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The Ethereum blockchain is a distributed database of transactions, where the Gas Oracles suggest the
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Oracles are based on a data-centered model which does not provide users with a reliable prediction.
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model thus provide the users with a more effective Gas price to set.
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1. Introduction

Ethereum blockchain is a distributed ledger where transac-
tions are recorded into a sequence of ordered blocks. The Gas is
a unit of measurement unique to the Ethereum blockchain that
measures the computational work required to run transactions
within the Ethereum Virtual Machine (EVM). The transactors,
i.e. the users or the smart contracts that submit transactions
to the blockchain network (henceforth “users”), also propose
a fee in terms of Gas price to validate, include, and compute
the transactions effect, when an executable code, the so called
“smart contract”, is called [1]. The users especially pay the fee
in Ether, the Ethereum cryptocurrency, for the effort required to
compute the proof-of-work (PoW). The PoW keeps the network
resilient, though requiring a big investment of the miner, i.e. the
node that solves the PoW challenge.! The PoW challenge indeed
consists in a cryptographic puzzle requiring large computational
resources [2]. As there is a (weighted) distribution of minimum
acceptable Gas prices, the users will have a trade-off to decide

* Corresponding author at: Université de Lille, Inria, CNRS, Centrale Lille, UMR
9189 - CRISt, France.
E-mail address: antonio.pierro@gmail.com (G.A. Pierro).
1 Ethereum is currently migrating to a Proof of Stake consensus algorithm.

However, our analysis targets current transactions on the main network where
the PoW is still in use.

https://doi.org/10.1016(j.future.2021.09.021
0167-739X/© 2021 Elsevier B.V. All rights reserved.

between lowering the Gas price and maximizing the chance that
their transaction will be timely committed to the blockchain [3].

To send a transaction on the Ethereum blockchain, the user
needs to specify a Gas limit, which is the maximum amount of
Gas that can be consumed by the transaction, and a Gas price
which is the cost in Ether the user is willing to pay per unit of Gas
consumed. If the transaction spends less Gas than the Gas limit,
the remaining Gas will be refunded to the user and the miner will
earn less than the maximum Gas Limit. Indeed, unlike the Bitcoin
blockchain, where the users do not need to set a Gas limit, but just
the transaction fee which will be paid to miners, in the Ethereum
blockchain there is always the possibility for the miners to receive
a minor reward compared to the Gas limit set by the users [4].

There are some main reasons to have a Gas price in the
Ethereum blockchain: (1) the users must pay for computational
costs and resources used (e.g., energy, CPU) to generate and in-
clude their transactions into blockchain blocks upon approval; (2)
a Gas price regulates and limits the use of blockchain resources;
(3) a Gas price incentivizes miners to actually include transactions
in the blocks without just mining empty blocks; (4) a Gas price
allows the users to express (and pay for) priority; (5) a Gas limit
avoids network abuse or misuses, intentional or unintentional
(e.g., DoS attacks, infinite loops) [5].

The users, sometimes via an intermediary, send a transaction
to an Ethereum node. From there, the transaction is broadcast
to other nodes and distributed across the network. When the
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transaction reaches a miner's node, the miner can add it to the
pool of pending transactions (also called “memory pool”) and
then include it in a new block which may be appended to the
last one in the chain [6].

The computational cost of a transaction in Gas units depends
only on the computations occurred to process such transaction.
The Ethereum documentation provides the different costs of each
elementary operation. The users are free to specify any Gas price
that they wish, however the miners are free to ignore transac-
tions as they choose. Some miners, especially the miners with
high computational resources, may seek to make the highest
profit and change the source code to evaluate the transactions
based on the Gas parameters, i.e. the Gas limit and the Gas
price [7]. For instance, “Go Ethereum”, a software installed in
some nodes of the Ethereum network, might be used to set the
parameter expressed by the variables “~txpool.pricelimit” and
“~txpool.lifetime”. In particular, the “txpool.pricelimit” variable
defines a baseline transaction price under which the node will
simply not accept transactions (not even to forward it to other
nodes) [5]. Consequently, on the one hand, if the value set by
the user is too low, miners will probably ignore such transactions
which risk to be never included in the blockchain. On the other
hand, if the transaction fee is too high, miners will be prone to
include it in the Ethereum blockchain, but the user will allegedly
waste money. To suggest the best trade off for Gas price, the
Gas Oracles assign the Gas price to categories, which are actually
based on four quantiles (50th, 75th, 95th, 99th) determined from
past Gas price observations. Section 2.4 explains how the Gas
Oracles model the Gas price, based on data from past blocks [8].

In this paper, we extend preliminary results [9] obtained for a
single Oracle case, the EthGasStation Oracle, to another case, the
Ethchain Oracle, in a wider time-frame, by analyzing the data of
the Oracles that predict the Gas price, along with the Ethereum
transactions’ and blocks’ data. The Ethereum transactions’ vari-
ables considered in the study are:

e the waiting time calculated as the time elapsing between
the time the transaction was seen by the miner we are
considering in this research and the time the transaction has
been included into the block [10].

e the Gas price, i.e,, the amount of Ether the user is willing to
pay for every unit of Gas, which is measured in “GWei” [3].

Oracles’ data are useful to predict the Gas price a user should
pay to make it convenient for a miner to include the transaction
into a block. To help the users in deciding the price to pay for the
cost of the PoW calculation, Gas Oracles propose the following
four price categories: ‘safeLow’, ‘average’, ‘fast’, and ‘fastest’. These
categories define the Gas price required to have a transaction
included within the next 100, 20, 5, and 2 blocks, respectively.
The paper aims to answer the following research questions:

e RQ#1: Are the Oracles’ predictions reliable as much as de-
clared?

e RQ#2: Do the Gas price categories provided by the Oracles
correspond to the Gas price categories the users actually set?

e RQ#3: How could the Oracles provide the users with more
reliable predictions?

To answer our research questions, we hypothesized that (1) the
predictions made by the Gas Oracles have a margin of error
greater than the margin of error declared by them (2%); (2) the
categorizations of the Gas price made by two Oracles do not
correspond the Gas price the users and/or companies set; (3) it
is possible to reduce the Gas Oracles’ error margin by calculating
the ‘recommended Gas price’ when each block is added instead of
every 100 added blocks as the existing Gas Oracles actually do [8].
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We collected data in three-months time from two Gas Oracles
(Etherchain and EtherGasStation) which predict the Gas price
every time that 100 blocks are added to the Ethereum blockchain.
During the same period, we also collected over 10 million trans-
actions from a transaction pool. We then cross-checked the data
collected by the transaction pool and the Oracles, to understand
whether the Oracles’ estimates fail.

First, the results of the paper show that both Gas Oracles
(Etherchain and EtherGasStation) give the Gas price prediction
with a higher margin of error compared to what they declare (2%).
The margin of error ranges from a minimum of 5% for the ‘fastest’
category to a maximum of 16% for the ‘fast’ category. Second,
the results show that the margin of error could be lowered to
2% for all the categories, by performing the Poisson regression
at smaller intervals of time. Finally, the results suggest that two
of the Gas Oracles categories are not frequently used in practice:
‘fast’ and ‘average’ categories. It is indeed reasonable to expect
that single users or companies aim to save money and thus set
some requirements, which are different in terms of waiting time
and are not provided by the default categories.

The rest of the paper is organized as follows. Section 2 presents
the concepts needed to better understand our research, such as
the transaction pool, the Gas Oracles, and the Gas price categories
investigated in the paper. Section 3 presents the related work
the paper uses as a starting point for a user-oriented model for
the Gas Oracles’ Gas price prediction. Section 4.1 presents the
experimental hypotheses guiding the study. Section 4 describes
the methodology used to test the hypotheses, to collect and
perform the regression model on the data of the study. Section 5
presents the results of the study. Section 6 discusses the results
in the light of the user-oriented model. Finally, Section 7 draws
some conclusions and outlines some ideas for future work.

2. Background

This section provides the readers with a brief introduction
on the blockchain technology and in particular on the Gas price
mechanism sets on the Ethereum blockchain to ensure a balanced
use of resources.

2.1. Blocks

The blockchain is an ordered sequence of blocks containing
the records of valid transactions as approved by a consensus algo-
rithms shared between a set of computational nodes in a peer-to-
peer network. It is a shared ledger where, to keep unchangeable
the block sequence and the temporal order of recorder trans-
actions, each block includes a cryptographic hash depending on
the information recorded on the previous block. Each block is
also identified by progressive number named “height” [4]. Once
a block is created and added to the blockchain, the transactions
in the block cannot be changed or deleted. This is to ensure the
integrity of the transactions and to prevent the double-spending
problem [11].

Block time is the time the network takes to generate one extra
block In Ethereum the “median” block-time is about 13 s and
depends on how long the miners take to find the correct hash
to validate a block by brute force computation. In the blockchain
there are two units of time measurements: (i) seconds, and (ii)
blocks’ number or height [12].
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2.2. Transaction pool

The software running in each miner node collects the transac-
tion into a virtual storage named “transaction pool”. The miners
distinguish processable transactions, which can be included into
a block, from future transactions, which can wait to be included.
Therefore the transactions move between these two states over
time as they are received and processed [13]. When a miner
solves the PoW challenge to mine a block, the miner informs
the adjacent nodes about that. As the adjacent nodes receive this
piece of information about the newfound block, they will validate
the received block and propagate the block data to peer nodes.
In the case of mining nodes, they will remove all the transactions
contained in the newfound block from their own transaction pool,
checking that for each transaction the current balance is greater
or equal to the money spent [14]. The miners have full control
over their transaction pool and may adopt different policies to
manage it. For instance, a miner could set up a minimum fee
threshold, thus transactions with a Gas price lower than the
threshold are immediately discarded from the transaction pool
and only the new transactions with a price higher than the
threshold are allowed to enter the transaction pool [15].

2.3. Gas Oracle

In the blockchain terminology, Oracle may have different
meanings. An Oracle can be a program which provides the smart
contracts with reliable data collected from outside the blockchain.
Oracles are also software systems which analyze some data and
make some prediction on that basis [10].

In this paper, the term Gas Oracle assumes a specific meaning
related to the activity of forecasting Gas prices. The Ethereum
wiki® reports the following definition: “a Gas Oracle is a helper
function of the Geth client that tries to find an appropriate default
Gas price when sending transactions and it can be parametrized”.
Thus an Gas Oracle analyzes blockchain data to predict the best
Gas price to pay for a transaction to be approved within a certain
number of blocks. The Oracle’s forecasts may be important for
companies using the Ethereum blockchain because the time and
the costs of performing transactions can affect their economical
resources and clients’ satisfaction [16]. It is thus crucial for them
that Oracles forecasts are as reliable as possible. However, based
on the analysis performed in this paper, it is not the case.

We indeed analyzed the predictions of two Gas Oracles: Ether-
GasStation and Etherchain. Both Gas Oracles claim that all pre-
dicted values are estimations based on the current network con-
ditions and should be used as a suggestion. However, the Gas
Oracles only compute and update their predictions every 100
blocks (approximately 1500 s or 25 min) [8]. Therefore, their
estimations might not mirror the current status of the network.

2.4. Gas price categories

Gas Oracles, EtherGasStation and Etherchain, estimate the
time interval required for a transaction to be included into the
next blocks based on the Gas price attached to the transaction [8].
To estimate the waiting-time a transaction needs to be included
into a block, many variables need to be considered, such as the
number of transactions submitted by the users in a given period
of time, the number of miners and their policy [17].

Gas Oracles have defined four categories based on the quan-
tiles of the Gas price offered to the miners by the users which
are accessible from the transactions data. The four percentile are
the 50th, the 75th, the 95th and the 99th percentile [8]. The 50th

2 https://eth.wikif
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Table 1
Gas price categories with the relative waiting time.

Gas price category Maximum waiting time to include
the transaction into a block

‘fastest’ At most in 30 s
fast’ At most in 2 min
‘average’ At most in 5 min
‘safeLow’ At most in 30 min

percentile corresponds to the ‘safelow’ category, the 75th per-
centile to the ‘average’ category, the 95th percentile corresponds
to the ‘fast’ category and finally the 99th percentile to the ‘fastest’
category.

To make information more accessible to users, the Gas Oracles
states that each category corresponds to a waiting time. In reality,
it would be more effective for the users to know that the Gas
price is related to the number of blocks to wait and not to the
time because the median value to mine a block is 13 s but there
can be strong oscillations ranging from a few seconds to over half
an hour to mine a single block (see Section 5). Table 1 presents
the categories defined by the Gas Oracles (Etherchain® and Ether-
scan?) and their waiting-times. The code which estimates the Gas
price to pay to the Gas Oracles is publicly available under doi:
10.5281/zenodo.3758103.

3. Related work

The blockchain can be disadvantageous from a user’s perspec-
tive because of different kind of wasted resources. The paper
focuses on the waste of Gas price or waste of time the users
might experience to add a transaction to a block. Previous work
highlighted other kinds of waste from a user-oriented perspective
[18]. Chen et al. [19] identified seven Gas costly patterns, i.e.,
programming solutions that are not optimized by the Solidity
compiler. A Gas costly pattern required more computational re-
sources, thus reducing the number of transactions that can be
included into a block. Therefore the users need to wait or pay
more to have their transaction executed. The authors analyzed
4240 smart contracts on three Gas costly patterns. They found
that over 80% of the contracts suffer from this kind of costly
patterns. The authors’ work is therefore interesting because it
highlights an existing waste of Gas units in the blockchain, which
disadvantages the users’ interests.

In a previous study, I. Weber et al. [20] measured the time
for transactions to be committed in both Ethereum and Bitcoin
blockchain. The authors performed a detailed analysis of issues
that could negatively impact commit times in permissionless
PoW blockchains such as Ethereum. Their study is very interest-
ing for the purpose of this paper because it identifies the Gas price
as a cause of delay in the commitment of transactions.

Sin Kuang Lo et al. [21] investigated the reliability of seven
Oracles on different platforms such as Augur, Ms Bletchley, Town-
Crier and Corda. They discovered that the common causes of
failure are the data sources used by the Oracle to make various
kinds of predictions such as the weather forecast. These failures
can have a serious impact on the economy because many smart
contracts perform operations on the basis of these predictions.
To meet the users needs, they provided a framework that can be
used to assess the Oracles’ reliability. The authors’ work supports
the interesting idea that, providing this framework together with
the Gas Oracle, it is possible to help the users’ decision making.

3 https:/fetherchain.org/tools/gasPriceOracle
4 https:[/docs.ethgasstation.info/gas- price
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Differently from their work, in this paper, we study the behav-
ior of the Oracles that predict the Gas price in the Ethereum
blockchain.

Ducasse et al. [22] pointed out that even more experienced
users, as software developers of smart contracts, need to be
helped to write smart contracts that are more effective by us-
ing fewer resources. This is the main reason why the authors
proposed an open-source platform for blockchain analysis called
SmartAnvil. Although SmartAnvil is independent from a specific
blockchain platform and thus may be used to investigate any
blockchain, their work focused on Ethereum blockchain and con-
tracts written in Solidity. The authors provided a tool that can
facilitate the identification of resources waste to solve a prob-
lem within the smart contracts. The authors’ work is therefore
interesting because it supports the idea that, providing this tool
together with a Gas Oracle, it is possible to help users and
companies to waste less time and money.

In a previous study [23], Singh and Hafid proposed a more
fine-grained classification model when compared to the existing
Gas Oracles’ classification. The model split the inclusion time of
transactions into eight classes: respectively within 15 s, 30 s,
1 min, 2 min, 5 min, 10 min, 15 min, and 30 min or longer.
Interestingly, the authors proposed a classification that consid-
ers different possibilities for the users to set a Gas price that
might meet their needs, while existing classification do not pay
attention to the users’ point of view. In this paper, we limit our
research to the existing classification of the Gas Oracles, but we
accept the idea that there may be some categories that better
represent the users’ needs and interests.

Generally, the users or the companies may have the following
interests and needs: (1) they may sometimes be willing to pay
a lot to have the transaction executed as soon as possible, (2)
they may sometimes be willing to save money and wait a lot, as
long as their transactions are eventually added to the blockchain.
For instance, the users or companies may be willing to pay a lot
during an initial coin offer (ICO), when only a limited supply of
tokens is available and thus “the first to arrive is the first to be
served”. On the contrary, when the time is not constrained, they
may wait to save money. For instance, when the smart contracts
need to refund users having an assurance in case of delay of
arrival, the users might want to wait a few hours before receiving
the reimbursement [24].

Different academic works compared the performance of dif-
ferent machine learning regression models, such as Decision Tree,
Logistic Regression and Random Forest, on the task of predicting
the confirmation time for a transaction in both Ethereum [23,25]
and BitCoin blockchain [26,27]. Interestingly, these works sug-
gested that there are different, but not mutually exclusive, ma-
chine learning regression models that can reach high accuracy in
predicting the transactions waiting time. Moreover, these studies
confirm that the most important feature to predict the transac-
tion waiting times is the Gas price attached to the transactions,
which will also be used to train our model.

Another study [17] investigated other factors that might in-
fluence the Ethereum transaction fees and the possible resulting
decision-making behavior of Ethereum blockchain users, min-
ers included. They observed that the past history of the Oracle
Gas price prediction is useful to predict the number of waiting
transactions, even though the converse is not true. The results
of the Pearson correlation test showed that they are instead
inversely correlated: when the Oracle price increases, the number
of waiting transactions in the Ethereum network decreases. It
stands to reason that when the Oracle suggests a high price
to pay, the users that can wait, wait to submit a transaction,
thus decreasing the overall number of pending transactions in
their memory pools. This result pushes us to target our research

Future Generation Computer Systems xxx (Xxxx) xxx

towards a model oriented on the users and not on the mere data
Or miners.

In a previous study [9], a quantitative study was conducted to
determine whether the Gas price prediction of the Oracle Ether-
GasStation is reliable. The study aimed to evaluate the correctness
of the Gas price prediction the EtherGasStation made to have the
transaction recorded in the blockchain. The study investigated
the EtherGasStation's predictions and found that it brings about a
higher margin of error than originally declared. EtherGasStation
indeed claims to have a 2% margin of error, while the analysis of
the predictions showed that the margin is at least twice as much.
For instance, the fastest’ category showed a 4% margin of error,
while the ‘fast’ category showed a 28% margin of error.

Moreover, the study argued that such a higher margin of error
is due to the fact that EtherGasStation does not take into account
changes in the Ethereum Network occurring in real-time. The
study was anyway limited in various ways, as it considered just
one Gas price Oracle in a short time framework, so that the results
cannot be generalized and used to understand wider and general
trends in Gas Oracles’ prediction.

This study therefore provides a more comprehensive analysis
of Gas price predictions, by performing: (a) a quantitative analysis
of the predictions of another Gas Oracle, Etherchain, to check
whether they are reliable or whether also in this case they fail
in suggesting the right Gas price as in the case of the Ether-
GasStation Oracle; (b) a test for the hypothesis that the Gas price’s
margin error is reduced for each category, when reducing the
time interval required for the estimation of the Gas price.

4. Research methodology

The research methodology of the study includes the following
phases: (a) the experimental hypotheses, (b) the Data Collec-
tion, (c) the Data Cleaning, (d) the Data Modeling, and (e) the
Regression Analysis. The following sub-sections describe each
phase.

4.1. Experimental hypotheses

The study was designed to address the following Research
Questions:

e RQ#1: Are the Oracles’ predictions reliable as much as de-
clared?

e RQ#2: Do the Gas price categories provided by the Oracles
correspond to the Gas price categories the users set?

e RQ#3: How could the Oracles provide the users with more
reliable predictions?

To answer the questions, we advanced the following hypothe-
ses:

e H1: The Gas Oracles’ predictions are not reliable. The Gas
Oracles cannot indeed take into account all the changes in
the Ethereum Network in real-time, especially because they
compute the prediction every 30 min on average.

e H2: The Gas price categories proposed by the Oracles do not
correspond to the categories set by the users andfor com-
panies. Single users or companies may indeed set different
requirements in terms of waiting time that is not provided
by the default categories.

e H3: A reduction of the margin of error in the Gas price
prediction can be achieved by calculating the ‘recommended
Gas price’ at smaller interval of time, thus considering the
current changes of the network in real time.
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Table 2
RESTful Services list.

Resource name

REST API service URI

EtherGasStation https://ethgasstation.info/json/ethgasAPlLjson
Etherchain https://www.etherchain.org/api/gasPriceOracle
Block https://api.blockcypher.com/v1/eth/main/blocks/0
Pending transactions https://api.blockcypher.com/v1/eth/main/txs

4.2. Data collection

In this research, we covered a 3-month analysis period and
we made code publicly available to replicate the data collec-
tions of the transactions used in this research. The source code
is available at the following online address https://github.com/
aphd/eset/tree/master/src. The same code can be used to analyze
the transactions’ data in other time frames. We collected data by
making requests to various REST API services at different times.
The flow to collect data is:

e a request is sent to the server every 15 s;

o if the request is successful, the server responds to the client
request sending a payload in JSON format;

o if the request is not successful, the client does not record
any data for that time frame. During the data retrieving
operation, an average of 1 request out of 20,160 requests
was unsuccessful.

Table 2 shows the URI of the REST API services used to fetch
the Gas Oracle data, the blocks data, and the pending transactions
data, i.e., the latest transactions that have not been included in
any block. We choose to collect data from these Gas Oracles
because they are very popular among the Ethereum community.
Data were stored as files in J[SON format in the file system of the
server where the analyses were performed.

4.3. Data cleaning

A control over the data quality was performed. The data re-
trieved were accepted when in compliance to the API docu-
mentation, or otherwise rejected. The 0.8% of data was rejected,
distributed as follows: 770K out of 11M transactions (0.75%),
182 out of 345K blocks (0.05%) and 112 out of 345K Oracle’s
predictions of the Gas price (0.03%). Example of data, which were
not in compliance to the API documentation, are:

e string value where a numeric value was instead expected;
e numeric value where a string value was instead expected;
e numeric value which is not in the expected range;

e date value which is not in the expected time frame;

e missing value;

e missing key/value pairs;

e numeric value with different units of measurement.

The data falling in one of the categories listed above were re-
jected, except for the latest category where the values were
recalculated conforming with the expected measurement units.
Just to give an example, a numeric value which is not in the
expected range can be a negative or undefined block’s height
value, a date value in the future, or a negative value of the
waiting time for transactions to be included into a block. Blocks
with negative/undefined height were caused by a chain split. This
might happen when the node that we were monitoring received
from adjacent nodes a chain with more PoW (the longest chain).
In this case, the last block(s) might become orphans/uncles with
an invalid height.
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According to Kanda and Shudo [28], a negative value of the
waiting time variable may suggest a transaction propagation de-
lay among different nodes. This means that different nodes in
the blockchain could see the transaction at different instants
of times. The transactions data-set contains indeed transactions
with a negative waiting time, around the 1.16% of all transactions.
This might have at least two reasons: (1) every node can have a
different clock time, and (2) there is a propagation delay defined
as the difference between the time when a node announced the
discovery of a new block or a transaction and the time when this
announcement was received by other nodes [28]. In the study,
the transactions data were collected through an API that gives
the transaction pool data of a single node. The API is available at
the following online address https://www.blockcypher.com/dev/.
As the Ethereum network is distributed, not all miners receive
the same transactions at the same time, therefore some nodes
might store more transactions than others at some time [29].
Furthermore, every node can be a miner with different hardware
and software features and miners might have different RAM
capacity to store pending transactions. As a result, each miner has
its own representation of the pending transactions. The existence
of such delay - which is not negligible - justifies the negative
times, because blocks can be discovered while communication
and validation is still in process. Decker and Wattenhofer [30],
for the BitCoin blockchain, observed that the median time until a
node receives a block was 6.5 s, the mean was 12.6 s and the 95th
percentile of the distribution was around 40 s. Moreover, they
showed that an exponential distribution provides a reasonable fit
to the propagation delay distribution. It is reasonable to think that
there is a similar effect in the Ethereum blockchain.

4.4. Modeling data

In this subsection, we define the condition to assess the cor-
rectness of the Oracles’ Gas price prediction. Both EtherGasStation
and Etherchain make the prediction based on the history of the
mined blocks data, such as the lowest Gas price accepted by the
miner to add the transaction to the block and the Gas offered by
the users.

Suppose that during the time interval when the ith block, B;,
is mined:

e op (Oracle Price) is the price predicted by the Gas Oracle to
have the transaction included at most within j blocks;

e B = {Bi11,...,Bis14j} is the set of j blocks mined in the
blockchain following the (i 4+ 1) — th block;

e T = {txq,txz,...,1x,;} is the set of pending transactions,
ie, that have not been included in any blocks, with Gas
price respectively of tpq, tpa, ..., tp,, that there were in a
transaction pool when the ith block was mined.

In an ideal scenario where the Gas Oracles never fail, the trans-
actors that set the Gas price equal or greater to the one suggested
by the Gas oracle (op) should have the transaction confirmed in
the blockchain after n+1 blocks where n depends on the category
proposed by the Gas Oracle and chosen by the user. Fig. 1 shows
the ideal scenario where the users that set the Gas price following
the Gas Oracle's suggestions have their transactions confirmed in
the blockchain in the following n blocks.

The condition is expressed by the following equation:

«» Bit14} (1)

The Eq. (1) is used to verify the prediction of the Oracles’ Gas
price: Etherchain and EtherGasStation.

The existing Gas Oracles make the prediction every 100 blocks,
performing a Poisson regression. Based on the Gas price distri-
bution of the transactions mined in the last 200 blocks, the Gas

Vtx; € T Atp; = op : tx; € {Biyq, - .
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Fig. 1. The transactions having a Gas price higher or equal to the one proposed by the Gas Oracle (op) are displayed in bold. B; is the block that is mined in the

interval of time in which the Gas oracle makes the prediction (op).

Oracles estimate the Gas price to pay in relation to the number of
blocks the users should wait to have their transaction added. The
data are collected by querying the REST API Services mentioned
in Table 2. To test the hypothesis that the prediction can be
improved, we performed the same algorithm used by the Gas
Oracles [8] at shorter time intervals (every 4 block for the ‘fastest’)
instead of every 100 blocks as the Gas Oracles actually do. The
results are collected in a table called realTimeOracle 2.

In this phase the data were collected and stored in a rela-
tional database, where each table represents the following items:
blocks, transactions, Oracles, and OtherPrediction. Fig. 2 shows
the data contained in the database, the relationships between
table fields and their types (e.g, string, integer, boolean, enu-
merate). The table named transaction stores all the transaction
information such as the received time detected in the transaction
pool that was monitored for this research. It is noteworthy that
the waiting time for a transaction is not stored in the database
but calculated by the difference between its inclusion time and
received time by considering just 1 confirmation block. The table
named block stores all the block information such as the current
block number in the blockchain (block_height), the number of
transactions stored in a block (n_tx) and the lowest Gas price
among all the transactions added in that block (lowest_gas_price).
The tables Etherchain and EtherGasStation store the ‘recommended
Gas price’ to have the transaction included in the block for each
category. Finally, table realTimeOracle stores all ‘recommended Gas
price’ to have the transaction included in the block for the ‘fastest’
and ‘safeLow’ category. The other two categories considered by
the Gas Oracles have been excluded since this work, as well as
previous works [9], shows how the ‘fast’ and ‘average’ categories
do not reflect the requirements of companies and users.

4.4.1. Poisson regression model

The Oracles adopt a Poisson regression model, as per source
code available via Zenodo [8]. As anticipated in Section 3, differ-
ent models, such as the machine learning regression models, have
been applied to improve the Gas Oracles prediction. Although
some of these models can give better results compared with the
Poisson Regression model, they have the drawback to be very
expensive in terms of computing resources. The time required to
make the prediction (around 20 min) is too long, as it is greater
than the time taken by the blockchain network to mine a block.
This is the main reason why we investigated how to improve the
Poisson Regression model already used by the Gas Oracles.

In probability theory and statistics, the Poisson distribution is
a discrete probability distribution of a given number of events
occurring in a fixed interval of time or space [31]. We use the
Poisson distribution to estimate the number of transactions added
to the blockchain per block period, which median is 13 s. Let X
represents the set of x transactions added to the blockchain in
a one block period. For the sake of simplicity, let assume that
all blockchain transactions are offering the same Gas price to
the miners. Eq. (2) shows the Probability Mass Function (PMF) of
having x transactions added to the blockchain in one block period
time.

Wxe

o XE [0, o0) (2)

PX =x)=

In Eq. (2), A is the mean number of transactions added to the
blockchain in one block period of time and e is Euler’s number.

To know the probability of having x transactions added in the
nth block, in the formula (2) the A value is to be multiplied for
the number of blocks. Eq. (3) shows the probability of having x
transaction added to the nth block.

% A% % e~ (*4)

PX =x)= ,x € [0, 00) (3)

x!

The Egs. (2), (3) are valid when the events are observed under
certain conditions.

Conditions (C) for Poisson Distribution are:

e C1: An event can occur any number of times during a time
period. In our case, the event is the transaction added to the
blockchain and the time period is the block period.

e C2: Events occur independently from each others. In our
case, if a transaction is included into a block, it should not
affect the probability of another transaction to be included
in the same block, i.e. in the same interval of time.

e (C3: The average rate of events occurrences, i.e. the number
of transactions added to the blockchain per block, should be
constant, i.e. the rate should not change based on the block
number added to the blockchain.

Of course, the Poisson distribution conditions are highly theo-
retical and do not fit the blockchain real situations (RS) for many
reasons:

e RS1: As to the condition C1, our results 4 show that the
number of transactions added to a block could be any in-
teger number greater or equal to zero. Thus, the condition
C1 is satisfied.



Weo -l U bWk =

FUTURE: 6255

G.A. Pierro, H. Rocha, 5. Ducasse et al.

| 1
| |
| |

block_height (int)
hash (text)
gas_price (int)
gas_used (int)
gas_limit (int)
received (time)
confirmed (time)

size (int)

1 1
transaction |
| 1

|
1
A

block

received (time)

fees (int)

size (int)

n_tx (int)
lowest_gas_price (int)

Future Generation Computer Systems xxx (Xxxx) xxx

ethrGasStation

realTimeOracle

timestamp (time)
| | fastest (int)

|| safeLow (int)
\ kg

timestamp (time)

| | etherChain '

fastest (int)
fast (int)
safeLow (int)

\ | average (int)
" block_height (int)

". fastest (int)
|| fast (int)

|| safeLow (int)
average (int)
block_height {int

Fig. 2. Database schema.
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Fig. 3. Violin plot of the waiting time in seconds before a transaction is included into a block. (a) All transactions. (b) Transactions having a Gas price lower than

10 GWei. (c) Transactions having a Gas price higher than or equal to 10 GWei.

e RS2: As to the condition C2, a transaction included into a
block does affect the probability to have another transaction
added to the same block, simply because the number of
transactions is finite. However, in most cases, the num-
ber of transactions is so high that they can be considered
independent with good approximation.

e RS3: As to the condition C3, there are cases where it may
not be satisfied. For example, if the policy of the miners
suddenly changes and they decide to mine empty blocks, the
average rate of occurrence will drastically change. Although
the data in Table 4 confirm that this can happen from
time to time, this is not the normal situation, because it
goes against the interests of the miners themselves. The
network would indeed lose its usefulness and the value of
the Ethereum cryptocurrency (Ether) would decrease when
compared to other currencies (USD, EUR, etc.), and as a
consequence, also the reward of the miners, who are paid
in Ether. Moreover, a changing number of transactions sub-
mitted by the users to the blockchain network could change
the average transactions number per block, based on the Gas

offered to the miners. This can happen, for instance, during
an ICO.

The points discussed above might explain why Gas Oracles’
margin error is larger than expected. We suppose that, by recal-
culating the lambda factor in Eq. (3) at lower time block intervals
compared to the Gas Oracles which recalculate the lambda factor
every 100 blocks, the margin of error in the probability computa-
tion of having a transaction added to the blockchain in a certain

number of blocks, can be lowered. This does not mean that the
Poisson model, in which the lambda is recalculated every time a
block is added to the blockchain, is the best way to model the
blockchain. Of course, other models might be tested taking into
account the time limit of 15 s, but up to now our model gives

better results compared to the current Gas Oracles’ model, as will
be shown in Section 5.6.

4.4.2. Regression analysis

The purpose of this phase is to estimate the Gas price by
running a Poisson regression analysis on the data stored in the
block table as Gas Oracles currently do. The results of the Poisson
Regression fill the table named “realTimeOracle”. Unlike Gas Or-
acles, we perform the Poisson regression more frequently based

on the four category fastest’, ‘fast’, ‘average’ and ‘safeLow’. This
choice is justified by:

e the categories are very different from each other based
on waiting time requirements, expressed by different con-
straints. For example, the category ‘fastest’ has the constraint
of having to guarantee 98% of transactions to be included
into a maximum of two blocks. This means that the error on
the lambda determination must be very small compared to
the block interval. The category ‘safeLow’ instead requires to
have the transactions included into a larger time frame (120
blocks) and so the error on the A can be greater compared
to the category ‘fastest’.

e the time interval of 100 blocks to recalculate the A could be
very long compared to changes in the network. According to
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Table 3
Statistical description of transactions data.
mean std mode min 25% 50% 75% max
waiting_time (s) 44.02 82.65 25 0 25 29 38 1499
gas_price (GWei) 32.19 44329 50 0 10 20 50 313734
gas_used 70124.2 320908 21K 0 21K 21965 49993 8e-++-06
gas_limit 303967 947926 21K 21K 42K 70000 150000 8e-++-06
size (Byte) 191.11 499.98 - 83 112 114 174 31791
Table 4
Statistical description of the Ethereum blocks data (from the 6871349th block to the 7694005th block).
mean std min 25% 50% 75% max
fees (GWei) 0.064 1.3 ] 0.0245 0.046 0.07 3811
size (Bytes) 18843.2 10580.7 524 9877 19045.5 277848 101254
n_tx 97.859 63.6377 ] 45 92 144 381
lowest_gas_price (GWei) 446269 27.61 0 1 3 4 6215.03
block_time (s) 13.9453 12.9755 ] 5 10 19 153

our observed data 100 blocks correspond to about 30 min
with a sigma equal to 20 min. We suppose that during this
interval of time the network condition can change and this
change can affect the value of A.

5. Results

This section presents the data-sets (blocks data-set, transac-
tions data-set, Oracles’ predictions data-set, user-oriented predic-
tions data-set), as modeled in Section 4.4. The data-sets are stored
in an SQLite database with five tables, one table for each data-set.
The total size of the database is of 1.1 Giga-Byte and is publicly
available via Zenodo [32]. The first table, named “transaction”,
contains more than 11 millions rows. The second table, named
“block”, contains around 345 thousand blocks. The blocks data-
set consists of 103596 records starting from height 7590409
to height 7694005. At the date of the research the last block
is 7764216, meaning that we analyzed the 103596/7764216 *
100 = 1% of the Ethereum blockchain. The two tables, named
respectively “EtherGasStation” and “Etherchain”, contains 345
thousand rows of Oracles’ predictions for the Gas price of each
category: (‘fast’, ‘fastest’, ‘average’, and ‘safeLow’). The Oracles’
predictions data-set covers a period of three months starting from
15 March 2020 with 15 s temporal resolution. Finally the table
“realTimeOracle” contains the data of the user-oriented model
for Oracles’ Gas price predictions. The data-sets refer to a three-
months period of time, ranging from March 1, 2020 to May 28,
2020.

The following sections present the results of the study as some
aggregated statistical metrics such as percentile, mean, standard
deviation, mode of the numerical data series for transactions,
blocks, Gas Oracles’ predictions and User-oriented predictions.
The Sections 5.1 also show the distribution of different variables,
such as Gas_prices and time a transaction needs to wait before
being recorded in the blockchain. The error margins are summa-
rized in Table 8, comparing the results of the user-oriented model
to the existing data-centered model of the Gas Oracles.

5.1. Transactions data analysis

Table 3 shows the statistics of the transactions data-set. The
mean, the standard deviation (SD), minimum (min), the 25th,
50th, and 75th percentiles and maximum (max) are calculated
for each variable shown in the table. The main variable is the
“gas_price” value for each transaction included in a specific block.

Fig. 3(a) shows the violin plot of the waiting time in seconds
before a transaction is included into a block. The plot shows
the presence of a peak at the value of 20 s with a tail that
tends towards infinity. Figs. 3(b), 3(c) show the violin plots of

the waiting time of the transactions for different Gas prices.
Interestingly, the violin plots show that the Gas price attached
to the transaction influences the interval of time the transaction
needs to wait before being included into a block. The violin plots
also present the same peek at the value of 20 s regardless of the
Gas price.

5.2. Block data analysis

The blocks data-set gives information about each block, based
on its height, i.e,, the index number that denotes its position in
the blockchain. The data included in the blocks data-set are:

e the total number of fees in GWei, collected by miners in each
block (fees);

e the size of the block (including the header and all the
transactions) in Bytes (size);

e the number of transactions in each block (n_tx);

e the lowest Gas price attached to a transaction included in
each block (lowest_gas_price).

Table 4 shows the statistics of the blocks data-set. The mean,
the standard deviation (SD), minimum (min), the 25th, 50th,
and 75th percentiles and maximum (max) are reported for each
variable.

Figs. 4(a), 4(b), 4(c), 4(d) show the probability density of each
block variable at different values.

5.3. Oracles data analysis

We analyzed the predictions data of the Oracles, Etherchain
and EtherGasStation. The Gas Oracles can diversely predict the
Gas price values to attach to transactions to have the transaction
included at the most within n blocks.

Fig. 5(a) shows the violin plots of the EtherGasStation Oracle’s
Gas price predictions for each Gas price category: (1) ‘fastest’,
(2) ‘fast’, (3) ‘average’, and (4) ‘safeLow’. The ‘recommended Gas
price’ range is highly variable and the variability depends on each
category. For example, for category ‘fast’, the ‘recommended Gas
price’ ranges from a maximum of 61 GWei to a minimum of 1
GWei and the most frequent value is 20 GWei. On the other side,
the category ‘safeLow’ has a ‘recommended Gas price’ which ranges
from a maximum of 15 GWei to a minimum of 1 GWei and the
most frequent value is 1 GWei.

Fig. 5(b) shows the violin plots of the Etherchain Oracle’s
Gas price predictions for each Gas price category: (1) ‘fastest’, (2)
‘fast’, (3) standard, (4) ‘safeLow’. Likewise the EtherGasStation, the
‘recommended Gas price’ range of the Etherchain is highly variable
and the variability depends on each category. For instance, for
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Fig. 4. (a) Block size (including header and all transactions) in bytes. (b) Violin plot of the number of transactions included in each block. (c) Lowest Gas price
attached to each transaction. (d) Violin Plot of the total fees (in Wei) collected by the miners in each block.

Table 5
Statistical description of Oracles categories.
mean  std mode min 25% 50% 75% max
‘fastest’ (GWei) 1533 660 20 3 10 20 20 61
fast’ (GWei) 458 242 3 3 3 36 5 60
‘average’ (GWei) 283 080 3 1 3 3 3 145
‘safelow’ (GWei) 1.34 0.68 1 1 1 1 1.1 145

the category ‘fast’, the ‘recommended Gas price’ ranges from a
maximum of 61 GWei to a minimum of 1 GWei and the most
frequent value is 20 GWei, while the category 'safeLow’ has a
‘recommended Gas price’ which ranges from a maximum of 15
GWei to a minimum of 1 GWei and the most frequent value is
1 GWei.

Table 5 reports the mean, the standard deviation (SD), the
mode, the minimum (min), the first quartile (25%), the median
(50%), the third quartile (75%) and maximum (max) of the Gas
price recommendation for the transactions for each Gas price
category.

Fig. 6(a) shows the violin plot of the Gas price prediction
according to the Etherchain Oracle and EtherGasStation Oracle.
The values refer to the Gas price to pay to have the transactions
confirmed within 1-2 blocks.

Fig. 6(b) represents the percentage of transactions having a
Gas price equal to that suggested by the Gas oracle for each Gas
price category. Fig. 6(b) also shows that the transactions having a
Gas price that exactly corresponds to the minimum Gas price are
7.6% for the category ‘safeLow’ and 8.4% for the category ‘fastest’.
The analysis revealed that 83% of transactions fall in the range
provided by the Oracles’ fee categories, because of their Gas price
greater than the Gas price advertised by the Oracles. However,
the study finally focused on the transactions having a Gas price
exactly equal to the minimum price advertised by Oracle for each
category, because the study aims to give the users an answer on
the cheapest fee to attach to the transactions, in order to have the
transactions confirmed in a certain number of blocks.

5.4. Evaluation of Oracles’ prediction

The Gas Oracles claim that at least 98% of transactions will
be included at most into the next n blocks, if the Gas price of
the transactions is equal to or greater than the Gas price they
recommend. The Gas Oracles’ predictions are four, one for each
category. The waiting times are equal to 30 s, 2 min, 5 min and
30 min respectively for the categories ‘fastest’, ‘fast’, ‘average’, and
‘safeLow’.

10

To verify the Gas Oracles’ predictions, we considered all the
transactions which satisfied the requirements suggested by the
Gas Oracles, i.e. transactions having a Gas price equal or greater to
a certain value. For instance, for the category ‘fast’, we considered
all the transactions having a Gas price attached equal or greater
to the Gas price suggested by the Gas Oracle for that category.

Then we computed the percentage of transactions included in
the blocks mined during the five minutes interval of time (the
waiting time advertised by the Gas Oracle).

We performed the analysis for all the categories and the Gas
Oracles considered in the paper. Table 6 summarized the results
of the evaluation of the Gas Oracles’ prediction, comparing in-
cluded and confirmed blocks. The results suggest that the Gas
Oracles’ predictions might be wrong, as all the percentages are
lower than 98%, i.e. the percentage declared by the Oracles.

However it might be claimed that the Gas Oracles are actually
right, as the discrepancy is just due to statistical fluctuations oc-
curring in the 100 blocks latency time the Oracles take to recalcu-
late the lambda value. We therefore tested both the hypotheses:
the hypothesis that the Oracles successfully predict the Gas price
to pay to the miners (null hypothesis) and the hypothesis that
their predictions are wrong (alternative hypothesis).

Egs. (4), (5) respectively represent the null and the alternative
hypotheses.

(Ho) V¥ cat € {'fastest’, ‘fast’, ‘average', ‘safelow’} : p >= 98% (4)

(Hg) ¥V cat € {‘fastest’, ‘fast’, ‘average’, ‘safeLlow’} : p < 98% (5)

Listing 1 represents the R code used to test the null hypothesis
that the Oracles’ prediction are right within a frame of 100 blocks
time.

The variable x represents a two-dimensional table with 2
columns, which respectively provide the number of successful
events (transactions included in the first n blocks) and failures
(transactions included after the nth block). The variable p rep-
resents the expected proportion of successful events (P.), based
on the Gas Oracles’ predictions. The variable “alternative” speci-
fies the proportion of successful events based on the alternative
hypothesis.

Table 8 represents the results of the null hypothesis Hq (Eq. (4))
that the observed proportion (P,) of transactions included in the
blocks are equal or greater than the expected proportion (P, =
0.98). The table is divided into four sections based on latency
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Fig. 5. (a) Violin plot of the EtherGasStation Oracle's Gas price categories. (b) Violin plot of the Etherchain Oracle's Gas price categories.
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Fig. 6. (a) Violin plot of the Oracles’ Gas price prediction for the ‘fastest’ category (b) Gas Oracles Categories corresponding to the Gas price set by the users or

exchanges.
Table 6
Gas Oracles’ rate of success in predicting block inclusion and block confirmation.
Gas Oracle Category Waiting time Included blocks Confirmed blocks
fastest 30s 0.95 0.92
. fast 2 min 0.86 0.84
Ether Gas Station average 5 min 0.92 0.91
safelow 30 min 09 09
fastest 30s 091 0.89
. fast 2 min 0.84 0.82
Ether Chain average 5 min 0.91 0.9
safelow 30 min 09 09

11
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Test of Equal or Given Proportions

prop.test(x =
alternative =

transactions, p
0 IESS ' ‘}

= 0.98, correct = FALSE,

(2nd column). In particular, the first section represents the results
based on 100 blocks latency, as claimed by the Oracles.

5.5. Evaluation of the Poisson model

The Oracles assume that the observed data are distributed
in accordance to the Poisson Model. Before checking whether
the observed data actually follow the Poisson distribution, we
checked the null hypothesis (Hp) that the observed data are
homogeneously distributed over time among all blocks. In other
words, we tested the hypothesis that the observed data are dis-
tributed in accordance with the Equiprobable Model, which pre-
dicts that the transactions have the same probability of ending in
any of the next n blocks. Eq. (6) expresses the expected probabil-
ity to have the transaction included in any block as predicted by
the Equiprobable Model:

(6)

where p; is the probability to have a transaction added to the ith
block and it goes from 1 to 200. Table 7 (1st section) presents
the results of the comparison between the expected frequency
and the observed frequency based on the Equiprobable Model.
Therefore, we tested the alternative hypothesis that the ob-
served data follow a Poisson distribution with parameter A > 0.
Eq. (7) expresses the expected probability to have the transaction
included into a block i based on the Poisson Model.
i% AX s eI
x!

Ho : p1 =p2 =+ = paoo = 0.005

Hy : Vi€ [0,200),P(X =x) = ,x € [0, 00) (7)

Listing 2 shows the R code used to calculate the expected fre-
quency of transactions per block based on the Poisson Model.

Listing 2: R code to compute the expected counts of transactions

blocks = 1:200 #list of blocks
total = sum(observed)
expected =
total % ((lambda“blocks )+exp(—lambda)) |/
factorial (blocks)

Table 7 (2nd section) presents the results of the comparison
between the expected frequency and the observed frequency
based on the Poisson Model. The results are divided into four
categories, as per Oracles’ definition.

5.6. Improving the Oracle prediction

The Gas Oracles assume that the transactions’ distributions
have different lambda values of the PMF (Eq. (2)), based on
the Gas price. Fig. 7 shows that the tail length of transactions’
events is inversely proportional to the Gas price. Based on this
assumption, the Oracles calculate the A (and as a consequence the
Gas price) every time 100 blocks are confirmed on the blockchain
(100 blocks latency). We hypothesized that it is possible to im-
prove the Oracles’ performance by recalculating the A of the
PMF (Eq. (2)) at intervals of time smaller than 100 blocks la-
tency. Reducing the latency, we might indeed better take into
account the possible network changes [33]. The network might
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have changed depending not only on the increasing vs. decreasing
number of miners and/or transactions in the network, but also
and more importantly on the users’ actual decisions on the Gas
price to pay and time to wait. We therefore reduced the latency
for each category, until the null hypothesis Hy (Eq. (4)) is accepted
with a level of significance of @« = 5% (p < 0.05). Table 8
represents the results of the hypothesis Hy (Eq. (4)) that the
observed proportion (P,) of successful events are equal or greater
than the expected proportion (P, = 0.98) at latencies smaller
than 100 blocks.

6. Discussion

The transactions data-set consists of over 10 million rows
which covers a period of time of 3 months. This is a relatively
small fraction compared with the total number of transactions
in the same period, which should be around 77 million (https:
[letherscan.io/chart/tx). Of course, the blockchain networks can
change for many reasons. Previous research [34] shows that the
number of transactions moving through the Ethereum network
can increase or decrease based on specific users-related events,
for instance when a company looks to raise money to create a
new coin, app, service, etc. or when it launches an ICO. Another
scientific research [35] shows that there are several conditions
under which mining infrastructures will be active or under which
the miners will have no incentives to mine a given cryptocurrency
due to the increase of the energy cost or unavailability of solar
energy which can be used to make calculations at no cost. These
or similar remarks are at the core of the idea that the Oracles’
data-centered model might provide wrong predictions, because
it does not take into account the network changes depending
on the users’ actual behavior or users-related events. This is the
main reason why the research presented in this paper proposes a
model shift, from a data-centered model to a user-oriented model
for Oracles’ Gas price predictions.

6.1. From a data-centered perspective

The data-centered model is actually used by the Oracles, to
provide the users with the predictions every 100 blocks confir-
mation. The model rely on data on the transactions history of the
last 200 blocks confirmed on the blockchain. Our analysis showed
that most transactions wait from one to two blocks before being
included (see Table 3). The results of the analysis also showed that
the Gas price influences the probability to have the transactions
included into the next blocks. Fig. 3(a) indeed shows that the
shape of both the violin plots becomes larger at the decreasing
of the Gas price. In particular, a transaction’s Gas price higher
than 10 GWei does not guarantee that the transaction is included
within 1-2 blocks (30 s). The probability is anyway higher when
compared to the transactions having a Gas price lower than 10
GWei.

We investigated the model actually followed by the Oracles
to provide a Gas price prediction, i.e. the Poisson model. We
defined the Poisson Model for the successful events of having
a transaction included into a block. We pointed out that not all
its conditions (defined in Section 4.4.1) are satisfied. We anyway
checked whether the successful transactions were distributed
in accordance with the Poisson Model instead of an equiproba-
ble model. First, we tested the hypothesis that the transactions’

50
51
52
53
54
55
56
57
58
59

60

61
62
63
64
65

67
68
69

71
72
73
74
75
76
77
78
79
80
81
82

83

84
85
86
87
88
89
90
91
92

94
95
96
97

99
100
101
102
103
104
105



Woo =l W b=

—_
W= o

14

15
16

FUTURE: 6255

G.A. Pierro, H. Rocha, 5. Ducasse et al.

Future Generation Computer Systems xxx (Xxxx) xxx

Table 7

Null Hypothesis: the distribution of the transactions included in the blocks follows the Equiprobable vs Poisson Model.
Model Category lambda X-squared df p-value Decision
‘fastest’ 864.1 199 =< 00001 Rejected
. ‘fast’ . 910.9 199 < .00001 Rejected
Equiprobable ‘average’ Not applicable 898.5 199 < 00001 Rejected
‘safeLow’ 963.8 199 =< 00001 Rejected
‘fastest’ 1.1295 190.86 199 648094 Accepted
Poisson ‘fast’ 1.3435 182.11 199 .799031 Accepted
‘average’ 1.3437 175.82 199 .BB0322 Accepted
‘safeLow’ 1.4973 182.12 199 798881 Accepted

*p < 0.05 means that the hypothesis is rejected, as there is a statistically significant difference between the expected frequency and the observed frequency.

=
=

o
"

Observed proportion of transactions added to the blockchain.

-
=1

gas_price

| REL
| BT

10
Block number

Fig. 7. Histogram of observed data.

Table 8

Alternative Hypothesis: the observed proportion (P,) of transactions included in the blocks at latencies < 100 blocks are equal or greater than the expected proportion

(P,) of the Gas Oracles.

Category Latency B, P, X-squared df p-value Decision
‘fastest’ 100 0.92 0.98 1594.1 702 < .00001 Rejected
‘fast’ 100 0.84 0.98 3109 102 < .00001 Rejected
‘average’ 100 0.91 0.98 698.5 389 < .00001 Rejected
‘safeLow’ 100 0.90 0.98 1463.8 1071 < .00001 Rejected
‘fastest’ 80 0.92 0.98 92128 601 < .00001 Rejected
‘fast’ 80 0.89 0.98 763.9 89 < .00001 Rejected
‘average’ 80 0.87 0.98 3295.2 301 < 00001 Rejected
‘safeLow’ 80 0.99 0.98 1053.4 994 093174 Accepted
‘fastest’ 60 0.96 0.98 5232 402 000042 Rejected
‘fast’ 60 0.99 0.98 101.3 81 063046 Accepted
‘average’ 60 0.99 0.98 241.2 207 051696 Accepted
‘fastest’ 4 0.99 0.98 2301 201 0.077864 Accepted

*p < 0.05 means that the hypothesis is rejected, indicating that there is a statistically significant difference between the observed proportion (P,) and the expected

proportion (P, ).

distribution follow the Equiprobable Model. However, we found
strong evidence that the Equiprobable Model does not fit the data,
as per p-value = 2.27'6 inferior to 0.001. Second, although not all
the conditions are met, we tested the alternative hypothesis that
the successful transactions’ distribution follow the Poisson Model.
We found that the alternative hypothesis cannot be rejected with
a confidence level of 95%. While in an Equiprobable Model it
would make no sense to predict a Gas price, the Poisson Model
does provide us with a meaningful insight to predict a Gas price,
as it gives a lambda value which is inversely proportional to the
transactions’ Gas price. Indeed, as shown in Fig. 7, the lower the
transaction Gas price, the longer the queue of Poisson distribution
is.

6.2. To a user-oriented perspective

By performing the Poisson regression model every 100 blocks,
the Gas Oracles do not take into account all the changes in the
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Ethereum Network in real-time. As hypothesized in H1, the Gas
Oracles’ predictions based on the data-centered model are not
reliable, especially because they compute the prediction every
30 min on average. We showed that the Oracles’ predictions are
not just accidentally wrong, due to possible statistical fluctua-
tions in 100 blocks latency. We indeed found that the Oracles’
prediction are actually wrong with a level of confidence of 98%.
Moreover, we found that the margin of error is greater than
declared (2%) and it is even 13% for the ‘fastest’. The greater the
latency, the more probable is that the Poisson model cannot take
into account also user-related events or decisions occurring in the
network.

Some special scenarios — our model can successfully manage
— are those related to the network congestion which can happen
when a company looks to raise money to create a new coin, app,
or service [24]. These scenarios are special because they may
imply a longer waiting time before the transaction is included
and committed, because there are more transactors offering a
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higher Gas price when compared to a non-congested network
state. One of the ways that may be used to reduce the waiting
time is to make users aware that a higher fee is needed to have
the transaction included into a block in a shorter time than usual.
As our model for the fastest category is trained every 4 blocks,
it can recommend Gas prices that reflect the current possibly
congested situation instead of past situations when there was no
congestion.

As to the research question RQ2, we suggested that there is a
lack of correspondence between the Oracles’ Gas price categories
and the Gas price set by the users and exchanges. Of course, the
users or the exchanges might have looked at the Gas Oracles’ pre-
dictions, but they might also have acted independently, without
looking at the Gas Oracles’ predictions. However, it is reasonable
to assume that both the users and exchanges, who set the Gas
price equal to the Gas price suggested by the Oracle, might have
either followed the Oracle’s recommendation or have an interest
in setting a Gas price corresponding to the category predicted by
the Oracle. Indeed, even if they were not following the Oracle’s
recommendation in setting the same Gas price, it is likely that the
users/exchanges might have agreed with the Gas price attached
to the transaction and the waiting time. If the users/exchanges
had disagreed with the Gas Price and the waiting time, they might
have changed the Gas price to rely on the expected waiting time.

However, the analysis of the Gas price of the transactions in
the transaction pool shows that just 16% of the transactions have
a Gas price equal to the Gas price suggested by the Gas Oracle.
The percentage of transactions having the Gas price equal to the
Gas price suggested by the Oracle is distributed among the four
categories as follows: (1) 7% ‘safeLlow’, (2) 1% ‘fast’ and ‘average’,
(3) 8% ‘fastest’. Fig. 6(b) presents the percentage of Gas price cate-
gories used in Ethereum blockchain. Table 5 shows how the mode
for the ‘fast’ and ‘average’ categories are the same. This means
that most times the Gas price is the same for both categories,
in spite of being different categories in terms of execution time.
The data analysis of the transactions waiting in the transaction
pool to be included into a block also suggests that the categories
‘fast’ and ‘average’ are not set by the users probably because these
categories do not correspond to their interests and/or needs. On
the contrary, the categories ‘fastest’ and ‘safeLow’ are set the most.
This means that, as hypothesized in H2, the users set a Gas price
in relation to an interval time to include a transaction, which are
not fully-fledged predicted by the default categories.

Both the Oracles present the same pattern of results: the
distributions of the ‘recommended Gas price’ are almost the same
for Etherchain and EtherGasStation. The violin plots of both the
Oracles also show the presence of two different peaks of ‘recom-
mended Gas price’ at the same value. One of the peak corresponds
to the third quartile value, i.e, 20 GWei, while the other peak is
below the median and it is equal to 10 GWei. Fig. 6(a) shows the
violin plot of the Gas price predictions.

We also showed, as hypothesized in H3, that a reduction of
the margin of error in the Gas price prediction can be achieved
by reducing the latency, thus considering the current changes of
the network. The Oracles’ prediction can indeed be improved, by
reducing the latency of 100 blocks time. The results confirmed
that the margin of error is reduced for all the categories, when the
Poisson regression model is performed at shorter time intervals.
Interestingly, the results also showed that the margin of error
depends on the latency and it is different for each category. In
particular, the category ‘fast’ requires a shorter latency compared
with the other categories. The fast’ category is indeed more
demanding than the others in terms of waiting time, as the Gas
Oracles estimate the Gas price to have the transaction included
within two blocks at most. On the contrary, in the case of other
categories, such as the ‘safeLlow’, the Gas price does not need to
be predicted so often.
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6.3. Threats to validity

We designed the model proposed in this study, by hypothe-
sizing that a reduction of the margin of error in the Gas price
prediction can be achieved by calculating the ‘recommended
Gas price' (dependent variable) based on a smaller interval of
time (independent variable), when compared to the interval of
time considered by the Gas Oracles. In this way, we could con-
sider the current changes of the network in real time (such as
a change in the number of transactions, the fees attached to
these transactions, the number of miners and their policies). As
to the internal validity of the study, it might be claimed that
such changes are due to a variety of causes, ranging from an
internal variation in the Blockchain network characteristics to
other external causes, such as the varying of the currency pair’s
ETH/USD value, the changing behavior of companies looking to
raise funds via an ICO, specific news about the cryptocurrency
market that could lead investors to change their behavior. All
these factors are not considered by the model proposed in the
study, but they might be considered as variables that can in
principle influence the recommended Gas price, as a result of
a change in the Blockchain network status due to the users’
behavior. By studying the changes of the Blockchain network,
what we found is a correspondence between some Gas price
categories proposed by the Oracles and the fees most selected
by the users. The causes of the users’ and/or brokers’ behavior in
the selection of the transaction fees depart from the aims of this
study and need to be further investigated from other disciplinary
perspectives.

As to the external validity of the study, the study focuses
on two specific Oracles, but there are at least seven online Gas
Oracles in the market and ongoing academic discussion on Gas
Oracles, presenting different models that can be used to predict
the Gas prices to attach to a transaction. We selected the most
followed Oracles, namely Etherchain and EtherGasStation Ora-
cles, based on GitHub metrics (number of forks and developer
commits). However, there are other Gas Oracles whose predic-
tions may differ, as they are based on other models, in terms of
value parameters or user categories. Table 9 reports the REST API
service URI of the online Gas Oracles currently available on the
market. Further research is therefore needed for a comprehensive
evaluation of all the Gas Oracles reported in Table 9. However, it
is reasonable to think that this study can be extended not only to
other Oracles, but also to other cryptocurrency networks, such as
the Bitcoin Blockchain and Litecoin Blockchain, which are based
on the PoW consensus algorithm. Indeed, as for the Ethereum
Blockchain, also for these Blockchains the model can provide a
prediction for the Gas price (fee) to be attached to the transaction
as an incentive for miners to solve the PoW puzzle.

7. Conclusions

The existing Gas Oracles are based on a data-centered model
which relies on the analysis of the blocks data history to make
the Gas price prediction, without considering any data on the cat-
egories set by the users or exchanges. To propose a user-oriented
model of Gas Oracles’ Gas price prediction, the paper explored
both the overall validity of the Gas Oracles’ predictions and the
more specific validity of the Gas Oracles’ Gas price categories,
looking at the (lack of) correspondence with the categories set
by the users.

The study first evaluated the validity of the Gas Oracles’ pre-
dictions on the Gas price to pay to have the transaction recorded
in the blockchain. It revealed that both Etherchain and Ether-
GasStation predict with a margin of error at least twice as much
as the margin of error they declare. For instance, the ‘fastest’
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Table 9
REST APl service URI of the online Gas Oracles.

Future Generation Computer Systems xxx (Xxxx) xxx

Gas Oracle name

REST API service URI

EtherGasStation
Upvest

POA Network
Etherchain
EtherScan

GAS Now

https:/
https:/
/

https://ethgasstation.info/json/ethgasAPLjson
https://fees.upvest.co/estimate_eth_fees

https://gasprice.poa.network/

Jwww._etherchain.org/api/gasPriceOracle
Japi.etherscan.iojapi?module=gastracker&action=gasoracle&apikey=
https://www.gasnow.orgfapi/v3/gas/price?utm_source=:YourAPPName

category showed a 4% margin of error, while the ‘fast’ category
showed a 28% margin of error. The user-oriented model proposed
in the paper gives a prospective contribution to the improvement
of the Gas Oracles’ predictions to better indicate the categories
that correspond to the users’ requirements and the Equation that
best provides them with a more effective Gas price to set.

The study shows that the four Gas price categories proposed
by both the Oracles do not correspond with the categories set
by the users and/or companies. As a result of the analysis, we
found indeed that less than 1% of transactions set the Gas price
suggested by the Gas Oracle in the categories ‘average’ and fast’.
On the contrary, we found that it is worth predicting the Gas price
for the ‘fastest’ and ‘safelow’ categories, as they make sense in
terms of users’ interests.

The paper contributes to the understanding of the Equation
the Gas Oracles should use to provide the users’ with a better
Gas price prediction. The user-oriented model we propose recom-
mends indeed to calculate the Gas price by reducing the latency
of 100 blocks time to have a lower margin of error compared to
the Oracles’ actual one. The study shows that, by reducing the
latency to perform the Poisson regression model:

e the error margin of the prediction for the ‘fastest’ category
is 2% compared to the 4% of the Gas Oracles’ prediction. In
this case, we performed the Poisson regression model every
4 blocks instead of 100 blocks.

e the error margin of the prediction for the ‘average’ and
‘fastest’ categories is 1% compared to the 14% and 13% of
the Gas Oracles’ prediction. In this case, we performed the
Poisson regression model every 60 blocks instead of 100
blocks.

o the error margin of the prediction for the ‘safeLlow’ category
is 1% compared to the 4% of the Gas Oracles’ prediction. In
this case, we performed the Poisson regression model every
80 blocks instead of 100 blocks.

The model can provide the users with a better estimation, be-
cause it can take into account the current changes of the
blockchain and the users’ network in real time.

The Gas Oracles suggest to the user and/or to the exchanges
the Gas price to attach to a transaction to have the transaction
included in a block in a certain amount of time. The informa-
tion might be misleading for the users because the transaction
inclusion in a block does not guarantee that the transaction will
be also confirmed. Indeed, the exchange platforms consider a
number of confirmation blocks before considering the transaction
confirmed in the main chain. Furthermore, when the transaction
involves a high value asset, the number of confirmation blocks
to consider the transaction confirmed is likely to be even higher
compared to a transaction with a low value asset. Therefore,
further research should be carried out to tune up a user-centered
model that suggests the users/exchanges the fee to pay to have
the transactions included in a block within a certain number of
confirmation blocks, depending on the value to be transferred in
the transaction.
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