
HAL Id: hal-01585305
https://hal.archives-ouvertes.fr/hal-01585305

Submitted on 11 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

First-Class Undefined Classes for Pharo
Guillermo Polito, Stéphane Ducasse, Luc Fabresse

To cite this version:
Guillermo Polito, Stéphane Ducasse, Luc Fabresse. First-Class Undefined Classes for Pharo: From
Alternative Designs to a Unified Practical Solution. IWST 2017 - International Workshop on Smalltalk
Technology, Sep 2017, Maribor, Slovenia. <hal-01585305>

https://hal.archives-ouvertes.fr/hal-01585305
https://hal.archives-ouvertes.fr

IWST 2017

First-Class Undefined Classes for Pharo
From Alternative Designs to a Unified Practical Solution

Guillermo Polito
RMoD - Univ. Lille, CNRS, Centrale
Lille, Inria, UMR 9189 - CRIStAL -

Centre de Recherche en Informatique
Signal et Automatique de Lille,

F-59000 Lille, France
guillermo.polito@univ-lille1.fr

Stéphane Ducasse
Inria Lille-Nord Europe, 40 Avenue
Halley, Villeneuve d’Ascq, France

stephane.ducasse@inria.fr

Luc Fabresse
IMT Lille Douai, Univ. Lille, Unité

de Recherche Informatique
Automatique, F- 59000 Lille France

luc.fabresse@imt-lille-douai.fr
http://car.imt-lille-douai.fr/luc

CCS Concepts • Software and its engineering → Gen-
eral programming languages; • Theory of computation
→ Program analysis

Abstract
Loading code inside a Pharo image is a daily concern for a
Pharo developer. Nevertheless, several problems may arise at
loading time that can prevent the code to load or even worse
let the system in an inconsistent state.
In this paper, we focus on the problem of loading code
that references a class that does not exist in the system. We
discuss the different flavors of this problem, the limitations of
the existing Undeclared mechanism and the heterogeneity
of Pharo tools to solve it. Then, we propose an unified
solution for Pharo that reifies Undefined Classes. Our model
of Undefined Classes is the result of an objective selection
among different alternatives. We then validate our solution
through two cases studies: migrating old code and loading
code with circular dependencies. This paper also presents the
integration of this solution into Pharo regarding the needed
Meta-Object Protocol for Undefined Classes and the required
modifications of existing tools.

Keywords Dynamic Languages, Partial Code Loading, Re-
flection

1. Introduction
This paper explores the problem of loading incomplete,
partial or broken code because of inexistent classes into a
dynamic object-oriented language such as Pharo [DZH+17].

[Copyright notice will appear here once ’preprint’ option is removed.]

Loading code inside a Pharo image is a daily concern for a
Pharo developer. While doing this daily task, there are several
situations in which a loaded package may refer to classes that
are not defined in the runtime. For example, let us consider a
library that worked well in an older Pharo version, say Pharo
2.0. Porting this library to the latest Pharo 6.0 requires to
load it in the newer targeted Pharo version. However, this will
surely provoke several loading errors because the old library
code references classes that existed in Pharo 2.0 but do not
exist anymore 4 years later in Pharo 6.0. These classes could
have been renamed, removed or modified. The same situation
occurs when loading libraries from other Smalltalk dialects
to port them. Another example occurs when we try to load a
library without loading all its dependencies because we do not
know them beforehand or because we do not know the correct
loading order. This happens when the library developer did
not document properly the dependencies or did not use a
package management tool such as Metacello [BCDL13].

References to undefined classes exist in different flavors: a
package can contain subclasses of undefined classes, methods
extending undefined classes, or simply methods referencing
undefined classes. Trying to load such incomplete code in
Pharo produces many different load errors depending on the
used tool. Some tools do fail, some partially load the package,
some others silently modify the code to make it loadable. For
example, while the Monticello version control system will
reject the creation of classes whose superclass does not exist,
a file-in ignores the inexistent superclass and makes the new
class subclass of Object.

In this paper we propose to represent Undefined Classes
as stub classes that are automatically installed in the system
when the need for a non-defined class is detected. Undefined
Classes enables the loading of incomplete, partial or broken
code, and are helpful to keep track of potential bugs. Further-
more, when loading a class for which an Undefined Class
already exists in the environment can be correctly handled
without any information loss such as method extensions.

IWST 2017 1 2017/9/11

The paper is organized as follows. Section 2 digs further in
code loading problems and gives an overview of the Pharo 6
current state regarding this problem. Section 3 presents three
different models to represent Undefined Classes. It then de-
scribes an analysis to select the most suitable model for Pharo
according to their integration within Pharo or their ability to
load partial code that can be correctly handled afterwards
without any loss of information. Section 4 evaluates our im-
plementation of undefined classes by using them in three
different scenarios: the migration of old code, the loading of
code without its dependencies, and the loading of code with
circular dependencies. Before concluding this paper in Sec-
tion 7, Section 5 discusses the runtime and tools integration
of Undefined Classes in Pharo.

2. Problems when Loading Code
2.1 Motivating Example
Let’s consider a package Package that extends the package
Dependency (cf. Figure 1). Dependency defines the Platform
class that represents the current platform and an FFI class
that can be used to call C functions. Package extends Depen-
dency in two ways: it defines several concrete subclasses of
Platform, and it extends Platform with the extension method
workingDirectory. The following source code illustrates this
example:

1 Platform >> workingDirectory (extension)
2 ^ self subclassResponsibility
3

4 Platform subclass: #Windows
5 instanceVariableNames: ’’.
6

7 Windows >> workingDirectory
8 ^ FFI call: ’_getcwd’ library: LibC
9

10 Platform subclass: #Unix
11 instanceVariableNames: ’’.
12

13 Unix >> workingDirectory
14 ^ FFI call: ’getcwd’ library: LibC

Let’s imagine now that we want to load Package with-
out loading Dependency. If we do so, three problems may
arise depending on the used tool. First, the superclass of
Windows and Unix is not defined and the classes cannot
be properly created. Second, the extension method Plat-
form>>workingDirectory cannot be loaded because the class
it belongs to does not exist. Third, classes Windows and
Unix have methods that use the FFI class, not existing either.
Generally speaking, we identify three kinds of broken class
references:

Undefined superclasses. A class inherits from a non-defined
class.

Undefined class references. A method has a reference to a
non-defined class.

Package

Dependency

Object

Platform

workingDirectory
Windows

workingDirectory
Platform

workingDirectory
Unix

call:library:
FFI

Figure 1. Package extends Dependency by subclassing,
extension methods and uses it through direct references.

Undefined extended classes. An extension method is meant
to extend a non-defined class.

2.2 Current State in Pharo
We have identified three different kinds of broken code.
However, each tool in charge of loading code inside Pharo
produces different results in the presence of such cases. In
this section we compare how the Monticello version control
system, the Code Importer tool and the Pharo IDE (i.e., the
Nautilus browser) manage each of the cases we described
before. Table 1 summarizes our analysis.

Tool Superclasses References Extensions

Monticello Ignored Undeclared Ignored
Code Importer Override Undeclared Error
Nautilus Forbidden Forbidden Forbidden

Table 1. Comparison of strategies to manage broken code
by Pharo tools

Monticello. Monticello is the open-source Smalltalk version
control system used in most Pharo versions up to today.
Monticello throws a so called warning when loading a
subclass or an extension method of an undefined class.
If the user manually creates the missing classes at this
point and resumes the process, Monticello still ignores the
newly created classes and does not load the problematic
subclasses/methods. To overcome this issue, the user
needs to manually create the missing classes and restart
the loading process from scratch. A different approach is
taken with class references in methods. In those cases, the
reference will be loaded as an Undeclared reference in the
Pharo global environment pointing to nil and will be fixed
as soon as the class is loaded and the method recompiled.

Code Importer. The code importer is the tool in charge of
loading code from files (also named file-ins). When we
do a file-in of a subclass whose superclass does not exist,

IWST 2017 2 2017/9/11

the code importer will silently override the superclass.
That is, it loads the class as a subclass of the default
superclass of the system (e.g., Object or ProtoObject). A
completely different behaviour is exposed when the file-
in includes extension methods to undefined classes: the
code importer will raise a MissingClassException. Finally,
when loading methods referencing to undefined classes,
the code importer behaves as Monticello and it defines an
Undeclared reference.

Nautilus. Nautilus is Pharo’s current code browser and main
IDE tool used to manipulate code. Nautilus avoids by
design the creation of classes or methods referencing
to undefined classes. When trying to create a subclass
or reference to an undefined class, Nautilus interactively
suggests to use an existing class or to create a new class or
a global variable. Regarding extension methods, a method
can only be created directly on the target class. Thus, if the
class does not exist, the method cannot be created on the
first place and we cannot define it as an extension method.

It is worth noting that, with the exception of the created
Undeclared references, all other behaviors are silent and
leave no track of potential problems. This hinders the task
of identifying and thus fixing this problems once the code is
loaded (or not).

2.3 Problem Statement
Code that extends or references undefined classes should
be loadable and potential problems should be identifiable
to postpone their resolution. Our aim is to simplify the
tasks of browsing and modifying code when we ignore the
dependencies of a package or when migrating a package to
a newer version of the platform. An ideal solution should
manage all three kinds of broken references: subclasses,
extension methods and method references. But it should also
ensure the correctness of loading a class for which previous
unresolved references have been loaded. In other words, an
ideal solution should support loading code containing broken
references and then correctly fix them afterwards if the actual
class is finally loaded. Moreover, the solution should be
unified, compatible and used by all existing tools.

3. Solution: First-Class Undefined Classes
We propose the introduction of undefined classes as first-class
entities in the language runtime. First-class undefined classes
solve all the problems stated before. It solves the problem of
code loading: we can create subclasses of undefined classes,
we can use them as placeholders for extension methods, and
undeclared references can point to them. It also provides
explicit tracking information: the system can be queried for
all undefined classes to detect potential bugs and problems.
Finally, a first-class entity provides an entry point for existing
tools.

In the rest of this section we present alternative designs
for undefined classes. Finally, we analyse and compare them
to choose the most suitable model to introduce into Pharo.

3.1 A Unique Undefined Class
At first sight, the simplest design to introduce undefined
classes is to create a single UndefinedClass class (cf. Fig-
ure 2). Classes that need to extend an undefined class either
by subclassing or method extension will subclass from this
class and store the corresponding extension methods into it.
Undeclared references can also point to this instance instead
of nil, providing a much better control in the case of broken
code being executed.

Object

Class

UndefinedClass

UndefinedClass
class

Windows

Windows class

Unix

Unix class

Figure 2. Design 1: Introducing a single UndefinedClass
class. Classes inheriting from an undefined subclass will be
loaded as subclasses of this class.

The major drawback of this design is that it is a partial
solution since UndefinedClass is a shared object. Indeed,
the name of the original unknown class is lost both in
the superclass or extension methods cases. Of course, we
considered some extensions of this design to store those
runtime informations elsewhere such as in inside separate
data structures. However, we excluded such extensions from
our analysis because they do not comply with the object-
oriented paradigm and will be costly to maintain in the long
term.

3.2 Undefined Class’s Instances
To solve the information loss problem, another solution based
on the previous solution is to introduce one UndefinedClass
instance per undefined class. UndefinedClass instances store
all information related to a single undefined class e.g., the
name of the original subclass, its subclasses, loaded extension
methods. Undeclared references will now reference to in-
stances of these classes, providing an even more fine-grained
control on code execution.

Two different designs emerge from this idea:

1. modeling only the class instance-side

2. modeling both instance and class-side as a pair of in-
stances

IWST 2017 3 2017/9/11

Object

Class

UndefinedClass

Windows

Windows class

WindowsFFI

WindowsFFI class

Platform

FFI

UndefinedClass
class

Class class

Figure 3. Design 2: One instance of UndefinedClass per
undefined class.

For presentation purposes, we illustrate in Figure 3 only
the case of modeling the instance-side of classes. Figure 3
shows also one of the main problems of this solution: its
complexity. By creating instances of UndefinedClass, the
meta-level is shifted: instances of UndefinedClass should
be subclasses of Object and thus UndefinedClass needs
to be a (indirect) subclass of Class like other classes. The
second alternative design, introducing first-class meta-classes,
proposes a place to store class-side extension methods while
it shifts the meta-level even another time.

In essence, both of these designs are complex and make
programs harder to understand to developers. It is also a major
drawback for tools that should manipulate yet another kind
of entity (UndefinedClass instances) non polymorphic with
classes such as Traits. This drawback suggests that we should
carefully design UndefinedClass API to be polymorphic with
classes.

3.3 Undefined Classes Subclasses
A third possible design is to create one UndefinedClass
subclass per undefined subclass. Creating a normal class
creates a class and implicitly its metaclass pair. Similarly
to the previous designs, UndefinedClass subclasses fulfill
both the role of a stub for Undeclared references, and also
present a natural place to store all information related to the
non-defined class, including the class name and its extension
methods.

Figure 4 depicts the main difference between this solu-
tion and the previous ones that resides in the final structure
of the class hierarchy. Indeed, this solution does not shift
the class-hierarchy, making it easier to understand and anal-
yse. Moreover, in this solution undefined classes are just
regular classes created using the conventional class-creation
mechanisms. This simplifies significantly the interaction of
undefined classes with existing tools, since by design they
are classes and behave as such.

The main drawback of this solution is that any Undefined-
Class will behave as a normal defined class and produce
silent misbehaviours. Indeed: can an UndefinedClass be in-
stantiated? Does it make sense to put an UndefinedClass in a
package? Of course, the regular class API can be redefined

Object

Class

UndefinedClass

UndefinedClass
class

Windows

Windows class

WindowsFFI

WindowsFFI class

Platform

Platform class

FFI

FFI class

Figure 4. Design 3: One subclass of UndefinedClass per
undefined class.

in UndefinedClass. However, preventing inherited behavior
from Class in UndefinedClass subclasses is not good for sub-
stitutability and therefore tools uniformity. This design also
implies that all future modifications of regular classes should
be considered from the UndefinedClass perspective and cor-
rectly treated.

3.4 Selecting the most suitable model for Pharo
To select the best model, we evaluate the described designs
using the following criteria:

Subclasses Support. The solution supports the loading of
subclasses (") of undefined classes or not (%).

Extensions method Support. The solution supports seam-
lessly loading extension methods ("), loading extension
methods is possible but requires implementing special
support for it (~) or it is not supported (%).

Class references Support. The solution supports to load
and differentiate Unreferenced class references ("), it
supports to load but not differentiate Unreferenced class
references (~), or it does not support loading Unrefer-
enced class references (%).

Retained Information. The solution seamlessly retains a
majority of runtime information such as class names, sub-
classes, extension methods ("), retaining runtime infor-
mation is possible but it requires implementing special
support for it (~) or all information is lost (%).

Base/Meta-levels consistency. As a descendent of Small-
talk, the Pharo model is organized along a parallel hi-
erarchy of classes. Each class as its own metaclass [GR83,
BDN+09]. This uniform structure is important to ensure
not introducing inconsistencies between the base and
meta-levels. The solution is compliant with this model (")
or not (%).

Tools compatibility. This criteria makes reference to how
tools support each of the designs e.g., if undefined
classes are navigable with Nautilus, mergeable/committe-

IWST 2017 4 2017/9/11

able/loadable with Monticello, writable and readable with
CodeImporter. A solution may seamlessly interact with
existing tools ("), it would require partial adaptations (~)
or the support for it should be entirely implemented (%).

Criteria Design 1 Design 2 Design 3

Subclasses " " "

Extension Methods % ~ "

Class References ~ " "

Information loss % ~ "

Levels Consistency " % "

Tool Compatibility " % "

Table 2. Comparison of strategies to manage broken code
by Pharo tools

Table 2 presents a summary of the evaluation of these
criteria for our three designs.

Design #1. This design fails to represent undefined classes
as single entities, provoking the loss of all runtime infor-
mation related to the class including extension methods.

Design #2. This design improves on Design #1 by adding
first-class undefined classes. However, with this solution
the class hierarchy becomes significantly more complex.
This hinders not only understanding but also requires the
adaptation of the undefined classes meta-model so we can
integrate it with existing tools.

Design #3. This design improves on Design #1 by not losing
runtime information and on Design #2 by simplifying the
class hierarchy to the level of the normal class hierarchy.
That makes it a design that can easily and seamlessly
integrated with existing tools.

Finally, we selected the Design #3 to model undefined
classes in our solution.

3.5 Ensuring Loading Correctness
Representing unresolved references as first-class entities is
not enough to ensure loading correctness. Our full solution
provides additional support. When loading code, the first time
an unknown class name is encountered, our solution creates
a new UndefinedClass subclass to represent this missing
class. Then, when this same name is again encountered, the
same UndefinedClass subclass is reused and completed with
additional information such as new method extensions. When
loading a class for which a subclass of UndefinedClass exists
in the system, our solution first creates the class and then
correctly introduce all previously loaded definition stored in
its UndefinedClass subclass placeholder before destroying it.

In essence, the loading correctness of our solution relies
on: using only one UndefinedClass subclass per missing
class (identity), UndefinedClass subclass automatic migration,
and destruction when loading the actual class and system

uniformity i.e., all code loading mechanism relies on our
system.

4. Undefined Classes in Action
In this section we explore the usage of our chosen design in
two different scenarios. Our first scenario shows how we can
load and migrate old code to a newer code base. Our second
scenario shows how we can load two circular-dependent
packages separately without losing any code.

4.1 Scenario 1: Migrating Old Code
In this section we show how we used undefined classes. In
this scenario, we tried to several old packages that are not
supported on the latest version of Pharo (6.0) anymore.

Algernon. Algenon is an old Pharo package used to navi-
gate existing methods, classes and packages. In the lat-
est Pharo6 release, we loaded Algernon using its Meta-
cello configuration from the project catalog. The last
commit of this configuration is from 24 March 2015
(ConfigurationOfAlgernon-FN.8). We found in this pack-
age a class TypeList that is subclass of RectangleMorph.
RectangleMorph has beed removed in Pharo 3.0. To load
such package we executed the following expression:

1 ConfigurationOfAlgernon project load: #bleedingEdge.

Seaside 2.8. Seaside is a Smalltalk web framework that
makes emphasis on the creation of components and
has the novelty of using continuations. We loaded
Seaside 2.8 using the metacello configuration in the
project catalog. This version dates from 10 October
2011(ConfigurationOfSeaside28-dkh.40). We found that
this version depends on the current version of Pharo by
creating several subclasses of PackageInfo and several
extension methods defined in the classes BlockContext
and ContextPart. BlockContext was removed before
Pharo 2.0, PackageInfo was removed in Pharo 4.0 and
ContextPart was renamed to Context in Pharo 4.0. To
load such package we executed the following expression:

1 ConfigurationOfSeaside28 load.

Omni Browser. Omni Browser is the code browser used in
Pharo before Nautilus was introduced in 2012. We loaded
Omni Browser using the metacello configuration in the
project catalog. This version dates from 20 August 2015
(ConfigurationOfOmniBrowser-pad.187) and was proba-
bly maintained for the Squeak dialect and not Pharo. We
found that this version defines a subclass of TextMor-
phEditor and several extension methods defined in the
classes ClassOrganizer, MethodReference and Bordered-
SubpaneDividerMorph. TextMorphEditor, MethodRefer-
ence and BorderedSubpaneDividerMorph were removed
before Pharo 2.0, and ClassOrganizer was removed in

IWST 2017 5 2017/9/11

Pharo 3.0. To load such a package we executed the follow-
ing expression

1 ConfigurationOfOmniBrowser project latestVersion load

This particular scenario included also initialization code
in the form of class side initialize methods. These class side
initialize methods are automatically executed when a package
is loaded. So, when they contain a reference to an undefined
class, a runtime error will happen while executing such
method. In such case, the developer must manually fix the
code that caused the error in the open debugger and resume
the code loading without losing any runtime information.
An unexperienced developer that does not know the loaded
project, could simply comment the problematic piece of code
to analyse it later on. For further work, we will analyze wether
this is a good default behavior, or if packages containing
undefined classes should not automatically execute their class
side initialize methods.

4.2 Scenario 2: Loading Order
The order used to load packages is important to correctly
resolve references. Using our undefined classes model this is
not a constraint anymore. It is also useful to packages with
circular dependencies.

You can see this in the following code:

1 Seaside3LoadingTest>>
testLoadingSeasidePackagesInRandomOrder

2 | maxNumberOfUndefinedClassesCreated |
3

4 self assert: UndefinedClass allSubclasses isEmpty.
5 maxNumberOfUndefinedClassesCreated := self

loadSeasidePackagesInRandomOrder.
6 self assert: maxNumberOfUndefinedClassesCreated > 0.
7 self assert: UndefinedClass allSubclasses isEmpty.
8

9 self executeInitializeClassMethodsInCorrectOrder.
10

11 self assertAllSeasideUnitTestsAreGreen.

This code is an experiment of loading all the packages
of Seaside 3 and its dependents (59 Monticello packages in
total for the stable version) but in a random order (line 5). It
means that a lot of undefined classes are created and correctly
resolved later on because at the end of the loading step, there
is no remaining undefined class (line 7). During the loading
of each package, we disabled the initialization of classes. On
line 10, we currently trigger all class side initialize methods
in the right order as defined by the project’s configuration.
We are currently working on doing this automatically when a
class is complete. Finally, on line 11, we execute all Seaside
unit tests (more than 800 unit tests) and ensure that they pass.

5. Pharo Integration
This section first presents the runtime integration through the
required Meta-Object Protocol for Undefined Classes, and
then the tools integration.

5.1 Runtime: Undefined Classes MOP
Our implementation of Undefined Classes in Pharo is pub-
licly available under the MIT License. Our UndefinedClass
implementation is rather small and easy to understand: it
mainly consists in one class with 3 methods and 14 green
unit tests. The following code snippet shows how to load it
in the latest Pharo 6.0 using:

Gofer new
smalltalkhubUser: ’StephaneDucasse’ project: ’PetitsBazars’;
package: ’ClassParser’;
package: ’UndefinedClasses’;
load.

Our design makes it easier to load code that is potentially
broken. Indeed, automatically creating class stubs to represent
a class opens the door to instantiate such a class, or to
create a subclass with an unexpected format. This opens
several questions: should we allow the creation of instances
of undefined classes? In case we do, how should these
instances respond to messages? Our main criteria to answer
this question was to avoid silent solutions: an undefined class
is indeed broken code and the developer should be notified
of the mistakes he makes to be able to solve them.

Instantiation. We decided that undefined instances should
not be instantiated because they represent a partial class
definition that probably miss some initialization code.
To enforce this, we redefined the method basicNew in
UndefinedClass class-side such that it throws an error.

UndefinedClass class >> basicNew
^ UndefinedClassError signal:

’Cannot instantiate undefined class: ’, self name

Thus, any try to instantiate the UndefinedClass or a
subclass will fail at runtime.

Messages. Our solution needs to handle messages to Unde-
finedClass instances even if we forbid by design their cre-
ation. Indeed, developers may create such new instances
using other mechanisms such as using the change class
primitive. For example, the following piece of code cre-
ates a normal instance of Object and then changes the
class of such object by SomeUndefinedClass using the
adoptInstance: message.

object := Object new.
SomeUndefinedClass adoptInstance: object.

object class => SomeUndefinedClass

To cover to some extent such behaviour, we redefined
UndefinedClass>>doesNotUnderstand: to throw a noti-
fying error. If an (sub-)instance of an UndefinedClass is
created in the system, messages to it will then fail accord-
ingly.

IWST 2017 6 2017/9/11

UndefinedClass >> doesNotUnderstand: aMessage
UndefinedClassError signal

Notice that defining doesNotUnderstand: does not cover
the creation of instances. basicNew is defined on the class-
side, while doesNotUnderstand: is defined on the instance-
side. Moreover, we did not use this same doesNotUnder-
stand: mechanism on the class side because UndefinedClass
inherits from Class. doesNotUnderstand: cannot simply trap
basicNew since it understands all messages of a class. We
could have used a more sofisticated class proxy such as in
Ghost [PBF+15] at the expense of a more complex imple-
mentation and having some impact on the compatibility with
tools (Section 5.2).

5.2 Tools
To provide a coherent behaviour across the entire runtime,
development tools should be updated to use this mechanism.
As part of this work, we identify the adaptation points
in the tools, required to support undefined classes. Our
modifications of Pharo core classes and tools can be loaded
with:
"Patch the whole Pharo 6.0 system to use our implementation"
Gofer new
smalltalkhubUser: ’StephaneDucasse’ project: ’PetitsBazars’;
package: ’UndefinedClassSYSTEMPATCH’;
load.

We present here the adaptations of three main Pharo
development tools:

Monticello. Monticello requires two main modifications to
support the loading of undefined classes. First, MCClass-
Definition and MCMethodDefinition, the objects part of
Monticello’s meta-model, should be extended to create
the corresponding undefined classes at load time. Second,
the class MCPackageLoader makes a pre-load analysis
to split a package between loadable and unloadable defi-
nitions. Because of the introduction of undefined classes,
such separation is not valid anymore and Monticello needs
to be modified accordingly.

CodeImporter. Code importer requires also two main modi-
fications. First we needed to adapt how a chunk of code
containing an expression (i.e., a do-it chunk) is interpreted.
A do-it chunk is an region of a file in the file-in file format
that contains an expression. Do-it chunks contain arbitrary
expressions and also class definitions that will be just eval-
uated by the compiler. In the case of an undefined class,
at code compilation time the name of the undefined super-
class is replaced by a reference to nil, making it impossible
for tools to recover the class name in an efficient and sim-
ple manner after the compilation. To solve this issue we
introduced a class parser at the level of the code importer
before any code evaluation. The class parser allows us to
distinguish if a given expression is a class definition or

not, and so create undefined superclasses before creating
the subclasses. On the other hand, extension methods in
Code Importer are managed as in Monticello: we only
require a patch to create the expected extended class.

Nautilus. We decided to leave Nautilus behaviour as it is.
We believe Nautilus behaviour, though conservative and
limited, is explicit, clear and easy to understand for
developers.

6. Related Work
Multiple IDEs and tools provide nowadays the possibil-
ity of loading broken code and undefined classes. This is
the case, for example, of Smalltalk’s refactoring browser
parser [RBJO96], Eclipse for Java [Ecl03] or the XText plat-
form to create programming languages [Bet13]. The design
of these tools is fault-tolerant. Thanks to this they support
robust syntax highlighting, code analyses and code naviga-
tion. The main difference between their approach and ours
is that they work exclusively on a static representation of
the code. Indeed, a program with errors cannot be compiled,
executed nor tested until all it’s errors are fixed beforehand.
Our undefined classes model is instead a runtime model: we
allow loading classes at runtime and execute code over them.

Callau et al. [CT13] propose also a similar approach to
support test driven development (TDD) [Bec02] on main-
stream IDEs. They reify in the IDE undefined entities and use
them as stubs instead of the real classes. These reifications
allow developers to work on the design of their APIs without
fighting against constant compilation errors. Moreover, once
the design phase is finished, developers can use these stubs
to automatically generate the classes corresponding to their
design. This approach does indeed reify undefined classes
as in our approach but with a different objective in mind.
However, they apply their approach to augment mainstream
IDEs, having also the limitations of working on a purely static
environment.

7. Conclusion
This paper addresses a daily concern of Pharo developers:
loading code that contains unresolved class references. Cur-
rent Pharo version (6.0) does not correctly handle this is com-
mon problem that arises when loading old or cross-dialects
libraries. In this paper, we have proposed a model for first-
class Undefined Classes to represent missing classes in the
system. An Undefined Class stores all required informations
that should not be lost while the real class is not loaded such
as its superclass name or extension methods added by other
packages. Afterwards, when the missing class definition is
finally loaded, it can be completed with all informations pre-
viously stored in the Undefined Class that were representing
it. Our design of Undefined Class is polymorphic with classes
making it easier to integrate in Pharo and tools that manipu-
late classes. Of course, an Undefined Class is not a regular

IWST 2017 7 2017/9/11

class since this is a partial definition and that is why we added
it has its own specific MOP.

This work will continue along two directions. First, we
plan to finish the integration of Undefined Classes into
Pharo 7.0. Then, this effort is part of a larger one aiming
at providing a module system for Pharo. Modules must define
their dependencies. When loading a module, class references
inside a module may not be resolved until we bound them.

References
[BCDL13] Alexandre Bergel, Damien Cassou, Stéphane Ducasse,

and Jannik Laval. Deep Into Pharo. Square Bracket
Associates, 2013.

[BDN+09] Andrew P. Black, Stéphane Ducasse, Oscar Nier-
strasz, Damien Pollet, Damien Cassou, and Marcus
Denker. Pharo by Example. Square Bracket Asso-
ciates, Kehrsatz, Switzerland, 2009.

[Bec02] Kent Beck. Test Driven Development: By Example.
Addison-Wesley Longman, 2002.

[Bet13] Lorenzo Bettini. Implementing Domain-Specific
Languages with Xtext and Xtend. Packt Publishing,
2013.

[CT13] Oscar Callau and Eric Tanter. Programming with
ghosts. IEEE Softw., 30(1):74–80, January 2013.

[DZH+17] S. Ducasse, D. Zagidulin, N. Hess, D. Cloupis Origi-
nally written by A. Black, S. Ducasse, O. Nierstrasz,
D. Pollet with D. Cassou, and M. Denker. Pharo by
Example 5. Square Bracket Associates, 2017.

[Ecl03] Eclipse platform: Technical overview, 2003.

[GR83] Adele Goldberg and David Robson. Smalltalk 80:
the Language and its Implementation. Addison
Wesley, Reading, Mass., May 1983.

[MPBD+11] Mariano Martinez Peck, Noury Bouraqadi, Marcus
Denker, Stéphane Ducasse, and Luc Fabresse. Effi-
cient proxies in Smalltalk. In Proceedings of ESUG
International Workshop on Smalltalk Technologies
(IWST’11), Edinburgh, Scotland, 2011.

[PBF+15] Mariano Martinez Peck, Noury Bouraqadi, Luc Fab-
resse, Marcus Denker, and Camille Teruel. Ghost: A
uniform and general-purpose proxy implementation.
Journal of Object Technology, 98:339–359, 2015.

[RBJO96] Don Roberts, John Brant, Ralph E. Johnson, and
Bill Opdyke. An automated refactoring tool. In
Proceedings of ICAST ’96, Chicago, IL, April 1996.

IWST 2017 8 2017/9/11

