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1 PROBLEM
Language interpreters are generally slower than (JIT) compiled

implementations because they trade off simplicity for performance

and portability. However, they are still an important part of modern

Virtual Machines (VMs) as part of mixed-mode execution schema.

The reasons behind their importance are many. On the one hand,

not all code gets hot and deserves to be optimized by JIT compilers.

Examples of cold code are tests, command-line applications, and

scripts. On the other hand, compilers are more difficult to write

and maintain, thus interpreters are an attractive solution because

of their simplicity and portability. In the context of this paper, we

will center on bytecode interpreters.
Interpreter performance has been a hot topic for a long time,

where several solutions have been proposed with different ranges of

complexity and portability. On the one hand, somework proposes to

optimize language-specific features in interpreters such as type dis-

patches using static type predictions, quickening [3] or type special-

izations [18]. On the other hand, many solutions focus on improving

general interpreter behavior byminimizing branchmiss-predictions

of interpreter dispatches and stack caching. Solutions to branch

mis-predictions propose variants of code threading [1, 4, 6, 7, 10]

and improving it further with selective inlining [14]. Some solutions

aim for minimizing branch miss-predictions by modifying the in-

termediate code (e.g., bytecode) design with super-instructions [15]

and register-based instructions [9, 16]. Stack caching [5] proposes

to optimize the access of operands by caching the top of the stack.

interpreter registers are also related to stack caching: interpreter

variables that are critical to the efficient execution of the interpreter

loop. Examples of such variables are the instruction pointer (IP),

the stack pointer (SP), and the frame pointer (FP). Interpreter regis-

ters put pressure on the overall design and implementation of the

interpreter:

Req1: Value access outside the interpreter loop. VM routines

outside of the interpreter loop may require access to inter-

preter registers. For example, this is the case of garbage

collectors that need to traverse the stack to find root objects,

routines that unwind or reify the stack, or give access to

stack values to native methods.

Req2: Efficiency. Interpreter registers are used on each instruc-

tion to manipulate the instruction stream and the stack.

Under-efficient implementations have negative impacts on

performance.

These two requirements are opposing in the sense that Req1
demands that register values are stored on globally accessible mem-

ory, either in the heap or the data sections of the process, while

Req2 would benefit from putting those values in registers and

avoid memory accesses at all.

2 INTERPRETER REGISTERS IN SLANG, THE
PHARO VM GENERATOR

The Pharo Virtual Machine is an industrial-level Virtual Machine

written in Pharo itself for the Pharo language [2]. The VM im-

plements at the core of its execution engine a threaded bytecode

interpreter, a linear non-optimising JIT compiler named Cogit [13]

that includes polymorphic inline caches [11] and a generational

scavenger garbage collector that uses a copy collector for young

objects and a mark-compact collector for older objects [19]. The

Pharo Virtual Machine is written in a subset of Pharo that is tran-

spilable to efficient C using Slang, a Smalltalk-to-C VM-specific

transpiler [12]. Slang operates by translating a group of classes into

a single C file. Methods are translated into functions, message-sends

are translated as function calls. While the Pharo source program

presents dynamic behavior such as polymorphism, exceptions, or

runtime reflection, Slang does not allow many of those: it either

forbids them at translation time or generates invalid C code.

The interpreter is written following Pharo Smalltalk coding con-

ventions as shown in Figure 1 where each bytecode and native

method (primitives) is implemented with a different method. Slang

then inlines bytecodemethods inside the interpreter loop to produce

an efficient token threaded interpreter [4]. Primitives are translated

as independent functions outside of the interpreter loop. All com-

munication between bytecodes and primitives happens through

the stack.

Interpreter registers are manually duplicated in Pharo’s inter-

preter: they have a local and a global version. Local interpreter

registers are defined as local variables in the generated interpreter

loop function, and global interpreter registers are defined as global

variables available to the VM outside of the interpreter loop. The

insight behind this manual optimization is that compilers are ca-

pable of better optimizing reads/writes to local variables putting

them into registers, while they are mostly unable to do that when

declared as global variables.

In this manual approach, it is up to VM developers to copy the

values from the local to the global register and vice-versa. How-

ever, the manual approach has a high cost when developing and

debugging the VM. First, since bytecodes are normal Pharo methods

and Slang performs aggressive inlinings inside the interpreter loop,
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1 Interpreter >> pushReceiverBytecode
2 self fetchNextBytecode.
3 self internalPush: self receiver.
4 Interpreter >> pushConstantTrueBytecode
5 self fetchNextBytecode.
6 self internalPush: objectMemory trueObject.

Figure 1: Example of Bytecode Implementation in Slang

VM developers cannot easily predict when to (a) use the local or

the global register in their code because (b) when to perform the

copy from/to local registers. Second, many methods are duplicated

because of this global/local duality: there is one version using the

local register and meant to be inlined in the interpreter loop there

is a second version using the global register. Finally, this hand-

coded approach makes it difficult to systematically experiment and

validate this optimization in modern hardware.

3 INSTRUCTION REGISTER
AUTOLOCALIZATION

In this article, we propose an automatic interpreter code transfor-

mation that satisfies Req1 and Req2 called autolocalization for the

Slang VM generator. Our optimization transforms Slang’s inter-

mediate representation before it’s translated to C. It automatically

localizes interpreter registers inside the interpreter loop function

and exports their values when exiting the interpreter to e.g., call
expensive routines like garbage collection. This automatic transfor-

mation removes most of the manual burden from VM developers

while still taking benefit from the underlying C compiler optimiza-

tions.

Our optimization works as a three-step transformation as illus-

trated in Algorithm 1. First, the interpreter registers are declared

as local variables in the interpreter loop function, and all usages

of them are replaced by their local versions (Section 3.1). Then,

all calls exiting the interpreter loop are wrapped with copy state-

ments that synchronize the local and global registers (Section 3.2).

In such a way, the interpreter loop remains efficient as far as it does

not call external functions (Req2), and external functions access

interpreter register values when they require it (Req1). In addi-

tion, some statements containing nested expressions need to be

linearized before register synchronization for the correctness of the

transformation (Section 3.3)

Algorithm 1: Autolocalization algorithm overview

1: ReplaceGlobals()

2: LineariseStatements()

3: WrapExitPoints()

3.1 Variable localisation
The first step in our transformation declares local version of the in-

terpreter registers within the interpreter loop function and replaces

all usages of global register variables with their local versions. The

global definitions of the localized variables are not removed be-

cause functions outside of the interpreter loop still require access

to them. Thus, special care must be taken on the function entry

and exit points to synchronize the global state with the global state.

Function entry should perform register value localizations; i.e., copy
the values from the global variables to the local variables. Function

exit points such as return statements must be preceded with reg-

ister value globalizations; i.e., copy the values back from the local

variables to the global variables.

Figure 2 illustrates this transformation with an example in pseu-

docode. The original interpreter code declares a global register

variable called register1 which is accessed within the interpreter

loop. The first step of our transformation introduces a local vari-

able called local_register1 and replaces all reads and writes

from register1 to local_register1. Moreover, our transforma-

tion adds a globalization statement before the return statement at

the end of the function copying the value of local_register1 to

register1.

3.2 Synchronization Around Exit Points
The interpreter loop may perform calls to runtime functions pro-

viding services such as garbage collection. For the purpose of this

article, we call such calls interpreter exit points. Such runtime ser-

vices may use the values of the interpreter registers to e.g., push/pop
values to the stack or unwind it to implement exception handling.

In that case, we must synchronize the values of interpreter registers

around interpreter exit points. Thus, those register values must be

globalized before calling the exit point and localized upon return to

the interpreter.

Figure 3 illustrates the result of this process. A local value in

variable called local_register1 is copied to a global register vari-
able called register1 before the exit_point() call. Then, this

function gains accesses to the synchronized global register variable

register1 for reads and writes. Finally, the value in register1
is copied back to local_register1 once exit_point() call is fin-

ished and execution returns to the interpreter loop.

3.3 Nested Statement Linearization
Another concern for correctness is nested expressions where lo-

cal register variables are involved, as illustrated in the example in

Figure 4. In these cases, the interpreter register variables synchro-

nization must be performed between the local register computation

and the interpreter exit point call to ensure the consistency of values.

Our transformation performs a linearization on these statements to

avoid nested calls. Statement linearization creates temporary vari-

ables for nested evaluation results and moves all subexpressions as

statements of a single block.

After these transformations, it is possible to globalize and localize

around the exit point calls with statement granularity. Figure 5

shows an example of the wrong and correct transformations after

applying linearization and interpreter register synchronization over

Figure 4.
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1 var register1; // global
2 function interpret() {
3 ...
4 while(1) { switch(bytecode){
5 ... register1 ... // global reads and writes
6 } }
7 return;
8 }

(a) Before transformation

1 function interpret() {
2 // localisation: copy from global
3 var local_register1 := register1;
4 ...
5 while(1) { switch(bytecode){
6 ... local_register1 ... // local reads and writes
7 } }
8 // globalisation: copy back to global
9 register1 := local_register1;
10 return;
11 }

(b) After transformation

Figure 2: Global access to interpreter registers

1 ... // inside the interpreter loop
2 register1 := local_register1; // globalization
3 exit_point();
4 local_register1 := register1; // localization
5 ...
6

7 // outside the interpreter loop
8 function exit_point() {
9 ... register1 ... // global reads and writes
10 }

Figure 3: Globalization and Localization points

1 exit_point(local_register++);

Figure 4: Nested statements where exit point and local regis-
ter are involved

1 // Wrong transformation
2 register := local_register;
3 exit_point(local_register++); // register has wrong value
4 local_register := register;
5

6 // Correct transformation
7 t1 := local_register++;
8 register := local_register;
9 exit_point(t1);
10 local_register := register;

Figure 5: Linearized Statements

3.4 Optimizing exit points with call-graph
analysis

Globalization and localization around exit points need not to syn-

chronize all interpreter register values, but only those that are

used by the called function. To further optimize interpreter register

synchronization, we compute a recursive call-graph for each exit

point call and analyze the uses of the global register variables. We

then globalize and localize only used interpreter register variables

around each exit point call.

Moreover, there are cases where the call-graph can not be ana-

lyzed because the call target is statically unknown. This is the case

of function pointers and non-statically available functions. If one of

such cases is found in an exit point, we conservatively synchronize

all the interpreter registers.

4 PRELIMINARY RESULTS
We present preliminary results of our optimization by compar-

ing the effect of localizing several interpreter registers on a set of

benchmarks. The main goals of this evaluation is to see what is the

effect of different localization configurations on a token threaded

interpreter performance (Section 4.2), and to evaluate wether this

automatic approach is worth its implementation in comparison

with a manually handcrafted approach (Section 4.3).

4.1 Experimental Platform
We implement interpreter register autolocalization in Slang, Pharo’s

VM generator framework, to evaluate its impact on Pharo bench-

marks. Before our implementation, the Pharo VM included variable

localisation as a manual optimisation carefully handcrafted in the

VM source code, we refer such configuration as manual in our

benchmarks and we use it as baseline. We replaced the manual

localization by automatic localization gaining the ability to con-

trol localization globally, enabling further interpreter modifications

and making it easier to perform the following benchmarks in a

systematic fashion.

We evaluate our approach on the suite SMark benchmark suite

implemented for Pharo [17] containing

• microbenchmarks for different Pharo language aspects (array

access, message sends),

• larger Pharo programs such as the bytecode compiler,

• implementation of the Computer Language Benchmarks

Game [8].

All benchmarks were run on a 2015 MacBook Pro, 2,9 GHz Intel

Core i5, 16 GB 1867 MHz DDR3, MacOS 10.14.6.
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Figure 6: Average performance on different configurations. Error
bars show standard deviation. Results are relative to no localization
(1x, no bar). Higher is better.

4.2 Localization Improvements
We evaluate the performance of a large set of benchmarks on dif-

ferent interpreter configurations, localizing different combinations

of the main interpreter registers: IP, SP, FP. Our benchmark suite

is implemented in the SMark benchmark suite and the benchmark

game suite for Pharo. We run each benchmark 100 times given that

the interpreter does not need a warmup. We report averages and

standard deviation. We use as comparison baseline (1x) the inter-

preter built without localization i.e., using always global interpreter
register variables.

Figure 6 presents the results of each configuration relative to

our baseline on the Intel x86-64 architecture. Except the first two

configurations in the graph: FP and SP+FP localization, all others

autolocalized configurations are faster than non-localized version.

We observe that localizing all IP, FP and SP, has the better improve-

ment average of 1.39x. The best performance improvement is 1.92x

when only localizing SP in the message send benchmark. In the

worst case, we observe a short performance loss only when localiz-

ing FP and accessing class variables with a relative performance of

0.95x. One interesting result we observe that localizing only the SP

is in average better than localizing the IP and SP by 0.1, and that

localizing IP and SP is in average better than localizing all three

register variables by 0.2.

4.3 Manual vs Automatic Localisation
We evaluate the performance of the manual localizing against our

automatic approach on the same set of benchmarks, both local-

izing the three main interpreter registers: IP, SP, FP. We report

averages of 100 iterations and their standard deviation. We use as

comparison baseline (1x) the interpreter built manual localization.

Figure 7 shows our results. The average difference between both

configurations is 0.014x.
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Figure 7: Manual vs Automatic Localization of IP, FP and SP. Av-
erage of 100 iterations, error bars show standard deviation. Results
are relative to no localization. Higher is better.
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5 CONCLUSION AND FUTUREWORK
In this paper we revisit interpreter registers i.e., interpreter variables
that are critical to the efficient execution of the interpreter loop.

We study the impact of caching different interpreter registers con-

figurations and present an automatic interpreter transformation

that aims to store interpreter registers in machine registers.

We built our optimization in Slang, Pharo’s VM generator frame-

work, and show preliminary results showing that this transforma-

tion improves the performance of several benchmarks up to 1.92x

on x86-64. We observed that localizing only the stack pointer (not

the stack-top as proposed by Ertl [5]) shows similar improvements

than localizing all of instruction, stack and frame pointers alto-

gether, and that all our benchmarks improve in average 1.39x in

comparison with the absence of this optimization. Moreover, we

observed that our automatic approach has similar performance

than the previous hand-tuned approach while keeping the code

base simpler to modify and debug.

In the future we plan to study what are the architectural con-

ditions that make these optimizations worth the effort and the

behavior of our outliers. We plan to perform similar analyses on

different architectures such as less powerful devices such as the

aarch64 Raspberry pi and register starved architectures such as x86.

On the design front, we plan to extend this work to automatically

detect an optimal list of localization candidates for an architec-

ture, and evaluate further optimizations on the synchronization on

exit points to avoid redundant reads/writes. Finally, this automatic

transformation opens the door to re-explore techniques such as

top-of-stack caching without major VM and interpreter rewrites.
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