect mining techniques.
vol. 00, pp. 13–22, 2005.

[11] Christl, Koschke, and Storey. Equipping the reflexion
method with automated clustering. In WCRE, pp. 89–98.

[12] Coelho and Murphy. Presenting crosscutting structure with
active models. In AOSD, pp. 158–168, 2006.

[13] Conway. How do committees invent? Datamation,
14(4):28–31, 1968.

[14] Demeyer, Ducasse, and Lanza. A hybrid reverse engineer-
ing platform combining metrics and program visualization.
In WCRE, 1999.

[15] Demeyer, Tichelaar, and Ducasse. FAMIX 2.1 — The
FAMOOS Information Exchange Model. Tech. report,
Univ. of Bern, 2001.

[16] Ding and Medvidovic. Focus: A light-weight, incremental

10



approach to software architecture recovery and evolution.
In WICSA, pp. 191–, 2001.

[17] Ducasse, Gı̂rba, Lanza, and Demeyer. Moose: a collabo-
rative and extensible reengineering Environment. In Tools
for Sw. Maint. and Reeng., RCOST / Software Technology
Series, pp. 55–71. 2005.

[18] Dueñas, de Oliveira, and de la Puente. Architecture recov-
ery for software evolution. In CSMR, pp. 113–120, 1998.

[19] Ebert, Kullbach, Riediger, and Winter. GUPRO – generic
understanding of programs, an overview. Tech. Report 7–
2002, Univ. Koblenz-Landau, 2002.

[20] Eden. Visualization of object oriented architectures. In
ICSE, May 2001.

[21] Eisenbarth, Koschke, and Simon. Locating Features in
Source Code. IEEE Computer, 29(3):210–224, 2003.

[22] Eixelsberger and Gall. Describing software architectures by
system structure and properties. In COMPSAC, pp. 106–
111, 1998.

[23] Eixelsberger, Ogris, Gall, and Bellay. Software architecture
recovery of a program family. In ICSE, pp. 508–511, 1998.

[24] Erben and Löhr. Sab - the software architecture browser. In
VISSOFT. IEEE CS, Sept. 2005.

[25] Favre. Meta-model and model co-evolution within the 3d
software space. In ELISA, 2003.

[26] Favre. CacOphoNy: Metamodel-driven software architec-
ture reconstruction. In WCRE, pp. 204–213, 2004.

[27] Feijs and de Jong. 3d visualization of software architec-
tures. vol. 41, pp. 72–78, 1998.

[28] Finnigan, Holt, Kalas, Kerr, Kontogiannis, Mueller, My-
lopoulos, Perelgut, Stanley, and Wong. The software book-
shelf. IBM Systems Journal, 36(4):564–593, 1997.

[29] Fiutem, Tonella, Antoniol, and Merlo. A cliché-based en-
vironment to support architectural reverse engineering. In
ICSM. IEEE, 1996.

[30] Gallagher, Hatch, and Munro. A framework for software
architecture visualisation assessment. In VISSOFT. IEEE
CS, Sept. 2005.

[31] Gansner and North. An open graph visualization system
and its applications to software engineering. Softw. Pract.
Exper., 30(11):1203–1233, 2000.

[32] Garlan. Software architecture: a roadmap. In ICSE - Future
of SE Track, pp. 91–101, 2000.

[33] Garlan, Allen, and Ockerbloom. Architectural mismatch:
Why reuse is so hard. IEEE Software, 12(6):17–26, 1995.

[34] Garlan, Monroe, and Wile. Acme: An architecture de-
scription interchange language. In CASCON, pp. 169–183,
1997.

[35] Garlan and Perry. Introduction to the special issue on soft-
ware architecture. IEEE TSE, 21(4), 1995.

[36] Greevy and Ducasse. Correlating features and code using a
compact two-sided trace analysis approach. In CSMR, pp.
314–323, 2005.

[37] Grundy and Hosking. High-level static and dynamic visu-
alization of software architectures. vol. 00, p. 5. IEEE CS,
2000.

[38] Guéhéneuc, Mens, and Wuyts. A comparative framework
for design recovery tools. In CSMR. IEEE CS, 2006.

[39] Guéhéneuc, Sahraoui, and Zaidi. Fingerprinting design pat-

terns. In WCRE, pp. 172–181, 2004.
[40] Y. Guo, Atlee, and Kazman. A software architecture recon-

struction method. In WICSA, pp. 15–34, 1999.
[41] Hamou-Lhadj, Braun, Amyot, and Lethbridge. Recovering

behavioral design models from execution traces. In CSMR.
IEEE CS, 2005.

[42] Hamou-Lhadj and Lethbridge. A survey of trace explo-
ration tools and techniques. In CASCON, pp. 42–55, 2004.

[43] Harris, Reubenstein, and Yeh. Reverse engineering to the
architectural level. In ICSE, 1995.

[44] Hassan and Holt. Using development history sticky notes
to understand software architecture. iwpc, 00:183, 2004.

[45] Hatch. Software Architecture Visualisation. Ph.D. thesis,
Univ. Durham, Mar. 2004.

[46] Heuzeroth, Holl, Hogstrom, and Lowe. Automatic design
pattern detection. iwpc, 00:94, 2003.

[47] Hofmeister, Nord, and Soni. Applied Software Architecture.
2000.

[48] Holt. Structural manipulations of software architecture us-
ing tarski relational algebra. In WCRE, pp. 210–219, 1998.
ISBN: 0-8186-89-67-6.

[49] Holt. Sofware architecture as a shared mental model. In
ASERC Workshop on Software Architecture, Univ. of Al-
berta, 2001.

[50] Holt, Schürr, Sim, and Winter. Gxl: A graph-based standard
exchange format for reengineering. Science of Computer
Programming, 60(2):149–170, 4 2006.

[51] Huang, Mei, and Yang. Runtime recovery and manipula-
tion of software architecture of component-based systems.
vol. 13, pp. 257–281, 2006.

[52] IEEE. Ieee recommended practice for architectural descrip-
tion for software-intensive systems. Tech. report, Arch.
Work. Group of the Sw.Eng. Committee, 2000.

[53] Ivkovic and Godfrey. Enhancing domain-specific software
architecture recovery. In IWPC, p. 266, 2003.

[54] Jerding and Rugaber. Using visualization for architectural
localization and extraction. In WCRE, pp. 56–65, 1997.

[55] Kazman and Bass. Categorizing business goals for software
architectures. CMU/SEI-2005-TR-021, CMU SEI, 2005.

[56] Kazman, Bass, Webb, and Abowd. Saam: A method for
analyzing the properties of software architectures. In ICSE,
pp. 81–90, 1994.

[57] Kazman and Carrière. Playing detective: Reconstructing
software architecture from available evidence. ASE, 1999.

[58] Kazman, Klein, Barbacci, Longstaff, Lipson, and Carrière.
The architecture tradeoff analysis method. In ICECCS, pp.
68–78, 1998.

[59] Kellens and Mens. A survey of aspect mining tools and
techniques. Tech. Report INGI TR 2005-07, UCL, Bel-
gium, 2005.

[60] Klein, Kazman, Bass, Carrière, Barbacci, and Lipson.
Attribute-based architecture styles. In WICSA, pp. 225–
244, 1999.

[61] Koschke. Atomic Architectural Component Recovery for
Program Understanding and Evolution. PhD thesis, Univ.
Stuttgart, 2000.

[62] Krikhaar. Software Architecture Reconstruction. PhD the-
sis, Univ. Amsterdam, 1999.

11



[63] Krikhaar, Postma, Sellink, Stroucken, and Verhoef. A two-
phase process for software architecture improvement. In
ICSM, p. 371, 1999.

[64] Kruchten. The 4+1 view model of architecture. IEEE Soft-
ware, 12(6):42–50, 1995.

[65] Kuhn, Ducasse, and Gı̂rba. Enriching reverse engineering
with semantic clustering. In WCRE, pp. 113–122, 2005.

[66] Lanza and Ducasse. Polymetric views—A lightweight vi-
sual approach to reverse engineering. vol. 29, pp. 782–795.
IEEE CS, 2003.

[67] Lehman and Belady. Program Evolution: Processes of Soft-
ware Change. 1985.

[68] Lethbridge, Tichelaar, and Plödereder. The dagstuhl middle
metamodel: A schema for reverse engineering. In Elec.
Notes in Theoretical Comp. Sci., vol. 94, pp. 7–18, 2004.

[69] Li, Chu, Hu, Chen, and Yun. Architecture recovery and
abstraction from the perspective of processes. In WCRE,
pp. 57–66, 2005.

[70] Lundberg and Löwe. Architecture recovery by semi-
automatic component identification. Electr. Notes Theor.
Comput. Sci., 82(5), 2003.

[71] Lungu, Lanza, and Gı̂rba. Package patterns for visual ar-
chitecture recovery. In CSMR 2006, 2006.

[72] Magee, Dulay, Eisenbach, and Kramer. Specifying dis-
tributed software architectures. In ESEC, vol. 989 of LNCS,
pp. 137–153. Springer-Verlag, Sept. 1995.

[73] Mancoridis and Mitchell. Using Automatic Clustering to
produce High-Level System Organizations of Source Code.
In IWPC, 1998.

[74] Mancoridis, Mitchell, Chen, and Gansner. Bunch: A Clus-
tering Tool for the Recovery and Maintenance of Software
System Structures. In ICSM, 1999.

[75] Medvidovic, Egyed, and Gruenbacher. Stemming architec-
tural erosion by architectural discovery and recovery. In
STRAW, 2003.

[76] Medvidovic and Jakobac. Using software evolution to focus
architectural recovery. vol. 13, pp. 225–256, 2006.

[77] Medvidovic and Taylor. A classification and comparison
framework for software architecture description languages.
vol. 26, pp. 70–93, 2000.

[78] Mendonça and Kramer. Requirements for an effective ar-
chitecture recovery framework. In ISAW-2 and Viewpoints
workshops, pp. 101–105, 1996.

[79] Mendonça and Kramer. An approach for recovering dis-
tributed system architectures. vol. 8, pp. 311–354, 2001.

[80] Mens, Kellens, Pluquet, and Wuyts. Co-evolving code and
design with intensional views – a case study. Journal of
Computer Languages, Systems and Structures, 32(2):140–
156, 2006.

[81] Müller, Wong, and Tilley. Understanding software systems
using reverse engineering technology. In Object-Oriented
Technology for Database and Software Systems, pp. 240–
252. 1995.

[82] Murphy, Notkin, and Sullivan. Software reflexion models:
Bridging the gap between source and high-level models. In
SIGSOFT, pp. 18–28, 1995.

[83] Nora, Said, and Fadila. A comparative classification of as-
pect mining approaches. Journal of Computer Science 2,

4:322–325, 2006.
[84] O’Brien and Stoermer. Architecture reconstruction case

study. CMU/SEI-2003-TN-008, CMU SEI, 2003.
[85] O’Brien, Stoermer, and Verhoef. Software architecture

reconstruction: Practice needs and current approaches.
Cmu/sei-2002-tr-024, esc-tr-2002-024, CMU SEI, 2002.

[86] Pacione. A Novel Software Visualisation Model to Sup-
port Object-Oriented Program Comprehension. PhD the-
sis, Nov. 2005.

[87] Pashov and Riebisch. Using feature modeling for pro-
gram comprehension and software architecture recovery. In
ECBS, pp. 406–418, 2004.

[88] Perry and Wolf. Foundations for the study of software ar-
chitecture. ACM SIGSOFT Software Engineering Notes,
17(4):40–52, 1992.

[89] Pinzger. ArchView - Analyzing Evolutionary Aspects of
Complex Software Systems. PhD thesis, Univ. Vienna,
2005.

[90] Pinzger, Fischer, Gall, and Jazayeri. Revealer: A lexical
pattern matcher for architecture recovery. In WCRE, pp.
170–178, 2002.

[91] Pinzger and Gall. Pattern-supported architecture recovery.
In IWPC, pp. 53–61, 2002.

[92] Pinzger, Gall, Fischer, and Lanza. Visualizing multiple evo-
lution metrics. In SoftVis 2005, pp. 67–75, 2005.

[93] Pinzger, Gall, Girard, Knodel, Riva, Pasman, Broerse, and
Wijnstra. Architecture recovery for product families. In
PFE-5, LNCS 3014, pp. 332–351, 2004.

[94] Richner and Ducasse. Recovering high-level views of
object-oriented applications from static and dynamic infor-
mation. In ICSM, pp. 13–22, 1999.

[95] Richner and Ducasse. Using dynamic information for the it-
erative recovery of collaborations and roles. In ICSM, 2002.

[96] Riva. View-based Software Architecture Reconstruction.
PhD thesis, Univ. Vienna, 2004.

[97] Riva and Rodriguez. Combining static and dynamic views
for architecture reconstruction. CSMR, 00, 2002.

[98] Robillard and Murphy. Concern graphs: finding and de-
scribing concerns using structural program dependencies.
In ICSE, pp. 406–416, 2002.

[99] Salah and Mancoridis. A hierarchy of dynamic software
views: from object-interactions to feature-interacions. In
ICSM, 2004.

[100] Sartipi. Software Architecture Recovery based on Pattern
Matching. PhD thesis, Univ. Waterloo, CA, 2003.

[101] Sartipi, Yee, and Safyallah. Alborz: An interactive toolkit
to extract static and dynamic views of a software system. In
ICPC, 2006. To appear.

[102] Shaw and Garlan. Software Architecture: Perspectives on
an Emerging Discipline. Prentice-Hall, 1996.

[103] Shneiderman. Software Psychology: Human Factors in
Computer and Information Systems. Winthrop Publishers,
1980.

[104] Siff and Reps. Identifying Modules via Concept Analysis.
In ICSM, pp. 170–179, 1997.

[105] Sim, Clarke, Holt, and Cox. Browsing and searching soft-
ware architectures. vol. 00, p. 381, 1999.

[106] Smith and Munro. Identifying structural features of java

12



programs by analysing the interaction of classes at runtime.
In VISSOFT. IEEE CS, Sept. 2005.

[107] Smolander, Hoikka, Isokallio, Kataikko, Mkel, and Klvi-
inen. Required and optional viewpoints what is included
in software architecture? Tech. report, Univ. Lappeenranta,
2001.

[108] Soni, Nord, and Hofmeister. Software architecture in in-
dustrial applications. In ICSE, pp. 196–207, 1995.

[109] Stoermer and O’Brien. Map - Mining architectures for
product line evaluations. In WICSA, vol. 00, p. 35, 2001.

[110] Stoermer, O’Brien, and Verhoef. Moving towards quality
attribute driven software architecture reconstruction. vol. 0,
p. 46, 2003.

[111] Stoermer, Rowe, O’Brien, and Verhoef. Model-centric soft-
ware architecture reconstruction. vol. 36, pp. 333–363,
2006.

[112] Storey, Fracchia, and Müller. Cognitive Design Elements to
Support the Construction of a Mental Model during Soft-
ware Exploration. Journal of Software Systems, 44:171–
185, 1999.

[113] Storey and Müller. Manipulating and Documenting Soft-
ware Structures using SHriMP Views. In ICSM, pp. 275–
284, 1995.

[114] Svetinovic and Godfrey. A lightweight architecture recov-
ery process. In WCRE, Oct. 2001.

[115] Synytskyy, Holt, and Davis. Browsing software architec-
tures with lsedit. In IWPC, pp. 176–178, 2005.

[116] Systä. Static and Dynamic Reverse Engineering Techniques
for Java Software Systems. PhD thesis, Univ. Tampere,
2000.

[117] Telea, Maccari, and Riva. An open visualization toolkit for
reverse architecting. iwpc, 00:3, 2002.

[118] Tilley, Cole, Becker, and Eklund. A Survey of Formal Con-
cept Analysis Support for Software Engineering Activities.
In ICFCA, 2003.

[119] Tilley, Smith, and Paul. Towards a framework for program
understanding. In WPC, p. 19, 1996.

[120] Tran and Holt. Forward and reverse repair of software ar-
chitecture. In CASCON, 1999.

[121] Trifu. Using Cluster Analysis in the Architecture Recovery
of Object-Oriented Systems. PhD thesis, Univ. Karlsruhe,
2001.

[122] Tu and Godfrey. The build-time software architecture view.
In ICSM, pp. 398–407, 2001.

[123] Unified Modeling Language 1.5 spec. Tech. report, Mar.
2003.

[124] van Deursen, Hofmeister, Koschke, Moonen, and Riva.
Symphony: View-driven software architecture reconstruc-
tion. In WICSA, pp. 122–134, 2004.

[125] van Deursen and Kuipers. Identifying Objects using Cluster
and Concept Analysis. In ICSE, pp. 246–255, 1999.

[126] Vasconcelos and Werner. Software architecture recovery
based on dynamic analysis. In 18th Brazilian Symp. on
Softw. Eng., 2004.

[127] Walker, Murphy, Freeman-Benson, Wright, Swanson, and
Isaak. Visualizing dynamic software system information
through high-level models. In OOPSLA, pp. 271–283,
1998.

[128] Wendehals. Improving design pattern instance recognition
by dynamic analysis. In WODA, 2003.

[129] Wiggerts. Using Clustering Algorithms in Legacy Systems
Remodularization. In WCRE, pp. 33–43, 1997.

[130] Wilde and Huitt. Maintenance Support for Object-Oriented
Programs. IEEE TSE, SE-18(12):1038–1044, 1992.

[131] Wilde and Scully. Software reconnaisance: Mapping pro-
gram features to code. Software Maintenance: Research
and Practice, 7(1):49–62, 1995.

[132] Woods, Carrière, and Kazman. The perils and joys of re-
constructing architectures, 1999.

[133] Wu, Sahraoui, and Valtchev. Program comprehension with
dynamic recovery of code collaboration patterns and roles.
In CASCON, pp. 56–67, 2004.

[134] Wuyts. A Logic Meta-Programming Approach to Support
the Co-Evolution of Object-Oriented Design and Imple-
mentation. PhD thesis, Vrije Universiteit Brussel, 2001.

[135] Xiao and Tzerpos. Software clustering based on dynamic
dependencies. csmr, 00:124–133, 2005.

[136] Yan, Garlan, Schmerl, Aldrich, and Kazman. Discotect: A
system for discovering architectures from running systems.
In ICSE, pp. 470–479, 2004.

[137] Yeh, Harris, and Chase. Manipulating recovered software
architecture views. In ICSE, pp. 184–194, 1997.

13


	Introduction
	SAR Challenges
	Vocabulary
	Challenges

	SAR Taxonomy Axes
	SAR Goals
	Goals
	Related and Orthogonal Artifacts

	SAR Processes
	Bottom-Up Processes
	Top-Down Processes
	Hybrid Processes

	SAR Inputs
	Non-Architectural Inputs
	Architectural Inputs

	SAR Techniques
	Quasi-Manual Techniques
	Semi-Automatic Techniques
	Quasi-Automatic Techniques

	SAR Outputs
	Architecture
	Conformance
	Analysis

	Conclusions

