
PASO: A Web-Based Parser for Solidity Language
Analysis

Giuseppe Antonio Pierro
Dep. of Mathematics and Computer Science

University Of Cagliari
Cagliari, Italy

antonio.pierro@gmail.com

Roberto Tonelli
Dep. of Mathematics and Computer Science

University Of Cagliari
Cagliari, Italy

antonio.pierro@gmail.com

Abstract—Smart Contracts are computer programs which
implement and execute transactions and manage business logic on
a decentralized public ledger. Smart Contracts can be written in
different programming languages and for different Blockchains.
Currently the most used language for Smart Contracts is Solidity
and the most used platform is the Ethereum Blockchain. Assess-
ing the quality of Smart Contract programs is an important
task required to professional programmers, especially when a
programming language has so powerful economic implications.
It is therefore crucial to provide professional programmers with
tools for the evaluation of Smart Contracts. In software engi-
neering, software metrics has been defined and used to measure
software quality and, more in general, to qualify software under
the principle “You Can’t Manage What You Don’t Measure”.
For the Solidity programming language there are only a few
Standalone Applications to analyse the Smart Contract metrics.
The aim of this paper is first to build a tool for the practical
computation of a specific set of Solidity source code metrics,
so that the set will be extensible in the future according also
to Solidity compiler evolution, second to fully enable a web-
based usage of the tool to access the metrics of the Solidity
programming language. The tool, PASO, differently from the
existing application, is able to give software metrics values for
Smart Contracts written in Solidity programming language just
using a web browser.

Index Terms—Smart Contracts, Ethereum Blockchain, Solidity
Programming Language, Web-based tool, Solidity Grammar,
Parser Generator, PASO

I. INTRODUCTION

The Ethereum Blockchain is a public ledger that keeps
record of all Ethereum related transactions and stores and
execute software code implementing the so called “Smart
Contracts”. It is shared among all participants to the Ethereum
Blockchain and it is based on a reward mechanism as an
incentive for miners to execute the transactions network [1].
Smart Contracts are computer programs that implement and
execute transactions on the Ethereum Blockchain. The Smart
Contracts can be written in different programming languages
and Solidity is the most used and the most recent one [2],
[3]. Since its birth in May 2015, a number of versions of
the Solidity programming language have been released. In
particular, in the last year, thirteen new versions of Solidity
have been released and for each new release, several bugs
have been fixed. Because of the very high release rate of new
versions with several bugs fixed, it is plausible to think that

the Solidity programming language is not mature especially
when compared to other languages. It is still in evolution and
new constructs are introduced once in a while to cover new
needs and programming practices specific for Blockchain ori-
ented software and accordingly to such changes also software
metrics change. In addition, because of different use cases
in Industry applications with high impact on economy, code
analysis tools are needed to help developers to check whether
Smart Contracts comply with Solidity coding rules [4].

Assessing the quality of Smart Contract programs, as for any
other program written in any other language, is a difficult and
often subjective process . Having some heuristics and metrics
that measure the properties of an applications source code
provides a useful starting point, and observing these metrics
over time can identify important trends [5], [6], [7].

Software metrics are a useful tool also to monitor software
evolution in time. Even if in the specific case of Smart Con-
tracts deployed in the Ethereum Blockchain software changes
require a new deployment, there are questions about software
code which are quite common for developers and that can be
answered to by looking at software metrics also for Blockchain
Oriented software development. Given that Smart Contract
deploy is costly, it is very practical to ask and get answers
to these questions before the Smart Contract is deployed
on the Blockchain. A Smart Contract (Solidity) Developer
could ask: 1) Is the program becoming harder or easier to
maintain? 2) how closely connected two functions or two
Contract are? 3) How much repetitive code is there? 4) How
big and complex are the Smart Contract structures? Metrics
and heuristics methods can provide Smart Contract software
developers with answers to these questions, and some tools
can help to ensure that the software developers are notified
if their code exceeds certain thresholds for any metrics they
deem to be important.

Recently, in the market, new tools are coming out to help
developers to access Solidity programming language metrics.
In academic research, examples of these Standalone Applica-
tions tools are Pharo Solity Parser [8] and SolMet [9], a static
solidity code analysis written in Java. The main constraint of
the previous Standalone Applications is that they depend on
other server programming languages or framework that usually
are not installed in a personal computer. For example, to

use Pharo Solidity Parser, software developers need to install
Pharo Smalltalk IDE [10] or, to use the SolMet, software
developers need to install a specific version of the Java
Virtual Machine. Only after installing a specific version of the
software required, the already existing tools provide metrics
of a Solidity Smart Contract code, such as the number of code
lines for each Smart Contract, the Cyclomatic Complexity,
the number of functions, the number of parameters for each
function. Furthermore these tool do not follow the evolution
of the Ethereum Virtual Machine (EVM) where new Solidity
constructs can be introduced during time to tackle new and
unexpected problems arising when Smart Contracts are set at
work in real world environments. Unfortunately, at the present
time, there are no modular and updatable tools neither web-
based and easy to use tools to calculate software metrics
for Solidity Smart Contract. For these reasons, this paper
presents an updatable web-based tool, PASO (a PArser for
SOlidity), which detects errors and provides the computation
of important software metrics in any web browser available
in any operating system. Furthermore, the paper presents and
discusses the general components of the online PASO tool. The
advantage of the online tools is that the Solidity developers
does not need to install any software in their operating system.
PASO is indeed a web-based tool which provides programmers
with better insight into the Smart Contract code they are
developing. By taking advantage of code metrics provided by
PASO, Solidity developers can understand which part of the
Smart Contract should be modified or tested in a compre-
hensive manner. Single Solidity developers or Smart Contract
development teams can identify potential risks, understand
the current state of a Smart Contract, and track progress
during software development. Developers can use PASO to
generate code metrics data that measure the complexity and
maintainability of the Smart Contract code.,Code metrics data
can be generated for a single Smart Contract, but also for a
set of Smart Contracts. Finally, Solidity metrics can be useful
to compare a given Smart contracts with others whose source
code is already available.

The outline of the article is the following: Section II reviews
the related work on blockchain analysis platforms. Section III
presents the hypothesis of the paper. Section IV presents the
general components of the online tool PASO and the approach
we embraced to define the metrics. Section V describes the
threats to validity for the research. Finally, in Section VI, we
make our final remarks and draw some conclusion.

II. RELATED WORK

As mentioned in section I, at the date hereof, a web-based
and updatable tools to measure source code metrics of Solidity
Smart Contract do not exist yet. For other programming
languages, such as JavaScript, there are instead a lot of web-
based tools to measure the metrics. JSHint 1 is a Static Code
Analysis Tool for JavaScript that detects errors and potential
problems in JavaScript code.

1https://jshint.com/about/

For what regards Solidity there are only Standalone Ap-
plications. SolHint 2 is a command-line tool to analyse the
Solidity code for potential errors. It also provides both security
and style guide validations. Pharo Solidity Parser uses SmaCC
(Smalltalk Compiler-Compiler) and relies on Solidity grammar
specification to build a parser that can be used to measure
metrics for Smart Contract written in Solidity [11].

Zhang et al. [12] proposed metrics for measuring the Web
Ontology Language (OWL). Although the OWL language is
different from Solidity, the underlying concepts are similar.
The paper [12] is also inspired by the concept of software met-
rics. The proposed metrics were analytically evaluated against
Weyuker’s criteria [13]. It also performed empirical analysis
on public domain ontologies to show the characteristics and
usefulness of the metrics.

III. MOTIVATION

The Solidity language grammar definition changes very
often and, consequently, the tools to measure the software
metrics needs to be updated very frequently. Every time a
new version of the Solidity program language is released, the
existing Standalone Applications need to be updated accord-
ingly from both the authors and the end users perspectives.
This extra work, from the end-user point of view, could be
avoided by using a web-based tool, which requires to be
updated just by refreshing the web page. Of course also the
engine behind the computation needs to be updated according
to the new Solidity release. The PASO tool, presented in
this paper, accomplishes to all these requirements. A practical
option, which is implemented in PASO, is the idea to have
all components on the client side with no need to have a
server. This solution has the advantage that there is no need
to have any server to maintain and manage. What is needed
to run the program is just a web browser, which is installed
in every operating system. In addition, PASO has offline
functionality, i.e. it can work completely offline once all the
PASO components, coded in CSS, HTML and JavaScript, have
been downloaded.

IV. PASO COMPONENTS

PASO is available and can be tested at this link. 3

The main components needed to build and run PASO are:
• Solidity Grammar,
• PASO Parser,
• PASO Metrics,
• PASO GUI (Graphical User Interface).
The following sections give a general definition for each

main component for a better understanding of the work made
to realize the tool PASO.

A. Solidity Grammar

A programming language is a set of commands, strings
of characters readable by programmers but easy to translate

2https://protofire.github.io/solhint/
3https://aphd.github.io/paso/

to machine code. It has grammar and semantic rules. The
grammar is a set of rules that define how the commands have
to be arranged to make sense and to be correctly translated
to the machine code. Semantics is a set of meanings assigned
to every command of the language and it is used to correctly
translate the program to machine code [14].

Figure 18 shows a piece of Solidity grammar according
to the ANTLR rules. Each ANTLR rule consists of a name,
followed by a colon, followed by its definition, and terminated
by a semicolon. The sourceUnit symbol is the entry node of the
grammar. Nonterminal nodes in ANTLR have to be lowercase.
Terminal nodes have capitalized names, like EOF. EOF is a
special terminal node, defined by ANTLR, meaning the end
of the input. In particular, it stands for the end of the file, even
though the input may also come from a string or a network
connection rather than just from a single file.

The symbol “|” represents the alternation operator, the
symbol “*” is the repetition operator, and parentheses are
used for grouping, in the same way we have been using for
a natural language grammar reading. Optional parts can be
marked with the symbol “?”. In ANTLR, Terminal nodes can
be defined using regular expressions, but fixed strings are not
permitted. For example, here are some Terminal patterns used
in the Solidity grammar written in ANTLR syntax and with
ANTLR naming convention: COMMENT → “/*” “.*?” “*/”.

The Solidity grammar definition is available at this web
site. 4

1 grammar S o l i d i t y ;
2
3 s o u r c e U n i t
4 : (p r a g m a D i r e c t i v e | i m p o r t D i r e c t i v e |

c o n t r a c t D e f i n i t i o n) * EOF ;
5
6 . . .
7
8 f u n c t i o n D e f i n i t i o n
9 : n a t S p e c ? ’ f u n c t i o n ’ i d e n t i f i e r ? p a r a m e t e r L i s t

m o d i f i e r L i s t r e t u r n P a r a m e t e r s ? (’ ; ’ |
b l o c k) ;

10
11 r e t u r n P a r a m e t e r s
12 : ’ r e t u r n s ’ p a r a m e t e r L i s t ;
13
14 m o d i f i e r L i s t
15 : (m o d i f i e r I n v o c a t i o n | s t a t e M u t a b i l i t y |

Exte rna lKeyword
16 | Publ icKeyword | I n t e r n a l K e y w o r d |

Pr iva t eKeyword) * ;

Listing 1: This code shows how the Solidity grammar looks like
as an ANTLR source file

B. PASO Parser

The PASO Parser is generated from a Parser Generator.
Figure 1 shows the input and the output of a Parser Generator.
A parser generator is an application which generates a parser:
it takes the Solidity grammar as input and automatically
generates a source code named Parser. The parser is a function
that takes the sequence of characters of a Smart Contract as
input, attempts to match the sequence with the grammar and

4https://github.com/solidityj/solidity-antlr4/blob/master/Solidity.g4

produces a parse tree as output. Figure 2 shows the input and
the output of the PASO Parser.

Fig. 1: The Parser Generator takes a file containing the Solidity
grammar rules. It produces a PASO Parser, i.e. a parser in JavaScript
computer language that can be run in a client browser.

A parse tree or parsing tree is an ordered, rooted tree
that represents the syntactic structure of the source code
according to the grammar. The root of the parse tree is the
starting Nonterminal node of the grammar. In a parse tree, a
Nonterminal node is a node of the parse tree which is either
a root or a branch of the tree, whereas a Terminal node is a
node of the parse tree which is a leaf.

There are different parser generator applications for various
programming languages. To the aims of this paper, it is
necessary to use a Parser Generator that can generate a Parser
in a client-side scripting language, like JavaScript. Among the
different Parser Generators, we chose ANTLR4 (ANother Tool
for Language Recognition), precisely because it can produce
a Parser in JavaScript programming language that can run on
the client part together with the GUI part.

Fig. 2: Example of input and output of the PASO Parser.

C. PASO Metrics

In software engineering software metrics has been defined
and used to measure software quality and, more in general,
to qualify software under the principle “You Can’t Manage
What You Don’t Measure”. Code metrics can be used to detect
any characteristic in the source code that possibly indicates
a major problem of the code. They therefore act as a useful
alert to detect a problem and improve the overall design of the
code. An example of problem to detect is duplicated code, i.e.
identical or very similar code which exists in one or more parts
of the program [15], [16]. Code metrics can also be used to
identify functions or a Smart Contracts formed by many lines
of code (LOC), or to measure the Cyclomatic complexity, i.e.
the existence of too many branches or loops. A high value
of Cyclomatic complexity metric or/and the LOC metric may
indeed indicate that a function needs to be broken into smaller
functions, or that it can be simplified [17], [18].

Many object-oriented metrics have been proposed over the
last decade [19] and most of the metrics used in the tool are
derived from “C&K” metrics. C&K metrics were proposed
by Chidamber and Kemerer in 1991 for object-oriented soft-
ware [20] and details of them can be found in [21]. The
metrics discussed in the paper include C&K metrics and add
further metrics. The overall set of metrics displayed in the
PASO tool are therefore divided into two categories: 1) Object
oriented metrics used to measure properties of object oriented
programming languages, such as java, smalltalk, C++ [22] 2)
Solidity metrics, which are specific for Solidity programming
language. PASO displays some of the metrics taken from the
two categories 3

Fig. 3: The two ovals respectively represent the set of Object oriented
metrics (on the left) and the set of metrics that are specific to Solidity
Language (on the right).

1) Object Oriented Metrics: In the previous literature, static
code analysis tools generate metrics for OOP (object oriented
programming) languages. Some of the most used metrics are:
1) the number of code lines, 2) coupling, i.e. the number of
connections a file or a class has to other files or classes, 3) the
number of arguments for a function, etc. Table I lists the most
used metrics in the scientific literature which are implemented
in PASO tool.

2) Solidity Metrics: Solidity programming language has
some peculiarities that makes it unique when compared to
other programming languages [23].

Table II lists the metrics that it is possible to obtain by
parsing the Smart Contract code with the PASO tool. These
metrics are defined only for Solidity programming languages.

D. PASO GUI
The PASO GUI is the PASO component that allows users to

interact with the PASO Parser. The GUI (Fig. 4) is divided into
two sections: 1) a textarea where the user can write or paste
the Smart Contract or several Smart Contracts, 2) a section
for results where the user can see the values of the metrics
displayed. Figure 4 presents the two sections: the textarea is
shown on the left (Fig. 4a), while on the right some metrics
value are shown (Fig. 4b), corresponding to the Smart Contract
written in the textarea.

TABLE I: Some object oriented metrics

Metric
name Description

LOC

It indicates the number of lines in the code. A high
number might indicate that a contract is trying to do
too much work and should be split up. It might also
indicate that the contract or method is hard to maintain.

Methods
Number of Methods. Contracts with too many methods
may be trying to do too much, or in any case may be
more difficult to maintain.

NL
The nesting level metric denotes the sum of the deep-
est nesting level of the control structures within the
functions of a class, library or interface.

NUMPAR Number of parameters. It counts how many parameters
a function has.

NOS
Number of statements. The number of statements
metric counts how many statements there are in a class,
library or interface.

DIT
Depth of inheritance tree. The depth of inheritance
metric measures how deep a class, library or interface
is in the inheritance tree.

NOA
Number of ancestors. The number of ancestors metric
counts all the different direct or transitive ancestors of
a class, library or interface.

NOD
Number of descendants. The number of descendants
metric measures how many different direct or transitive
descendants a class, library or interface has.

CBO

Coupling between object classes. The coupling be-
tween object classes metric in the OO paradigm mea-
sures the number of classes that the actual class is
connected to (by using the class as an attribute type,
method parameter or return value, etc.).

NA Number of state variables.

NOI

Number of outgoing invocations (i.e. fan-out). The
number of outgoing invocations metric measures how
many different functions are called from a function in
a class or library.

WMC Weighted Methods per Class (WMC) is an object-
oriented metric to measure complexity in a class.

CP Comment percentage.

V. LIMITATION

Studying the quality of a software might be a difficult, often
subjective process. Having some metrics value that measure
an applications source code provides a useful starting point to
improve the existing code. Static code analysis tools such as
PASO can spot many different kinds of mistakes, but cannot
detect if the Solidity Smart Contract produces the correct
system behavior. A solidity software developer should always
combine tools like PASO with unit and functional tests as well
as with code reviews. Indeed, PASO can check the correctness
of the grammar written by the programmer and compute the
associated metrics, but cannot understand whether the mean-
ings assigned by the programmer are coherent, i.e. actually
correspond to what the programmer wanted to achieve.

(a) PASO GUI Textarea. (b) PASO GUI Metrics.

Fig. 4: PASO GUI. Figure 4a shows the textarea where the user can write or paste the Smart Contract or several Smart Contracts. Figure 4b
shows some metrics value corresponding to the Smart Contract written in the textarea.

TABLE II: Some Solidity Metrics

Metric
name Description

Payable The number of Payable Functions.

Mappings The number of Mapping types. Mappings, in Solidity
programming language, can be seen as hash tables.

Modifiers The number of Function Modifiers.

Addresses The number of addresses.

Events The number of Events.

Contracts The number of Contracts.

ABI The size of the ABI (Application Binary Interface).

Bytecode The size of the Bytecode.

The PASO tool is limited in the interface design. For
instance, it displays the metrics value in numerical form. An
improvement of the tool could be the visualization of metrics
by using a treemap, as for example in the work by Balzer [24].
PASO is also limited in the number of metrics it computes
but is structured to be easily updated, also accordingly to the
eventual future evolution of the Solidity EVM. Example of
missing metrics in the PASO tool are: 1) the coupling metric
that describes the number of connections a file or a contract has
to other files or contracts, and 2) The Cyclomatic Complexity
of a function. However, thanks to a modular design, it can be
used as a basis for a richer implementation that gives more
precise information to the developer and a more user-friendly
graphical interface to the user.

VI. CONCLUSION AND FUTURE WORK

The paper presents a fully web-based tool able to compute
the Smart Contract Metrics. The goal has been achieved by
using the ANTLR (ANother Tool for Language Recognition)
parser generator. We gave the Solidity grammar as an input to
the ANTLR Parser Generator, which has been used to create
a JavaScript Parser. Finally we wrote the Solidity Code in the
PASO GUI textarea, thus giving it as an input to the JavaScript
Parser, which calculated and displayed the metrics values
on the screen. Before implementing PASO, there were only
Standalone Applications, such as Pharo Solidity Parser and
SolMet, which have allowed to parse and to generate metrics
for a Smart Contract written in Solidity program language.
The research assessed the hypothesis that it is possible to
build a completely web-based tool, PASO, able to achieve at
least the same results of the previous Standalone Applications.
The main advantage of having such web-based tool - when
compared to the previous ones - are: 1) users have no need to
install a third-party software, like Java or Smalltalk Pharo, 2)
PASO is able to cope in a more efficient way with the countless
updates of Solidity programming language: by using PASO,
there is no need to update the Standalone Application, it is
only needed to update the web page.

The number of metrics discussed in the paper are just a
few: a complete list of metrics to be implemented in the PASO
tool would indeed require more in-depth research that can be
developed in future works. The aim of the present research
was indeed limited to test the hypothesis that it is possible
to build a fully and updatable web based tool to compute the
metrics value of a Smart contract written in Solidity without
installing any tools on users local computer. At the time of
writing (December 2019), PASO is the only fully web-based
tool that allows to parse and to generate metrics for a Smart
contract written in Solidity program language. It represents a

starting point for a future richer implementation, able to give
more relevant information to the developers and a more user-
friendly graphical interface to the user.

REFERENCES

[1] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas
Hobor. Making smart contracts smarter. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’16, pages 254–269, New York, NY, USA, 2016. ACM.

[2] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet,
Anitha Gollamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova,
Aseem Rastogi, Thomas Sibut-Pinote, Nikhil Swamy, and Santiago
Zanella-Béguelin. Formal verification of smart contracts: Short paper.
In Proceedings of the 2016 ACM Workshop on Programming Languages
and Analysis for Security, PLAS ’16, pages 91–96, New York, NY, USA,
2016. ACM.

[3] Simone Porru, Andrea Pinna, Michele Marchesi, and Roberto Tonelli.
Blockchain-oriented software engineering: Challenges and new direc-
tions. In Proceedings of the 39th International Conference on Software
Engineering Companion, ICSE-C 17, page 169171. IEEE Press, 2017.

[4] Giuseppe Antonio Pierro and Henrique Rocha. The influence factors on
ethereum transaction fees. In 2nd International Workshop on Emerging
Trends in Software Engineering for Blockchain, WETSEB ’19, pages
24–31, Piscataway, NJ, USA, 2019. IEEE Press.

[5] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. Pin: Building customized program analysis tools with dynamic
instrumentation. SIGPLAN Not., 40(6):190–200, June 2005.

[6] A. Pinna, S. Ibba, G. Baralla, R. Tonelli, and M. Marchesi. A massive
analysis of ethereum smart contracts empirical study and code metrics.
IEEE Access, 7:78194–78213, 2019.

[7] Roberto Tonelli, Giuseppe Destefanis, Michele Marchesi, and Marco
Ortu. Smart contracts software metrics: a first study, 2018.

[8] Henrique Rocha, Stéphane Ducasse, Marcus Denker, and Jason Lecerf.
Solidity parsing using smacc: Challenges and irregularities. In Proceed-
ings of the 12th Edition of the International Workshop on Smalltalk
Technologies, IWST ’17, pages 2:1–2:9, New York, NY, USA, 2017.
ACM.

[9] Péter Hegedűs. Towards analyzing the complexity landscape of solidity
based ethereum smart contracts. In Proceedings of the 1st International
Workshop on Emerging Trends in Software Engineering for Blockchain,
WETSEB ’18, pages 35–39, New York, NY, USA, 2018. ACM.

[10] David Röthlisberger, Oscar Nierstrasz, Stéphane Ducasse, and Alexandre
Bergel. Tackling software navigation issues of the smalltalk ide.
In Proceedings of International Workshop on Smalltalk Technologies
(IWST’09). ACM Digital Library, 2009.

[11] John Brant and Don Roberts. The smacc transformation engine: How
to convert your entire code base into a different programming language.
In Proceedings of the 24th ACM SIGPLAN Conference Companion on

Object Oriented Programming Systems Languages and Applications,
OOPSLA ’09, pages 809–810, New York, NY, USA, 2009. ACM.

[12] Hongyu Zhang, Yuan-Fang Li, and Hee Beng Kuan Tan. Measur-
ing design complexity of semantic web ontologies. J. Syst. Softw.,
83(5):803814, May 2010.

[13] E. J. Weyuker. The evaluation of program-based software test data
adequacy criteria. Commun. ACM, 31(6):668675, June 1988.

[14] Man Leung Wong and Kwong Sak Leung. Evolutionary program
induction directed by logic grammars. Evol. Comput., 5(2):143–180,
June 1997.

[15] Giulio Concas, Michele Marchesi, Alessandro Murgia, Sandro Pinna,
and Roberto Tonelli. Assessing traditional and new metrics for object-
oriented systems. pages 24–31, 01 2010.

[16] G. Concas, C. Monni, M. Orr, and R. Tonelli. A study of the community
structure of a complex software network. In 2013 4th International
Workshop on Emerging Trends in Software Metrics (WETSoM), pages
14–20, May 2013.

[17] Marco Ortu, Giuseppe Destefanis, Mohamad Kassab, Steve Counsell,
Michele Marchesi, and Roberto Tonelli. Would you mind fixing this
issue? an empirical analysis of politeness and attractiveness in software
developed using agile boards. volume 212, 05 2015.

[18] Alessandro Murgia, Roberto Tonelli, Michele Marchesi, Giulio Concas,
Steve Counsell, Janet McFall, and Stephen Swift. Refactoring and its
relationship with fan-in and fan-out: An empirical study. Proceedings of
the Euromicro Conference on Software Maintenance and Reengineering,
CSMR, pages 63–72, 03 2012.

[19] Norman E. Fenton. Software Metrics: A Rigorous Approach. Chapman
& Hall, Ltd., GBR, 1991.

[20] Norman E. Fenton and Martin Neil. Software metrics: Roadmap. In
Proceedings of the Conference on The Future of Software Engineering,
ICSE 00, page 357370, New York, NY, USA, 2000. Association for
Computing Machinery.

[21] Shyam R. Chidamber and Chris F. Kemerer. Towards a metrics suite
for object oriented design. In Conference Proceedings on Object-
Oriented Programming Systems, Languages, and Applications, OOPSLA
91, page 197211, New York, NY, USA, 1991. Association for Computing
Machinery.

[22] Marco Scotto, Alberto Sillitti, Giancarlo Succi, and Tullio Vernazza. A
relational approach to software metrics. In Proceedings of the 2004
ACM Symposium on Applied Computing, SAC ’04, pages 1536–1540,
New York, NY, USA, 2004. ACM.

[23] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil
Takhaviev, Evgeny Marchenko, and Yaroslav Alexandrov. Smartcheck:
Static analysis of ethereum smart contracts. In Proceedings of the 1st
International Workshop on Emerging Trends in Software Engineering
for Blockchain, WETSEB ’18, pages 9–16, New York, NY, USA, 2018.
ACM.

[24] Michael Balzer, Oliver Deussen, and Claus Lewerentz. Voronoi treemaps
for the visualization of software metrics. In Proceedings of the 2005
ACM Symposium on Software Visualization, SoftVis ’05, pages 165–172,
New York, NY, USA, 2005. ACM.

	Introduction
	Related Work
	Motivation
	PASO Components
	Solidity Grammar
	PASO Parser
	PASO Metrics
	Object Oriented Metrics
	Solidity Metrics

	PASO GUI

	Limitation
	Conclusion and Future Work
	References

