
Are the Gas Prices Oracle Reliable? A Case Study
using the EthGasStation

Giuseppe Antonio Pierro
Dep. of Mathematics and Computer Science

University Of Cagliari
Cagliari, Italy

antonio.pierro@gmail.com

Henrique Rocha
Dep. of Mathematics and Computer Science

University of Antwerp
Antwerp, Belgium

henrique.rocha@gmail.com

Roberto Tonelli
Dep. of Mathematics and Computer Science

University Of Cagliari
Cagliari, Italy

antonio.pierro@gmail.com

Stéphane Ducasse
Inria Lille - Nord Europe

Villeneuve D’ascq, France
stephane.ducasse@inria.fr

Abstract—The Ethereum Blockchain is a distributed database
that records all transactions and smart-contracts created on the
platform. In Ethereum blockchain, the user needs to set a Gas
price to get a transaction recorded. To have the transaction
recorded, the Gas price has to be greater than or equal to the
lowest Ethereum transaction fees. To help the users and smart
contracts to set the right Gas price, the Gas Oracle categorizes
the gas price into categories based on the interval of time the
user might be willing to wait and for each of them suggests a
gas price to set. The paper aims to verify the hypothesis that the
predictions made by the EtherGasStation Oracle have a margin
of error greater than the margin of error declared by it (2%).
We collected data in two-months time from the EthGasStation
Oracle which predict the Gas Price every time that 100 blocks
are added to the Ethereum Blockchain. In the same time frame,
two-months, we also collected over 10 million transactions from
a Transaction Pool. By cross-checking the data collected by the
Transaction Pool and the Gas Oracle, the study revealed that the
Gas Oracle fails more often than it advertises.

Index Terms—Ethereum, Gas, transaction fees, Gas price
categories

I. INTRODUCTION

In Ethereum [1], users need to pay a fee in a special resource
called Gas when creating transactions [4], [7], [11]. Gas is like
fuel for computational instructions executed in the blockchain.
There are mainly three reasons for the Gas fees concept: (i)
to make the users pay for the computation costs (e.g., energy,
CPU) required to create and approve their transactions; (ii)
to limit blockchain resource use; and (iii) to avoid issues of
intentional or non-intentional network abuse (e.g., DoS attacks,
infinite loops).

Transactions occurring in the network are verified by special
nodes named “miners”. In Ethereum, verifying a transaction
means checking the sender and the content of the transaction.
Miners generate a new block of transactions and then add
such a block to the network. Currently, miners need to solve
a mathematical puzzle (called “Proof of Work”) to create a
new Ethereum block. Miners receive the Gas transaction fees

converted into cryptocurrency as a reward for adding a new
block to the blockchain [3], [4], [7].

The Gas price value is set by the user who chooses how
much to pay to execute the transaction. If the value set by the
user is too low for the Ethereum miners, the transaction risks
to never be included in the blockchain. On the other hand, if
the transaction price is very high, the blockchain miners will
be prone to include it in the Ethereum Blockchain, but the
user will allegedly waste money.

In this paper, we analyze the data of one popular oracle to
predict the Gas price, along with the Ethereum transactions’
and blocks’ data. More specifically, we use in this study the
EthGasStation oracle, as its API is public and can be used by
any other oracle or user. The Ethereum transactions’ variables
considered in the study are:

• the interval of time elapsed between the time when the
transaction was first seen in the Transaction Pool and the
time in which the transaction was added to the Ethereum
Blockchain;

• the Gas price, i.e., the amount of Ether the user is willing
to pay for every unit of Gas, which is measured in
“GWei”.

Oracle data is useful to predict the Gas price a user
should pay to influence miners to verify a transaction (and
consequently, add such transaction to a block). To help users
decide on the price to pay to submit a transaction, Gas
Oracle proposes the following four price categories: safe low,
standard, fast, and fastest. These categories define the Gas
price required to have a transaction confirmed within the next
100, 20, 5, and 2 blocks, respectively.

First, the results show that EthGasStation gives the Gas price
prediction with a higher margin of error compared to what it
claims (2%). The margin of error ranges from a minimum
of 4% for the “fastest” category to a maximum of 28% for
the “fast” category. Second, we argue that by performing the
Poisson regression more frequently, the margin of error can,



in theory, be decreased to the declared mark of 2% for the
“fastest” category. Finally, the results suggest that two of the
Gas Oracle categories are not frequently used in practice: fast
and average categories. It is indeed reasonable to expect that,
to save money, single users or companies could set different
requirements in terms of interval time to add a transaction,
that is not provided by all the default categories.

This study is therefore relevant from a users’ perspective
for at least two reasons:

• It shows the EthGasStation oracle is less reliable than
advertised. Therefore, users or companies employing
Ethereum Blockchain technology should be more careful
to trust oracles’ recommendations.

• It suggests that two of the four categories proposed by the
Gas Oracle may not meet the needs of Ethereum users.
Therefore other categories could be created better suit
the users’ requirements. For example, a company might
be interested to record a transaction with a maximum
delay of 24 hours. Such a category, not considered by
the Oracle, might help the company to save money in
transaction fees.

The rest of the paper is organized as follows. Section II
described the Transaction Pool and the Gas Oracle investigated
in the paper. Section III presents the experimental design and
methodology used to collect and analyze the data. Section IV
discusses the results of the case study using EthGasStation
Oracle. Section V describes the threats for the validity of
the study. Section VI presents the related work. Finally,
Section VII presents the conclusions and outlines future work
ideas.

II. BACKGROUND

In this section, we provide background information needed
to better understand our study.

A. Block

The blockchain is an ordered list of blocks, where each
block is identified by its cryptographic hash and a progressive
number named “height” [1]. Each block refers to the block
preceding it, resulting in a chain of blocks. Each block consists
of a set of transactions. Once a block is created and attached to
the blockchain, the transactions in the block cannot be changed
or reverted. This is to ensure the integrity of the transactions
and to prevent the double-spending problem [9].

The Block Time is defined as the interval of time the
blockchain takes to mine a block. The time interval is not
constant and changes every time a block is added to the
blockchain. In Ethereum Blockchain the Block Time is ex-
pected to be between 10 to 19 seconds (with an average of
15 seconds). A standard unit of measurement for time in the
blockchain is not the second but the block number.

B. Transaction Pool

Each node in the Ethereum network has a virtual place
named “Transaction Pool”, where transactions enter when they

are received from the network or submitted locally. The Trans-
action Pool contains all currently known pending/unconfirmed
transactions. They exit the Transaction Pool when they are
included in the Ethereum Blockchain. The miners separate
processable transactions, which can be added to a block,
and future transactions, which can be wait to be added.
Transactions move between those two states over time as they
are received and processed.

Each node maintains its own Transaction Pool. When a node
receives a new valid block, it removes all the transactions
contained in the block from its Transaction Pool as well as the
transactions which attempt to double spend the same output.
A double spend is a potential flaw in a digital cash scheme in
which the same single digital token can be spent more than
once. The node can decide different policies: for example, if
the Transaction Pool size gets too close to the RAM capacity,
the node can set up a minimal fee threshold. Transactions with
Gas price lower than the threshold are immediately removed
from the Transaction Pool and only new transactions with a
Gas price high enough are allowed to enter the Transaction
Pool.

C. Gas Oracle

An Oracle is a software that finds and analyses data
concerning real-world facts. Based on the data, it computes
an estimate, extracting relevant information to predict future
data trends. Examples of real-world facts are commodities
and goods prices, flight or train delays. In the Ethereum
Blockchain, the information provided by an oracle can be used
by Smart Contracts the participants have agreed on, to execute
the transactions.

In the context of this paper, Gas Oracle is an oracle that
analyses blockchain data to predict the best Gas price to pay
for a transaction to be approved within a certain number
of blocks. We analyze data from one specific Gas Oracle,
EthGasStation.

This oracle claims that all predicted values are estimations
based on the current network condition and should be used
as an indication. More specifically, EthGasStation employs a
Poisson Regression [5] on Ethereum data to estimate the Gas
prices accepted by the miners. However, it only computes and
updates its predictions every 100 blocks (approximately 1,500
seconds or 25 minutes). Therefore, the estimation made by
the oracles every 100 blocks may not reflect the most current
status of the network. During this interval of time, some
data regarding the blockchain network such as the number
of miners, the number of transactions and the Gas price
attached to the transactions might indeed suddenly change,
thus having an impact on the value of the minimum transaction
fee accepted by the miners to include a transaction in a
block. All data regarding the blockchain network are publicly
available, also in the form of a timeline chart confirming our
hypothesis.1

1https://etherscan.io/charts

https://etherscan.io/charts


TABLE I: RESTful Services list

Resource name RESTful API service URI

EthGasStation https://ethgasstation.info/json/ethgasAPI.json

Block https://api.blockcypher.com/v1/eth/main/blocks/0

Unconfirmed
Transactions

https://api.blockcypher.com/v1/eth/main/txs

III. EXPERIMENTAL DESIGN

We planned to test the reliability of a Gas Oracle by
looking over real data from the Ethereum blockchain. The
research method consists of four phases: (a) Retrieving Data,
(b) Cleaning Data, (c) Modelling Data, and (d) Analyzing
Data.

A. Retrieving Data

In this phase, we collect the data by making requests to var-
ious HTTP RESTful API services at different times. Figure 1
describes the periodic polling used to get new information
from the HTTP RESTful API services. The flow collects data
as follows:

• a request is sent to the server every 15 seconds;
• if the request is successful, the server responds to the

client request sending a payload in JSON format;
• if the request is not successful, the client will not record

any data for that time frame. During the data retrieving
operation, an average of 1 request out of 20,160 requests
was unsuccessful, i.e. 0.0049% of the requests failed.

Fig. 1: Regular Polling every 15 seconds

Table I shows the URI of the RESTful API services used
to fetch the Gas Oracle data, the Blocks data and the Uncon-
firmed Transactions data, i.e., the latest transactions that have
not been included in any block.

The data have been stored as files in JSON format in the
file system of the server where the analyses are performed.

{
"fastest":116.0,
"fast":100.0,
"safeLow":17.0,
"average":60.0,
"block_time":13.24,
"blockNum":8937688

}

Fig. 2: JSON payload extracted from EthGasStation RESTFul API
Services

Figure 2 shows an example of the Gas Oracles payload
formatted in JSON format.

The key value pairs shown in code 2 represent respectively
the Gas to pay to have the transactions confirmed within: 2
blocks (fastest), 5 blocks (fast), 20 blocks (average), and 100
blocks (safe low).

B. Cleaning Data

In this phase, we perform a control of the data quality. The
data retrieved have been checked in compliance to the API
documentation; Example of data not in compliance to the API
documentation are:

• string value where a numeric value was instead expected;
• numeric value where a string value was instead expected;
• numeric value which is not in the expected range;
• date value which is not in the expected time frame;
• missing value;
• missing key/value pairs;
• numeric value with different units of measurement.

We rejected the data, falling in one of the categories listed
above, except for the latest category where the values have
been recalculated according to the expected measurement unit.

As an example, a numeric value which is not in the expected
range, is a negative block’s height value, a date value in the
future, or a negative value of the waiting time for transactions
to be added to the Ethereum Blockchain. According to Kanda
and Shudo [6], a negative value of the waiting time variable
may suggest a transaction propagation delay among different
nodes. This means that different nodes in the blockchain could
see the transaction at different instants of time.

During the cleaning phase, 0.83% of data has been rejected,
distributed as follows: 770K out of 11M transactions (0.75%),
182 out of 345K blocks (0.05%) and 112 out of 345K Oracle’s
predictions of the Gas price (0.03%).

C. Modelling Data

1) Validation Condition: In this step, we define the con-
dition to assess the correctness of the Oracles’ Gas price
prediction. Oracles usually make the prediction based on the
history of the mined blocks data, such as the lowest Gas price
accepted by the miner to add the transaction to the block.

Suppose that during the time interval when the i-th block,
Bi, is mined:



• op (Oracle Price) is the price predicted by the Gas Oracle
to have the transaction included at the most within j
blocks;

• B = {Bi+1, ..., Bi+j} is the set of j blocks mined in the
blockchain following the i-th block;

• T = {tx1, tx2, ..., txn} is the set of unconfirmed transac-
tions, i.e. that have not been included in any blocks, with
Gas price respectively of tp1, tp2, , tpn, that there were
in a Transaction Pool when the i-th block was mined.

Fig. 3: Gas Oracle prediction based on block history. The transaction
having a Gas price higher or equal to op (the yellow circle) are
displayed in white text on a darker background. The transaction
having a Gas price lower than op are displayed in black text on
a lighter background.

Figure 3 depicts the Ethereum Blockchain in the past (grey
color Bi−4000...Bi−1), with the addition of the block mined in
the present (red color Bi) and with future blocks (green color
Bi+1...Bi+j). The Gas Oracle prediction is based on the block
history of the last 4,000 blocks represented in grey color. The
swimming pool represents the status of a Transaction Pool at
the time when the Gas Oracle makes the prediction (red block
Bi). All the transactions belonging to the set T that have a Gas
price higher or equal to op (the yellow circle) are displayed
in green color to the right of the Bi block. If the prediction
of the Oracle were correct, all the transactions belonging to
the set T having a Gas price higher or equals to op, would be
mined in one of the following j blocks {Bi+1, ..., Bi+j}.

The condition is expressed by the following equation:

∀txi ∈ T ∧ txi ≥ op : txi ∈ {Bi+1, ..., Bi+j} (1)

Equation 1 is used to verify the prediction of the EthGasSta-
tion Oracle Gas price.

2) Data Modelling: In this step, data were collected and
stored in a relational database, where each table represents
the following items: blocks, transactions, and Oracles. Even
though, for this study we only considered data from one
Oracle, we are planning to expand this research to include
other Oracles in the future.

Figure 4 shows the data contained in the database, the
relationships between table fields and their types (ex. string,
integer, boolean, enumerate). It is noteworthy that the wait
time for a transaction is not stored in the database but
calculated by the difference between confirmed (time) and
received (time).

Fig. 4: Database schema.

D. Analyzing Data

In this phase, we analyse the data to:
1) view some aggregated statistical metrics such as per-

centile, mean, standard deviation, mode of the numerical
data series;

2) find distribution of different variables such as: gas prices
and time a transaction needs to wait before being
recorded in the blockchain;

The goal is to make a descriptive analysis of the data-sets
concerning different items, as modeled in the Section III-C.
All the data cover a period of time ranging from March 29,
2019 to May 28, 2019.

IV. CASE STUDY: ETHGASSTATION

In this section, we present our case study by analyzing
oracle data from the EthGasStation. The data-set analysed in
the paper is publicly available at our open-access repository.2

The dataset is an SQLite database having three tables. The first
table, named “transaction”, contains more than 11 millions
rows. The second table, named “block”, contains around 345
thousand blocks. The last table, named “oracle”, contains 345
thousand rows of Oracles’ predictions for the Gas price of
each category (fast, fastest, average and safe low). The dataset
refers to a period of time of two months, ranging from March
29, 2019 to May 28, 2019.

A. Transactions Data Analysis

Figure 5 shows the box plot of the waiting time in seconds
before a transaction is added to the Ethereum Blockchain. The

2http://doi.org/10.5281/zenodo.3584242

http://doi.org/10.5281/zenodo.3584242


violin plot shows the presence of a time peak along the vertical
axis at the value of 20 seconds, which means that, according
to the data-set II analysed in the paper, most transactions wait
from one to two blocks before being added to the Ethereum
Blockchain.

Fig. 5: Violin Plot (median, first and third percentiles, range) of the
waiting time in seconds before a transaction is added to the Ethereum
Blockchain.

Figure 6 shows two violin plots of the waiting time of the
transactions for different Gas prices. Interestingly, the violin
plots suggest that the Gas price attached to the transaction
influences the interval of time the transaction needs to wait
before being added to the Ethereum Blockchain. The violin
plots also present the same peak at the value of 20 seconds
regardless of the Gas price. The difference is the shape of
the violin plot, which becomes larger at the decreasing of the
Gas price. In addition, having the Gas price higher than 10
Gwei does not guarantee that the transaction is added to the
blockchain within 1-2 blocks, but the probability is anyway
higher when compared to the transactions having the Gas price
lower than 10 GWei.

B. Gas Oracle Data Analysis

We analyzed the data of the Oracle EthGasStation. This
Oracle can diversely predict the Gas price values to attach to
transactions to have the transaction included at the most within
n blocks.

Table III reports the mean, the standard deviation (SD), the
minimum (min), the first quartile (25%), the median (50%),
the third quartile (75%) and maximum (max) of the Gas price
recommendation for the transaction to be included at most in
two blocks according to EthGasStation.

Fig. 6: Violin Plot of the waiting time in seconds before a transaction
is added to the Ethereum Blockchain. The blue plot to the left refers
to the transactions having a Gas price lower than 10 GWei. The
orange plot to the right refers to the transactions having a Gas price
higher than or equal to 10 GWei.

Figure 7 shows the violin plots of the Gas price prediction
according to the EthGasStation Oracle for each Gas price
category: 1) fastest (in blue, leftmost plot), 2) fast (in orange,
second plot), 3) average (in green, third plot), and 4) safe low
(in red, rightmost plot). The violin plot shows that the most
frequent value of Gas price for each category is as follows:
20 GWei for the fastest category, 5 GWei for both the fast and
average category, and 3 GWei for the safeLow category.

Table IV reports the mean, the standard deviation (SD), the
mode, the minimum (min), the first quartile (25%), the median
(50%), the third quartile (75%) and maximum (max) of the
Gas price recommendation for the transaction for each Gas
price category.

The mode for the ”fast” and ”average” categories are the
same. This indicates that most times the Gas price is the same
for both categories, in spite of being different categories in
terms of execution time. Therefore, our analysis suggests that
these two categories should be merged.

It is not possible to be sure that the users who submit the
transactions are following the Gas Oracles’ recommendation.
However, it is reasonable to assume that the users who set
the Gas price equal to the Gas price suggested by the Oracle
are indeed following the Oracle’s recommendation. Even if
they were not following the Oracle’s recommendation, it is
likely that the user agrees with the Gas price attached to the
transaction and the waiting time. If the user disagrees with the



TABLE II: Statistical description of Transactions data

.

Mean St.D Mode Min 25% 50% 75% Max

waiting time (s) 44 82 25 0 25 29 38 1,499
gas price (GWei) 32 443 50 0 10 20 50 313,734
gas used 70,124 320,908 21,000 0 21,000 21,969 49,993 8,000,000
gas limit 303,967 947,926 21,000 21,000 42,000 70,000 150,000 8,000,030
size (Byte) 191 499 – 83 112 114 174 31,791

TABLE III: Statistical description of EthGasStation prediction on
the Gas price recommendation (in GWei) for the transaction to be
included at most in two blocks.

Mean St.D Min 25% 50% 75% Max

15.28 6.60 3.0 10.0 20.0 20.0 61.0

Fig. 7: Violin plot of the EthGasStation Oracle’s Gas price categories

waiting time, s/he would change the Gas price to rely on the
expected waiting time.

The analysis of the Gas price of the transactions in the
Transaction Pool shows that 16% of the transactions have a
price equal to the price suggested by the Gas Oracle. The
percentage of transactions having the Gas price equal to the
Gas price suggested by the Oracle is distributed among the
four categories as follows: 1) 7% safe low, 2) 1% fast and
average, and 3) 8% fastest.

Figure 8 presents the percentage of Gas price categories
used in Ethereum Blockchain. The data analysis of the trans-
actions waiting in the Transaction Pool to be added to the
Ethereum blockchain suggests that the categories “fast” and
“average” are not followed by most users probably because
these categories do not respond to their need. On the other

hand, the categories “fastest” and “safe low” are much more
used in practice.

Fig. 8: Usage of Gas Oracles Categories.

We used Equation 1 to calculate the margin of error of
the EthGasStation predictions. EthGasStation claims to have
a 2% margin of error. Table V shows the percentage of error
among the Gas price categories recommended by the Oracle.
As we can see in Table V, the margin of error for every
category is greater than 2%, and the “fast” category shows the
greatest margin with 28% margin. Therefore, EthGasStation
predictions may be less reliable than advertised.

C. Discussion: How to Improve the Margin of Error?

One of the reasons for the EthGasStation Oracle to have
such a margin of error is because it performs its calculations
(a Poisson Regression) to update the Gas predictions every 100
blocks (approximately 25 minutes). We argue that 100 blocks
is not an appropriate interval of time for an Oracle to update
its recommendations. Especially in the Ethereum blockchain,
where the Gas prices can vary a lot within minutes.

In future related work, we aim to show that, by performing
the Poisson Regression at more frequent intervals, it is possible
to improve the accuracy of the prediction of the minimum Gas
price to pay to have the transaction executed in a given time
lapse.

V. THREATS TO VALIDITY

External Validity. In this paper, we analyzed data Gas
predictions from the EthGasStation Oracle. Since Gas is a
concept unique to the Ehtereum blockchain platform, this
study cannot be generalized to other blockchain platforms. We
did not address this threat for two reasons: (i) this paper is an
exploratory study on one specific Oracle; and (ii) analyzing
other types of transaction fees for different blockchains is
outside the scope of this research.



TABLE IV: Statistical description of EthGasStation Gas price categories (in GWei)
.

Mean St.D Mode Min 25% 50% 75% Max

Fastest 15.33 6.60 20 3 10 20.0 20.0 61.0
Fast 4.58 2.42 3 3 3 3.6 5.0 60.0
Average 2.83 0.80 3 1 3 3.0 3.0 14.5
Safe Low 1.34 0.68 1 1 1 1.0 1.1 14.5

TABLE V: Percentage of error among the Gas prices recommended
by EtherGasStation according to Equation 1.

Margin of error
Fastest Fast Average Safe Low

EthGasStation 4% 28% 7% 5%

Construct Validity. We could not find how the oracle
originally calculates its margin of error. Therefore, the oracle
may indeed have the margin of error it claims under its
method. However, since such method for error calculation
is not openly available, we need a properly defined one for
comparison. Therefore, we defined the equation 1 to measure
the margin of error of the Oracle’s predictions.

VI. RELATED WORK

Singh and Hafid [10] proposes a more fine-grained classifi-
cation model that splits the confirmation time of transactions
into eight classes: within 15 seconds, within 30 seconds,
within 1 minute, within 2 minutes, within 5 minutes, within
10 minutes, within 15 minutes and within 30 minutes or
longer. We know that on average, a transaction has to wait for
two block confirmations (∼30 seconds) before being added.
However, in the cases where the model would predict that the
transaction belongs to the ”within 5 minutes” class, there is
no way for the user to know if it would take 3 minutes, rather
than 4 minutes or more. Hence, while the paper presents a
model with good prediction accuracy, it considers confirmation
time prediction as a simple classification problem. It can
only provide a user with an approximation of time it would
take for their transaction to be confirmed, which may or
may not always be ideal. In addition, Singh and Hafid [10]
compare the performance of two machine learning regression
models (Multi-Layer Perceptron and Random Forest) and the
more classical, statistical model (Poisson Regression) on the
task of predicting the confirmation time for a transaction
in Ethereum Blockchain. The authors suggest that machine
learning regression models perform well and better than the
already used statistical approach. However, due to the need for
the model to be periodically retrained and the time taken by the
model to learn new data, the two machine learning regression
models are not the most viable solution for the confirmation
of the time prediction, as the users may need to know the
Oracles’ response in a much shorter time interval.

Pierro and Rocha [8] investigated the factors that influ-
ence the Ethereum transaction fees and the possible resulting
decision-making behaviour of Ethereum Blockchain users,
miners included. They observed that the past history of the
Oracle Gas price prediction is useful to predict the number
of waiting transactions, even though the converse is not true.
The results of the Pearson correlation test showed that they are
instead inversely correlated: when the Oracle price increases,
the number of waiting transactions in the Ethereum network
decreases. It stands to reason that when the oracle suggests a
high price to pay, the users wait to submit a transaction, thus
decreasing the overall number of pending transactions in their
memory pools.

Chen et al. [2] identified seven gas costly patterns that are
not optimized by the Solidity compiler. The authors analyze
4,240 contracts on three gas costly patterns. Their results
show that over 80% of the contracts suffer from those costly
patterns. The authors’ work differs from ours because they
focus on detecting possible waste of gas units, while in this
paper, we focus on the gas price (and the Oracles predictions
for such price).

Ducasse et al. [3] proposed an open-source platform for
blockchain analysis called SmartAnvil. Although SmartAnvil
is intended to be independent of a specific blockchain plat-
form, their work focus on Ethereum blockchain and contracts
written in the Solidity language. For that reason, the authors
have plans to include Gas optimization and estimation on
SmartAnvil in the future, and they argue the importance of
Gas estimation for contract development and analysis.

VII. CONCLUSION

The present study evaluated the validity of the prediction
the EthGasStation oracle makes on the Gas price to pay to
have the transaction recorded in the Blockchain.

We analyzed the oracle’s predictions and have assessed that
it carries a higher margin of error than originally claimed.
EthGasStation claims to have a 2% margin of error, while our
analysis shows that margin to be at least twice as much. For
instance, the “Fastest” category showed a 4% margin of error,
while the “Fast” category showed 28%. We argued the reason
for that higher margin of error is because it cannot take into
account changes in the Ethereum Network in real-time. We
also argued that by updating the Gas price recommendations
at every new block (instead of every 25 minutes), the margin
of error can be lowered considerably.



The data analysis also indicates that the categories “average”
and “fast” are not very used in practice, with less than 1% of
the transactions set the Gas price suggested by the Oracle in
those categories.

As future work, we plan to analyze data on other Gas
Oracles besides the EthGasStation, to see if our findings also
occur in other oracles. We are also going to implement our
oracle to assess the feasibility and reliability to update the
Gas recommendations more frequently.

ACKNOWLEDGMENT

This work is supported by (a) the Fonds de la Recherche
Scientifique-FNRS and the Fonds Wetenschappelijk Onder-
zoek - Vlaanderen (FWO) under EOS Project 30446992
SECO-ASSIST (b) Flanders Make vzw, the strategic research
centre for the manufacturing industry.

REFERENCES

[1] BUTERIN, V. A next generation smart contract & decentralized appli-
cation platform. Ethereum White Paper (2014), 1–36.

[2] CHEN, T., LI, X., LUO, X., AND ZHANG, X. Under-optimized smart
contracts devour your money. In Saner’17 - Early Research Achieve-
ments (2017).

[3] DUCASSE, S., ROCHA, H., BRAGAGNOLO, S., DENKER, M., AND
FRANCOMME, C. Smartanvil: Open-source tool suite for smart contract
analysis. In Blockchain and Web 3.0: Social, Economic, and Techno-
logical Challenges, M. Ragnedda and G. Destefanis, Eds., Routledge
Studies in Science, Technology and Society. Taylor & Francis, 2019,
ch. 13.

[4] ETHEREUM FOUNDATION. Solidity documentation release 0.6.12, jan
2020.

[5] GREENE, W. Models for counts of events. In Econometric Analysis,
7th ed. Pearson Education, 2011, ch. 18, pp. 802–828.

[6] KANDA, R., AND SHUDO, K. Estimation of data propagation time on
the bitcoin network. In Proceedings of the Asian Internet Engineering
Conference (New York, NY, USA, 2019), AINTEC ’19, ACM, pp. 47–
52.

[7] LUU, L., CHU, D.-H., OLICKEL, H., SAXENA, P., AND HOBOR, A.
Making smart contracts smarter. In CCS’2016 (ACM Conference on
Computer and Communications Security) (2016).

[8] PIERRO, G. A., AND ROCHA, H. The influence factors on ethereum
transaction fees. In 2nd International Workshop on Emerging Trends
in Software Engineering for Blockchain (Piscataway, NJ, USA, 2019),
WETSEB ’19, IEEE Press, pp. 24–31.

[9] PORRU, S., PINNA, A., MARCHESI, M., AND TONELLI, R. Blockchain-
oriented software engineering: Challenges and new directions. In Pro-
ceedings of the 39th International Conference on Software Engineering
Companion (2017), ICSE-C ’17, IEEE Press, p. 169–171.

[10] SINGH, H. J., AND HAFID, A. S. Transaction confirmation time
prediction in ethereum blockchain using machine learning, 2019. https:
//arxiv.org/pdf/1911.11592.

[11] WOOD, G. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper. Byzantium version 7e819ec
(Oct 2019), 1–39. [Online]. Available: https://ethereum.github.io/
yellowpaper/paper.pdf.

https://arxiv.org/pdf/1911.11592
https://arxiv.org/pdf/1911.11592
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

	Introduction
	Background
	Block
	Transaction Pool
	Gas Oracle

	Experimental Design
	Retrieving Data
	Cleaning Data
	Modelling Data
	Validation Condition
	Data Modelling

	Analyzing Data

	Case Study: EthGasStation
	Transactions Data Analysis
	Gas Oracle Data Analysis
	Discussion: How to Improve the Margin of Error?

	Threats to Validity
	Related Work
	Conclusion
	References

