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a b s t r a c t

Application development in the Internet of Things (IoT) is challenging because it involves dealing with a wide

range of related issues such as lack of separation of concerns, and lack of high-level of abstractions to address

both the large scale and heterogeneity. Moreover, stakeholders involved in the application development have

to address issues that can be attributed to different life-cycles phases. when developing applications. First, the

application logic has to be analyzed and then separated into a set of distributed tasks for an underlying net-

work. Then, the tasks have to be implemented for the specific hardware. Apart from handling these issues, they

have to deal with other aspects of life-cycle such as changes in application requirements and deployed devices.

Several approaches have been proposed in the closely related fields of wireless sensor network, ubiquitous

and pervasive computing, and software engineering in general to address the above challenges. However, ex-

isting approaches only cover limited subsets of the above mentioned challenges when applied to the IoT. This

paper proposes an integrated approach for addressing the above mentioned challenges. The main contribu-

tions of this paper are: (1) a development methodology that separates IoT application development into differ-

ent concerns and provides a conceptual framework to develop an application, (2) a development framework

that implements the development methodology to support actions of stakeholders. The development frame-

work provides a set of modeling languages to specify each development concern and abstracts the scale and

heterogeneity related complexity. It integrates code generation, task-mapping, and linking techniques to pro-

vide automation. Code generation supports the application development phase by producing a programming

framework that allows stakeholders to focus on the application logic, while our mapping and linking tech-

niques together support the deployment phase by producing device-specific code to result in a distributed sys-

tem collaboratively hosted by individual devices. Our evaluation based on two realistic scenarios shows that

the use of our approach improves the productivity of stakeholders involved in the application development.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

The recent technological advances have been fueling a tremen-

dous growth in a number of smart objects (Vasseur and Dunkels,

2010, p. 3) such as temperature sensors, smoke detectors, fire alarms,

parking space controllers. They can sense the physical world by ob-

taining information from sensors, affect the physical world by trig-

gering actions using actuators, engage users by interacting with them

whenever necessary, and process captured data and communicate it

to outside world. In the Internet of Things (CASAGRAS, 2008), smart

objects (or “things”) acquire intelligence thanks to the fact that they

can communicate with each other and cooperate with their neighbors

to reach a common goal (Atzori et al., 2010). For example, a building

interacts with its residents and surrounding buildings in case of fire
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or safety and security of residents, offices adjust themselves auto-

atically accordingly to user preferences while minimizing energy

onsumption, or traffic signals control in-flow of vehicles according

o the current highway status (de Saint-Exupery, 2009).

As evident above, IoT applications will involve interactions among

arge numbers of disparate devices, many of them directly interact-

ng with their physical surroundings. An important challenge that

eeds to be addressed in the IoT, therefore, is to enable the rapid

evelopment of IoT applications with minimal effort by the various

takeholders1 involved in the process. Similar challenges have al-

eady been addressed in the closely related fields of Wireless Sensor

etworks (WSNs) (Vasseur and Dunkels, 2010, p. 11) and ubiquitous

nd pervasive computing (Vasseur and Dunkels, 2010, p. 7), regarded
1 Throughout this paper, we use the term stakeholders as used in software engi-

eering to mean people, who are involved in the application development. Examples

f stakeholders defined in Taylor et al. (2009) are software designer, developer, domain

xpert, technologist, etc.
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Fig. 1. A cluster of multi-floored buildings with deployed devices with (1) temper-

ature sensor, (2) heater, (3) badge reader, (4) badge, (5) alarm, (6) smoke detector,

(7) sprinkler, (8) light, (9) data storage, and (10) monitor.
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s precursors to the modern day IoT. While the main challenge in

he former is the large scale—hundreds to thousands of largely similar

evices, the primary concern in the latter has been the heterogeneity

f devices and the major role that the user’s own interaction with

hese devices plays in these systems (cf. the classic “smart home”

cenario where a user controls lights and receives notifications from

is refrigerator and toaster.). It is the goal of our work to enable the

evelopment of such applications. In the following, we discuss one of

uch applications.

.1. Application example

We consider a hypothetical building system utilized by a com-

any. This building system might consist of several buildings, with

ach building in turn consisting of one or more floors, each with sev-

ral rooms. It may consist of a large number of heterogeneous devices

quipped with sensors, actuators, storage, user interfaces. Fig. 1 de-

cribes the building automation domain with various devices. Many

pplications can be developed using these devices, one of which we

iscuss below.

mart building application. To accommodate the mobile worker’s

reference in the reserved room, a database is used to keep the pro-

le of each worker, including his preferred lighting and temperature

evel. A badge reader in the room detects the worker’s entry event

nd queries the database for the worker’s preference. Based on this,

he thresholds used by the room’s devices are updated. To reduce

lectricity waste when a person leaves the room, detected by badge

isappeared event, lighting and heating levels are automatically set

o the lowest level; all according to the building’s policy. The system

ay also include user interfaces that allow a late worker to control

eater of his room and request the profile database to get his light-

ng and temperature preferences. Moreover, the system generates the

urrent status (e.g., temperature, energy consumption) of each room,

hich is then aggregated and used to determine the current status of

ach floor and, in turn, the entire building. A monitor installed at the

uilding entrance presents the information to the building operator
or situational awareness. c
.2. IoT application development challenges

This section reviews the application development challenges as

leaned from our analysis of applications such as the one discussed

n the previous section. The challenges we address in this work are as

ollows:

ack of division of roles. IoT application development is a multi-

isciplined process where knowledge from multiple concerns inter-

ects. Traditional IoT application development assumes that the indi-

iduals involved in the application development have similar skills.

his is in clear conflict with the varied set of skills required dur-

ng the process, including domain expertise (e.g., the smart building

pplication reason in terms of rooms and floors, the smart city ap-

lications are expressed in terms of sectors.), deployment-specific

nowledge (e.g., understanding of the specific target area where the

pplication is to be deployed, mapping of processing components to

evices in the target deployment), application design and implemen-

ation knowledge, and platform-specific knowledge (e.g., Android-

pecific APIs to get data from sensors, vendor-specific database such

s MySQL), a challenge recognized by recent works such as Chen et al.

2012) and Picco (2010).

eterogeneity. IoT applications execute on a network consisting of

eterogeneous devices in terms of types (e.g., sensing, actuating,

torage, and user interface devices), interaction modes (e.g. pub-

ish/subscribe (Eugster et al., 2003), request/response (Berson, 1996),

ommand (Andrews, 1991)), as well as different platforms (e.g.,

ndroid mobile OS, Java SE on laptops). The heterogeneity largely

preads into the application code and makes the portability of code

o a different deployment difficult.

cale. As mentioned above, IoT applications execute on distributed

ystems consisting of hundreds to thousands of devices, involving

he coordination of their activities (e.g., temperature values are com-

uted at per-room and then per-floor levels to calculate an average

emperature value of a building). Requiring the ability of reasoning at

uch levels of scale is impractical in general, as has been largely the

iew in the WSN community.

ifferent life cycle phases. Stakeholders have to address issues that

re attributed to different life cycles phases, including development,

eployment, and maintenance (Bischoff and Kortuem, 2007). At the

evelopment phase, the application logic has to be analyzed and

eparated into a set of distributed tasks for the underlying network

onsisting of a large number of heterogeneous entities. Then, the tasks

ave to be implemented for the specific platform of a device. At the

eployment phase, the application logic has to be deployed onto a

arge number of devices. Apart from handling these issues, stakehold-

rs have to keep in mind evolution issues both in the development

change in functionality of an application such as the smart build-

ng application is extended by including fire detection functionality)

nd deployment phase (e.g. adding/removing devices in deployment

cenarios such as more temperature sensors are added to sense accu-

ate temperature values in the building) at the maintenance phase.

anual effort in all above three phases for hundreds to thousands of

eterogeneous devices is a time-consuming and error-prone process.

In order to address the above mentioned challenges, various ap-

roaches have been proposed (for a detailed discussion of various

ystems available for application development, refer Section 5). One

f the approaches is node-centric programming (Costa et al., 2007;

omán et al., 2002; Whitehouse et al., 2004). It allows for the de-

elopment of extremely efficient systems based on complete control

ver individual devices. However, it is not easy to use for IoT appli-

ations due to the large size and heterogeneity of systems. In order
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to address node-centric programming limitation, various macropro-

gramming systems (Bischoff and Kortuem, 2007; Pathak et al., 2007)

have been proposed. However, most of macroprogramming systems

largely focus on development phase while ignoring the fact that it

represents a tiny fraction of the application development life-cycle.

The lack of a software engineering methodology to support the entire

application development life-cycle commonly results in highly diffi-

cult to maintain, reuse, and platform-dependent design, which can be

tackled by the model-driven approach. To address the limitations of

macroprogramming systems, approaches based on model-driven de-

sign (MDD) have been proposed (France and Rumpe, 2007; Kulkarni

and Reddy, 2003; Mellor et al., 2003; Schmidt, 2006). Major benefits

came from the basic idea that by separating different concerns of a

system at a certain level of abstraction, and by providing transforma-

tion engines to convert these abstractions to a target code, productiv-

ity (e.g., reusability, maintainability) in the application development

process can be improved.

1.3. Contributions

Our aim is to make IoT application development easy for stake-

holders as is the case in software engineering in general, by taking

inspiration from the MDD approach and building upon work in sen-

sor network macroprogramming. We achieve this aim by separating

IoT application development into different concerns and integrating

a set of high-level languages2 to specify them. We provide automa-

tion techniques at different phases of IoT application development to

reduce development effort. We now present these contributions in

detail described below:

Development methodology. We propose a development methodology

that defines a precise sequence of steps to be followed to develop

IoT applications, thus facilitating IoT application development. These

steps are separated into four concerns, namely, domain, functional,

deployment, and platform. This separation allows stakeholders to

deal with them individually and reuse them across applications. Each

concern is matched with a precise stakeholder according to skills. The

clear identification of expectations and specialized skills of each type

of stakeholders helps them to play their part effectively.

Development framework. To support the actions of each stakeholder,

the development methodology is implemented as a concrete devel-

opment framework.3 It provides a set of modeling languages, each

named after “Srijan”,4 and offers automation techniques at different

phases of IoT application development, including the following:

• A set of modeling languages. To aid stakeholders, the development

framework integrates three modeling languages that abstract the

scale and heterogeneity-related complexity: (1) Srijan Vocabu-

lary Language (SVL) to describe domain-specific features of an

IoT application, (2) Srijan Architecture Language (SAL) to describe

application-specific functionality of an IoT application, (3) Srijan

Deployment Language (SDL) to describe deployment-specific fea-

tures consisting information about a physical environment where

devices are deployed.
• Automation techniques. The development framework is supported

by code-generation, task-mapping, and linking techniques. These

three techniques together provide automation at various phases
2 Please note that high-level languages (e.g., AADL, EAST-ADL, SysML, etc.) for IoT

have been investigated at length in the domains of pervasive/ubiquitous computing and

wireless sensor network. However, their integration to our development framework

in an appropriate way is our contribution.
3 It includes support programs, code libraries, high-level languages or other software

that help stakeholders to develop and glue together different components of a software

product.
4 Srijan is the sanskrit word for “creation”.
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of IoT application development. Code generation supports the ap-

plication development phase by producing a programming frame-

work that reduces the effort in specifying the details of the compo-

nents of an IoT application. Mapping and linking together support

the deployment phase by producing device-specific code to re-

sult in a distributed system collaboratively hosted by individual

devices.

Our work on the above is supported at the lower layers by a mid-

leware that enables delivery of messages across physical regions,

hus enabling our abstractions for managing large scales in the Inter-

et of Things.

utline. The remainder of this paper is organized as follows: Section 2

resents our development methodology and its development frame-

ork. This includes details of on modeling languages, automation

echniques, and our approach for handling evolutions. Section 3

resents an implementation of our development framework. We

resent tools, technologies, and programming languages used to im-

lement this development framework. Section 4 evaluates the de-

elopment framework in a quantitative manner. Section 5 explores

tate of the art approaches for developing IoT applications. Section 6

ummarizes this paper and Section 7 describes briefly some future

irections of this work.

. Our approach to IoT application development

Applying separation of concerns design principal from software

ngineering, we break the identified concepts and associations among

hem into different concerns represented in conceptual model (Patel

t al., 2011), described in Section 2.1. The identified concepts are

inked together into a well-defined and structured methodology,

escribed in Section 2.2. We implement the proposed develop-

ent methodology as a concrete development framework (Patel,

013; Patel et al., 2014, 2013; Soukaras et al., 2015), presented in

ection 2.3.

.1. Conceptual model

A conceptual model often serves as a base of knowledge about a

roblem area (Fowler, 1996). It represents the concepts as well as the

ssociations among them and also attempts to clarify the meaning of

arious terms. Taking inspiration from previous efforts (Bischoff and

ortuem, 2007; Cassou et al., 2011; Doddapaneni et al., 2012), we have

dentified four major concerns for IoT application development. Fig. 2

llustrates the concepts and their associations along with these four

eparate concerns: (1) domain-specific concepts, (2) functionality-

pecific concepts, (3) deployment-specific concepts, and (4) platform-

pecific concepts.

.1.1. Domain-specific concepts

The concepts that fall into this category are specific to a target

pplication domain (e.g., building automation, transport, etc.). For

xample, the building automation domain is reasoned in terms of

ooms and floors, while the transport domain is expressed in terms

f highway sectors. Furthermore, each domain has a set of entities

f interest (e.g., average temperature of a building, smoke presence

n a room), which are observed and controlled by sensors and actua-

ors respectively. Storages store information about entities of interest,

nd user interfaces enable users to interact with entities of interest

e.g., receiving notification in case of fire in a building, controlling the

emperature of a room). We describe these concepts in detail below:

• An entity of interest (EoI) is an object (e.g., room, book, plant),

including attributes that describe it, and its state that is relevant

from a user or an application perspective (Haller, 2010, p. 1). The
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Fig. 2. Conceptual model for IoT applications.
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entity of interest has an observable property called phenomenon.

Typical examples are the temperature value of a room and a tag

ID.
• A resource is a conceptual representation of a sensor, an actuator,

a storage, or a user interface. We consider the following types of

resources:

– A sensor has the ability to detect changes in the environment.

Thermometer and tag readers are examples of sensors. The

sensor observes a phenomenon of an EoI. For instance, a tem-

perature sensor observes the temperature phenomenon of a

room.

– An actuator makes changes in the environment through an

action. Heating or cooling elements, speakers, lights are exam-

ples of actuators. The actuator affects a phenomenon of an EoI

by performing actions. For instance, a heater is set to control a

temperature level of a room.

– A storage has the ability of storing data in a persistent manner.

The storage stores information about a phenomenon of an EoI.

For instance, a database server stores information about an

employee’s temperature preference.

– A user interface represents tasks available to users to interact

with entities of interest. For the building automation domain, a

task could be receiving a fire notification in case of emergency

or controlling a heater according to a temperature preference.

• A device is located in a region (Tubaishat and Madria, 2003). The

region is used to specify the location of a device. In the build-

ing automation domain, a region (or location) of a device can be

expressed in terms of building, room, and floor IDs.
 a
.1.2. Functionality-specific concepts

The concepts that fall into this category describe computational

lements of an application and interactions among them. A computa-

ional element is a type of software component, which is an architec-

ural entity that (1) encapsulates a subset of the system’s functionality

nd/or data, (2) restricts access to that subset via an explicitly defined

nterface (Taylor et al., 2009, p. 69). We use the term application logic

o refer a functionality of a software component. An example of the

pplication logic is to open a window when the average temperature

alue of a room is greater than 30 ◦C.

The conceptual model contains the following functionality-

pecific software component, a computational service, which is a

ype of software component that consumes one or more units of in-

ormation as inputs, processes it, and generates an output. An output

ould be data message that is consumed by others or a command mes-

age that triggers an action of an actuator. A computational service is

representation of the processing element in an application.

A software component communicates-with other software com-

onents to exchange data or control. These interactions might con-

ain instances of various interaction modes such as request–response,

ublish–subscribe, and command. Note that this is in principle an

nstance of the component-port-connector architecture used in soft-

are engineering.

.1.3. Deployment-specific concepts

The concepts that fall into this category describe information about

evices. Each device hosts zero or more resources. For example, a

evice could host resources such as a temperature sensor to sense, a

eater to control a temperature level, a monitor to display a temper-

ture value, a storage to store temperature readings, etc. Each device
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is located-in regions. For instance, a device is located-in room#1 of

floor#12 in building#14. We consider the following definition of a

device:

• A device is an entity that provides resources the ability of inter-

acting with other devices. Mobile phones, and personal computers

are examples of devices.

2.1.4. Platform-specific concepts

The concepts that fall into this category are computer programs

that act as a (operating system-specific) translator between a hard-

ware device and an application. We identify the following platform-

specific concepts:

• A sensor driver is a type of software component that operates

on a sensor attached to a device. It accesses data observed by the

sensor and generates the meaningful data that can be used by

other software components. For instance, a temperature sensor

driver generates temperature values and its meta-data such as unit

of measurement, time of sensing. Another software component

takes this temperature data as input and calculates the average

temperature of the room.
• An actuator driver is a type of software component that controls

an actuator attached to a device. It translates a command from

other software components and actuates the actuator appropri-

ately. For instance, a heater driver translates a command “turn the

heater on” to regulate the temperature level.
• A storage service is a type of software component that provides

a read and write access to a storage. A storage service provides

access to the storage. Other software components access data from

the storage by requesting the storage service. For instance, MySQL

storage service provides access to a database server.
• An end-user application is a type of software component that

is designed to help a user to perform tasks (e.g., receiving notifi-

cations, submitting information). It provides access to available

tasks. For instance, in the smart building application a user could

provide his temperature preferences using an application installed

on his smart phone.
Fig. 3. IoT application develop
The next section presents a development methodology that links

he above four concerns and provides a conceptual framework to

evelop IoT applications.

.2. A development methodology

To make IoT application development easy, stakeholders should be

rovided a structured and well-defined application development pro-

ess (referred to as development methodology). This section presents

development methodology that integrates different development

oncerns discussed in Section 2.1 and provides a conceptual frame-

ork for IoT application development. In addition to this, it assigns

precise role to each stakeholder commensurate with his skills and

esponsibilities.

As stated in Section 1.2, IoT application development is a

ulti-disciplined process where knowledge from multiple concerns

ntersects. So far, IoT application development assumes that the in-

ividuals have similar skills. While this may be true for simple/small

pplications for single-use deployments, as the IoT gains wide ac-

eptance, the need for sound software engineering approaches to

dequately manage the development of complex applications arises.

Taking inspiration from ideas proposed in the 4+1 view model of

oftware architecture (Kruchten, 1995), collaboration model for smart

paces (Chen et al., 2012), and tool-based methodology for pervasive

omputing (Cassou et al., 2011), we propose a development method-

logy that provides a conceptual framework to develop an IoT ap-

lication (detailed in Fig. 3). The development methodology divides

he responsibilities of stakeholders into five distinct roles—domain

xpert, software designer, application developer, device developer,

nd network manager. Note that although these roles have been dis-

ussed in the software engineering literature in general, e.g., domain

xpert and software designer in (Taylor et al., 2009, p. 657), applica-

ion developer (Cassou et al., 2011, p. 3), their clear identification for

oT applications is largely missing. Due to the existence of various,

lightly varying, definitions in literature, we summarize the skills and

esponsibilities of the various stakeholders in Table 1

An application corresponds to a specific application do-

ain (e.g., building automation, health-care, transport) consisting of
ment: overall process.
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Table 1

Roles in IoT application development.

Role Skills Responsibilities

Domain expert Understands domain concepts, including the data types produced by

the sensors, consumed by actuators, accessed from storages, user’s

interactions, and how the system is divided into regions.

Specify the vocabulary of an application domain to be used by

applications in the domain.

Software designer Software architecture concepts, including the proper use of

interaction modes such as publish–subscribe, command, and

request–response for use in the application.

Define the structure of an IoT application by specifying the software

components and their generate, consume, and command relationships.

Application developer Skilled in algorithm design and use of programming languages. Develop the application logic of the computational services in the

application.

Device developer Deep understanding of the inputs/outputs, and protocols of the

individual devices.

Write drivers for the sensors, actuators, storages, and end-user

applications used in the domain.

Network manager Deep understanding of the specific target area where the application

is to be deployed.

Install the application on the system at hand; this process may involve

the generation of binaries or bytecode, and configuring middleware.
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5 We assume that the application developer uses an object-oriented language.
6 Our work excludes low-end computing devices (e.g., SunSpoT, TelosB, Tmote Sky,

etc.). We believe this is a reasonable assumption because technological advances in

embedded system result into devices with more and more computational power and

memory.
omain-specific concepts. Keeping this in mind, we separate the

omain concern from other concerns (see Fig. 3, stage 1). The main

dvantage of this separation is that domain-specific knowledge can

e made available to stakeholders and reused across applications of a

ame application domain.

IoT applications closely interact with the physical world. Conse-

uently, changes in either of them have a direct influence on the

ther. The changes could be technological advances with new soft-

are features, a change in functionality of an application, a change in

istribution of devices, and adding or replacing devices. Considering

his aspect, we separate IoT application development into the plat-

orm, functional, and deployment concern at the second stage (see

ig. 3, stage 2). Thus, stakeholders can deal with them individually

nd reuse them across applications. The final stage combines and

acks the code generated by the second stage into packages that can

e deployed on devices (see Fig. 3, stage 3).

.3. Development framework

To support actions of stakeholders, the development methodology

iscussed in Section 2.2 is implemented as a concrete development

ramework. This section presents this development framework that

rovides a set of modeling languages, each named after Srijan, and

ffers automation techniques at different phases of IoT application

evelopment for the respective concerns.

.3.1. Domain concern

This concern is related to domain-specific concepts of an IoT

pplication. It consists of the following steps:

• Specifying domain vocabulary. The domain expert specifies a do-

main vocabulary (step 1 in Fig. 3) using the Srijan Vocabulary Lan-

guage (SVL). The vocabulary includes specification of resources,

which are responsible for interacting with entities of interest. In

the vocabulary, resources are specified in a high-level manner to

abstract low-level details from the domain expert. Moreover, the

vocabulary includes definitions of regions that define spatial par-

titions (e.g., room, floor, building) of a system.
• Compiling vocabulary specification. Leveraging the vocabulary, the

development framework generates (step 2 in Fig. 3): (1) a vocabu-

lary framework to aid the device developer, (2) a customized archi-

tecture grammar according to the vocabulary to aid the software

designer, and (3) a customized deployment grammar according

to the vocabulary to aid the network manager. The key advan-

tage of this customization is that the domain-specific concepts

defined in the vocabulary are made available to other stakehold-

ers and can be reused across applications of the same application

domain.
.3.2. Functional concern

This concern is related to functionality-specific concepts of an IoT

pplication. It consists of the following steps:

• Specifying application architecture. Using a customized architec-

ture grammar, the software designer specifies an application ar-

chitecture (step 3 in Fig. 3) using the Srijan Architecture Lan-

guage (SAL). SAL is an architecture description language (ADL)

designed for specifying computational services and their interac-

tions with other software components. To facilitate scalable oper-

ations within IoT applications, SAL offers scope constructs. These

constructs allow the software designer to group devices based

on their spatial relationship to form a cluster (e.g., “devices are

in room#1”) and to place a cluster head to receive and process

data from that cluster. The grouping and cluster head mechanism

can be recursively applied to form a hierarchical clustering that

facilitates the scalable operations within IoT applications.
• Compiling architecture specification. The development framework

leverages an architecture specification to support the application

developer (step 4 in Fig. 3). To describe the application logic of

each computational service, the application developer is provided

an architecture framework, pre-configured according to the archi-

tecture specification of an application, an approach similar to the

one discussed in Cassou et al. (2009).
• Implementing application logic. To describe the application logic of

each computational service, the application developer leverages

a generated architecture framework (step 5 in Fig. 3). It contains

abstract classes,5 corresponding to each computational service,

that hide interaction details with other software components and

allow the application developer to focus only on application logic.

The application developer implements only the abstract methods

of generated abstract classes.

.3.3. Deployment concern

This concern is related to deployment-specific concepts of an IoT

pplication. It consists of the following steps:

• Specifying target deployment. Using a customized deployment

grammar, the network manager describes a deployment specifica-

tion (step 6 in Fig. 3) using the Srijan Deployment Language (SDL).

The deployment specification includes the details of each device,6

including its regions (in terms of values of the regions defined in

the vocabulary), resources hosted by devices (a subset of those

defined in the vocabulary), and the type of the device. Ideally,
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Fig. 4. Class diagram of domain-specific concepts.
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the same IoT application could be deployed on different target

deployments (e.g., the same inventory tracking application can be

deployed in different warehouses). This requirement is dictated by

separating a deployment specification from other specifications.
• Mapping. The mapper produces a mapping from a set of compu-

tational services to a set of devices (step 7 in Fig. 3). It takes

as input a set of placement rules of computational services from

an architecture specification and a set of devices defined in a de-

ployment specification. The mapper decides devices where each

computational service will be deployed.

2.3.4. Platform concern

This concern is related to platform-specific concepts of an IoT ap-

plication. It consists of the following step:

• Implementing device drivers. Leveraging the vocabulary, our sys-

tem generates a vocabulary framework to aid the device devel-

oper (step 8 in Fig. 3). The vocabulary framework contains in-

terfaces and concrete classes corresponding to resources defined in

the vocabulary. The concrete classes contain concrete methods for

interacting with other software components and platform-specific

device drivers. The interfaces are implemented by the device de-

veloper to write platform-specific device drivers.

2.3.5. Linking

The linker combines and packs code generated by various stages

into packages that can be deployed on devices. It merges generated ar-

chitecture framework, application logic, mapping files, device drivers,

and vocabulary framework (step 9 in Fig. 3). This stage supports the

application deployment phase by producing device-specific code to

result in a distributed software system collaboratively hosted by indi-

vidual devices, thus providing automation at the deployment phase.7

2.3.6. Handling evolution

Evolution is an important aspect in IoT application development

where new resources and computational services are added, removed,

or extended. To deal with these changes, our development frame-

work separates IoT application development into different concerns
7 We assume that a middleware is already installed on the deployed devices. The

installed middleware enables inter-device communication among devices.

u

p

s

T

nd allows an iterative development (Sommerville, 2010) for these

oncerns.

This next section provides the details of our approach including

hree modeling languages (SVL, SAL, and SDL), programming frame-

orks to aid stakeholders, and an approach for handling evolution.

his section refers to the building automation domain discussed in

ection 1.1 for describing examples.

.4. Specifying domain concern with the SVL

The domain concern describes an application domain of an IoT

pplication. The domain expert specifies it using SVL. A vocabulary

ncludes specification of resources that are responsible for interacting

ith entities of interest, including sensors, actuators, storages, and

ser interfaces. Moreover, it includes region definitions specific to the

pplication domain. We now present SVL for describing the domain

oncern.

SVL is designed to enable the domain expert to describe a domain

ocabulary domain. It offers constructs to specify concepts that inter-

ct with entities of interest. Fig. 4 illustrates domain-specific concepts

defined in the conceptual model Fig. 2) that can be specified using

VL. These concepts can be described as V = (P,D,R). P represents

he set of regions, D represents the set of data structure, and R rep-

esents the set of resources. We describe these concepts in detail as

ollows:

egions (P). It represents the set of regions that are used to specify

ocations of devices. A region definition includes a region label and re-

ion type. For example, the building automation is reasoned in terms

f rooms and floors (considered as region labels), while the transport

omain is expressed in terms of highway sectors. Each room or floor

n a building may be annotated with an integer value (e.g. room:1 in-

erprets as room number 1) considered as region type. This construct

s declared using the regions keyword. Listing 1 (lines 1–4) shows

egion definitions for the building automation domain.

ata structures (D). Each resource is characterized by types of in-

ormation it generates or consumes. A set of information is defined

sing the structs keyword (Listing 1, line 5). For instance, a tem-

erature sensor may generate a temperature value and unit of mea-

urement (e.g., Celsius or Fahrenheit). This information is defined as

empStruct and its two fields (Listing 1, lines 9–11).
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1 regions:

2 Building: integer;

3 Floor: integer;

4 Room: integer;

5 structs:

6 BadgeDetectedStruct

7 badgeID: string;

8 timeStamp: long;

9 TempStruct

10 tempValue: double;

11 unitOfMeasurement: string;

12 resources:

13 sensors:

14 BadgeReader

15 generate badgeDetected:

BadgeDetectedStruct;

16 TemperatureSensor

17 generate tempMeasurement: TempStruct;

18 actuators:

19 Heater

20 action Off();

21 action SetTemp(setTemp: TempStruct);

22 storages:

23 ProfileDB

24 generate profile: TempStruct

accessed -by badgeID: string;

25 userinterfaces:

26 EndUserGUI

27 command Off();

28 action DisplayData(displayTemp:

TempStruct);

29 request profile(badgeID);

Listing 1. Code snippet of the building automation domain using SVL. Keywords are

printed in blue.
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8 Since a deployment infrastructure may be shared among a number of different IoT

applications and users, it is likely that these applications may have actuation conflicts.

This work assumes actuators are pre-configured which can resolve actuation conflicts.
9 Even though IoT applications may include rich diverse set of storages available

today on the Internet (e.g., RDBMs and noSQL databases, using content that is both

user generated such as photos as well as machine generated such as sensor data), we

restrict our work to key-value data storage services.
esources (R). It defines resources that might be attached with de-

ices, including sensors, actuators, storages, or user interfaces. It is

efined as R = (Rsensor,Ractuator,Rstorage,Rui). Rsensor represents a

et of sensors, Ractuator represents a set of actuators, Rstorage repre-

ents a set of storages, and Rui represents a set of user interfaces. We

escribe them in detail as follows:

• Sensors (Rsensor): It defines a set of various types of sensors (e.g.,

temperature sensor, smoke detector). A set of sensors is de-

clared using the sensors keyword (Listing 1, line 13). Sgenerate

is a set of sensor measurements produced by Rsensor. Each sen-

sor (S ∈ Rsensor) produces one or more sensor measurements (op ∈
Sgenerate) along with the data-types specified in the data struc-

ture (D). A sensor measurement of each sensor is declared using

the generate keyword (Listing 1, line 17). For instance, a tempera-

ture sensor generates a temperature measurement of Tempstruct
type (lines 16–17) defined in data structures (lines 9–11).
• Actuators (Ractuator): It defines a set of various types of actua-

tor8 (e.g., heater, alarm). A set of actuators is declared using the

actuators keyword (Listing 1, line 18). Aaction is a set of actions

performed by Ractuator. Each actuator (A ∈ Ractuator) has one or

more actions (a ∈ Aaction) that is declared using the action key-

word. An action of an actuator may take inputs specified as param-

eters of an action (Listing 1, line 21). For instance, a heater may

have two actions. One is to switch off the heater and second is to

set the heater according to a user’s temperature preference illus-

trated in Listing 1, lines 19–21. The SetTemp action takes a user’s

temperature preference shown in line 21.
• Storages (Rstorage): It defines a set of storages9 (e.g., user’s pro-

file storage) that might be attached to a device. A set of stor-

ages is declared using the storages keyword (Listing 1, line 22).

ST generate represents a set of retrievals of Rstorage. A retrieval (rq ∈
ST generate) from the storage (ST ∈ Rstorage) requires a param-

eter. Such a parameter is specified using the accessed-by key-

word (Listing 1, line 24). For instance, a user’s profile is accessed

from profile storage by his unique badge identification illustrated

in Listing 1, lines 23–24.
• User interfaces (Rui): It defines a set of tasks (e.g., controlling a

heater, receiving notification from a fire alarm, or requesting pref-

erence information from a database server) available to users to

interact with other entities. A set of user interfaces is declared

using the user interfaces keyword (Listing 1, line 25). The user

interface provides the following tasks:

– Command (Ucommand): It is a set of commands available to users

to control actuators, represented as Ucommand. A user can con-

trol an actuator by triggering a command (e.g., switch off the

heater) declared using the command keyword (Listing 1, line 27).

– Action (Uaction): It is a set of actions that can be invoked by other

entities to notify users, represented as Uaction. The other re-

sources may notify a user (e.g., notify the current temperature)

by invoking an action provided by the user interface. The no-

tification task is declared using the action keyword (Listing 1,

line 28).

– Request (Urequest): It is a set of request though which a user can

request other resources for data, represented as Urequest. A user

can retrieve data by requesting a resource (e.g., retrieve my

temperature preference). This is declared using the request
keyword (Listing 1, line 29).

The regions (P), data structures (D), and resources (R) defined

sing SVL in the vocabulary are used to customize the grammar of

AL, and can be exploited by tools to provide support such as code

ompletion to the software designer, discussed next.

.5. Specifying functional concern

This concern describes computational services and how they in-

eract with each other to describe functionality of an application. We

escribe the computational services and interactions among them

sing SAL (discussed in Section 2.5.1). The development framework

ustomizes the SAL grammar to make domain-specific knowledge

efined in the vocabulary available to the software designer and use

t to generate an architecture framework. The application developer

everages this generated framework and implements the application

ogic on top of it (discussed in Section 2.5.2).
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1 computationalServices:

2 Proximity

3 generate tempPref: UserTempPrefStruct;

4 consume badgeDetected from hops :0: Room;

5 request profile(

badgeID);

6 in -region: Room;

7 RoomAvgTemp

8 generate roomAvgTempMeasurement:TempStruct;

9 consume tempMeasurement from hops :0:

Room ;

10 in -region: Room;

11 RoomController

12 consume roomAvgTempMeasurement from hops :0:

Room;

13 consume tempPref from hops :0: Room;

14 command SetTemp( setTemp) to hops :0: Room;

15 in -region: Room;

Listing 2. A code snippet of the architecture specification for the smart building ap-

plication using SAL. The language keywords are printed in blue, while the keywords

derived from vocabulary are printed underlined.
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2.5.1. Srijan architecture language (SAL)

Based on a vocabulary, the SAL grammar is customized to en-

able the software designer to design an application. Specifically, sen-

sors (Rsensor), actuators (Ractuator), storages (Rstorage), user inter-

faces (Rui), and regions (P) defined in the vocabulary become possi-

ble set of values for certain attributes in SAL (see underlined words in

Listing 2).

Fig. 5 illustrates concepts related-to a computational service

that can be specified using SAL. It can be described as Av = (C).
C represents a set of computational services. It is described as C =
(Cgenerate,Cconsume,Crequest,Ccommand,Cin-region,Chops). Cgenerate repre-

sents a set of outputs produced by computational services. Cconsume is

a set of inputs consumed by computational services. The inputs could

be data produced by other computational services or sensors (Rsensor).
  1..*

Architecture
Specification

  * 
Struct Computat

Servic

Consume Generate

Input

  1..*

 1..*

Fig. 5. Class diagram of functio
request represents a set of request by computational services to re-

rieve data from the storages (Rstorage). Ccommand represents a set of

ommands to invoke actuators (Ractuator) or user interfaces (Rui).

in-region is a set of regions (Rregion) where computational services

an be placed. Chops is a set of regions (Rregion) where computational

ervices receive data. In the following, we describe these concepts in

etail.

onsume (Cconsume) and generate (Cgenerate). These two concepts to-

ether define publish/subscribe interaction mode that provides sub-

cribers with the ability to express their interest in an event, generated

y a publisher, that matches their registered interest. A computational

ervice represents the publish and subscribe using generate and con-

ume concept respectively. We describe these two concepts in details

s follows:

• Consume: It represents a set of subscriptions (or consumes) ex-

pressed by computational services to get event notifications gen-

erated by sensors (Sgenerate) defined in the vocabulary specification

or other computational services (Cgenerate) defined in the archi-

tecture specification. Thus, Cconsume can be Cgenerate ∪ Sgenerate. A

consume (c ∈ Cconsume) of a computational service is expressed us-

ing the consume keyword. The computational service expresses its

interest by an event name. For instance, a computational service

RoomAvgTemp, which calculates an average temperature of a room,

subscribes its interest by expressing event name tempMeasurement
illustrated in Listing 2, line 9.

• Generate: It represents a set of publications (or generates) that

are produced by computational services. A generate (g ∈ Cgenerate)

of a computational service is expressed using the generate key-

word. The computational service transforms data to be consumed

by other computational services in accordance with the applica-

tion needs. For instance, the computational service RoomAvgTemp
consumes temperature measurements (i.e., tempMeasurement),

calculates an average temperature of a room, and generates

roomAvgTempMeasurement (Listing 2, lines 7–9) that is used by

RoomController service (Listing 2, lines 11–12).

equest (Crequest). It is a set of requests, issued by computational

ervices, to retrieve data from storages (Rstorage) defined in the

ocabulary specification. A request is a one-to-one synchronous in-

eraction with a return values. In order to fetch data, a requester sends

request message containing an access parameter to a responder. The
ional
e  1..*

Region

Request Command

Output

  1..*

nality-specific concepts.
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esponder receives and processes the request message, ultimately re-

urns an appropriate message as a response. An access (rq ∈ Crequest)

f the computational service is specified using request keyword.

or instance, a computational service Proximity (Listing 2, line 5),

hich wants to access user’s profile data, sends a request message

ontaining profile information as an access parameter to a storage

rofileDB (Listing 1, line 24).

ommand (Ccommand). It is a set of commands, issued by a computa-

ional service to trigger actions provided by actuators (Ractuator) or

ser interfaces (Rui). So, it can be a subset of Aaction ∪ Uaction. The

oftware designer can pass arguments to a command depend on ac-

ion signature provided by actuators or user interfaces. Moreover, he

pecifies a scope of command, which specifies a region where com-

ands are issued. A command is specified using the command keyword.

n example of command invocation is given in line 14 of Listing 2. The

oom controller service (i.e., roomController), which regulates tem-

erature, issues a SetTemp command with a preferred temperature as

n argument (i.e., settemp) to heaters (Listing 1, line 21).

n-region (Cin-region) and hops (Chops). To facilitate the scalable op-

rations within an IoT application, devices should be grouped to

orm a cluster based on their spatial relationship (Shen et al.,

001) (e.g.,“devices are in room#1”). The grouping could be recur-

ively applied to form a hierarchy of clusters. Within a cluster, a

omputational service is placed to receive and process data from its

luster of interest. Fig. 6 shows this concept for more clarity. The

emperature data is first routed to a local average temperature ser-

ice (i.e., RoomAvgTemp), deployed in per room, then later per floor

i.e., FloorAvgTemp), and then ultimately routed to building average

emperature service (i.e., BuildingAvgTemp).

SAL offers scope constructs to define both the service place-

ent (Cin-region) and its data interest (Chops). The service placement

defined using the in-region keyword) is used to govern a placement

f computational service in a cluster. The service placement can be in

egions defined in a vocabulary specification. So, it is a subset of P .

The data interest of a computational service is used to define a

luster from which the computational service wants to receive data.

he data interest can be in regions defined in the vocabulary speci-

cation. So, it is a subset of P . It is defined using the hops keyword.

he syntax of this keyword is hops:radius:unit of radius. Radius
ig. 6. Clustering in the smart building application. The device with temperature sen-

or is numbered as [1].
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s an integer value. The unit of radius is a cluster value. For example, if

computational service FloorAvgTemp deployed on floor number 12

as a data interest hops:i:Floor, then it wants data from all floors

tarting from 12th floor to (12+i)th floor, and all floors starting from

2th floor to (12-i)th floor .

Fig. 7 shows the architecture of the smart building application.

omputational services are fueled by sensing components. They pro-

ess inputs data and take appropriate decisions by triggering actu-

tors. We illustrate SAL by examining a code snippet in Listing 2,

hich describes a part of Fig. 7. This code snippet revolves around

he actions of the Proximity service (Listing 2, lines 2–6), which coor-

inates events from the BadgeReader with the content of ProfileDB
torage service. To do so, the Proximity composes information from

wo sources, one for badge events (i.e., badge detection), and one

or requesting the user’s temperature profile from ProfileDB, ex-

ressed using the request keyword (Listing 2, line 5). Input data

s declared using the consume keyword that takes source name and

ata interest of a computational service from logical region (Listing 2,

ine 4). The declaration of hops:0:room indicates that the computa-

ional service is interested in consuming badge events of the current

oom. The Proximity service is in charge of managing badge events

f room. Therefore, we need Proximity service to be partitioned per

oom using in-region:room (Listing 2, line 6). The outputs of the

roximity and RoomAvgTemp are consumed by the RoomController
ervice (Listing 2, lines 11–15). This service is responsible for taking

ecisions that are carried out by invoking commands declared using

he command keyword (Listing 2, line 14).

.5.2. Implementing application logic

Leveraging the architecture specification, we generate a frame-

ork to aid the application developer. The generated framework

ontains abstract classes corresponding to the architecture specifica-

ion. The abstract classes include two types of methods: (1) concrete

ethods to interact with other components transparently through the

iddleware and (2) abstract methods that allow the application de-

eloper to program the application logic. The application developer

mplements each abstract method of generated abstract class. The

ey advantage of this framework is that a framework structure re-

ains uniform. Therefore, the application developers have to know

nly locations of abstract methods where they have to specify the

pplication logic.

bstract methods. For each input declared by a computational ser-

ice, an abstract method is generated for receiving data. This abstract

ethod is then implemented by the application developer. The class

iagram in Fig. 8 illustrates this concept. This class diagram uses ital-

cized text for the Proximity class, which represents an abstract class,

nd onNewbadgeDetected() that represents abstract method. Then, it

s implemented in the SimpleProximity class.

Listings 3 and 4 show Java code corresponding to the class di-

gram illustrated in Fig. 8. From the badgeDetected input of the

roximity declaration in the architecture specification (Listing 2,

ines 2–6), the onNewbadgeDetected() abstract method is gener-

ted (Listing 3, line 16). This method is implemented by the ap-

lication developer. Listing 4 illustrates the implementation of

nNewbadgeDetected(). It updates a user’s temperature preference

nd sets it using settempPref() method.

oncrete methods. The compilation of an architecture specification

enerates concrete methods to interact with other software compo-

ent transparently. The generated concrete methods have the follow-

ng two advantages:

1. Abstracting heterogeneous interactions. To abstract heterogeneous

interactions among software components, a compiler generates

concrete methods that take care of heterogeneous interactions. For
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Fig. 7. Architecture of the smart building application, similar to work in Cassou et al. (2011).
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instance, a computational service processes input data and pro-

duces refined data to its consumers. The input data is either noti-

fied by other component (i.e., publish/subscribe) or requested (i.e.,

request/response) by the service itself. Then, outputs are pub-

lished. The concrete methods for these interaction modes are gen-

erated in an architecture framework. The lines 2–6 of Listing 2

illustrate these heterogeneous interactions. The Proximity ser-

vice has two inputs: (1) It receives badgeDetect event (Listing 2,

line 4). Our framework generates the subscribebadgeDetected()
method to subscribe badgeDetected event (Listing 3, lines 8–12).

Moreover, it generates the implementation of notifyReceived()
method to receive the published events (Listing 3, lines 3–7). (2) It

requests profile data (Listing 2, line 5). A sendcommand() method

is generated to request data from other components (Listing 3,

lines 13–15).

2. Abstracting large scale. To address the scalable operations, a com-

putational service annotates (1) its inputs with data interest, and

(2) its placement in the region. Service placement and data in-

terest jointly define a scope of a computational service to gather
data. A generated architecture framework contains code that de-

fines both data interest and its placement. For example, to get the

badgeDetected event notification from the BadgeReader (Listing 2,

line 4), the subscribebadgeDetected() method (Listing 3, lines 8–

12) is generated in the Proximity class. This method defines the

data interest of a service from where it receives data. The value

of partitionAttribute (Listing 3, line 2), which comes from the

architecture specification (Listing 2, line 6), defines the scope of

receiving data. The above constructs are empowered by our choice

of middleware, which is a variation of the one presented in Mottola

et al. (2007), and enables delivery of data across logical scopes.

.6. Specifying deployment concern

This concern describes information about a target deployment

ontaining various attributes of devices (such as location, type,

ttached resources) and locations where computational services

re executed in a deployment, described using SDL (discussed in

ection 2.6.1). In order to map computational services to devices, we
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Proximity
partitionAttributes : String = "Room"
notifyReceived(eventName : String, arg : Object)
subscribeBadgeDetected()
getProfile(arg : String)
onNewbadgeDetected(arg : BadgeDetectedStruct)
setTempPref(newValue : userTempPrefStruct)

SimpleProximity
onNewbadgeDetected(arg : BadgeDetectedStruct)

Fig. 8. Class diagram represents (1) the abstract class Proximity with its abstract

method onNewbadgeDetected() illustrated in italicized text, and (2) the concrete im-

plementation of onNewbadgeDetected() method is the SimpleProximity class.

BadgeDetectedStruct) arg);

6 }

7 }

8 public void subscribebadgeDetected () {

9 Region regionInfo = getSubscriptionRequest(

10 partitionAttribute , getRegionLabels (),

getRegionIDs ());

11 PubSubMiddleware.subscribe(this , "

badgeDetected", regionInfo);

12 }

13 protected TempStruct getprofile(String arg) {

14 return (TempStruct) PubSubMiddleware.

sendCommand("getprofile", arg ,

myDeviceInfo);

15 }

16 protected abstract void onNewbadgeDetected(

BadgeDetectedStruct arg);

17 protected void settempPref(UserTempPrefStruct

newValue) {

18 if (tempPref != newValue) {

19 tempPref = newValue;

20 PubSubMiddleware.publish("tempPref",

newValue , myDeviceInfo);

21 }

22 }

23 }

Listing 3. The Java abstract class Proximity generated from the declaration Proximity
in the architecture specification.
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1 public class SimpleProximity extends Proximity {

2 public void onNewbadgeDetected(

BadgeDetectedStruct arg) {

3 long timestamp = ((long) (System.

currentTimeMillis ())) * 1000000;

4 UserTempPrefStruct userTempPref = new

UserTempPrefStruct(

5 arg.gettempValue (), arg.getunitOfMeasurement ()

, timestamp);

6 settempPref(userTempPref);

7 }

8 }

Listing 4. The concrete implementation of the Java abstract class Proximity from

Listing 3, written by the application developer.

1..*

*

  1..*

Deployment
Specification

Device Resource

Region

Fig. 9. Class diagram of deployment-specific concepts.

1 devices:

2 TemperatureMgmt -Device -1:

3 region:

4 Building: 15 ;

5 Floor: 11;

6 Room: 1;

7 resources: TemperatureSensor , Heater;

8 type: JavaSE;

9 mobile: false;

10 ...

Listing 5. Code snippet of a deployment specification for the building automation

domain using SDL. The language keywords are printed in blue, while the keywords

derived from a vocabulary are printed underlined.
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resent a mapping technique that produces a mapping from a set of

omputational services to a set of devices (discussed in Section 2.6.2).

.6.1. Srijan deployment language (SDL)

Fig. 9 illustrates deployment-specific concepts (defined in the con-

eptual model Fig. 2), specified using SDL. It includes device proper-

ies (such as name, type), regions where devices are placed, and re-

ources that are hosted by devices. The resources (R) and regions (P)

efined in a vocabulary become a set of values for certain attributes
n SDL (see the underlined words in Listing 5). SDL can be described as

v = (D). D represents a set of devices. A device (d ∈ D) can be defined

s (Dregion,Dresource,Dtype,Dmobile). Dregion represents a set of device

lacements in terms of regions defined in a vocabulary. Dresource is a

ubset of resources defined in a vocabulary. Dtype represents a set of

evice type (e.g., JavaSE device, Android device) that is used to pick

n appropriate device driver from a device driver repository. Dmobile

epresents a set of two boolean values (true or false). The true value in-

icates a location of a device is not fixed, while the false value shows
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Algorithm 1: Mapping algorithm.

Input: List D of m numbers of devices, List C of k numbers computational
services

Output: List mappingOutput of m numbers that contains assignment of C

to D

1: Initialize regionMap key-value pair data structure
2: Initialize deviceListByRegionValue key-value pair data structure
3: Initialize mappingOutput key-value pair data structure
4: for all device in D do
5: for all pairs (regionName, regionValue) in device do
6: regionMap[regionName] ← regionValue // construct regionMap with

regionName as key and assign regionValue as Value
7: deviceListByRegionValue[regionValue] ← device

8: end for
9: end for

10: for all regionName in regionMap.getKeySet() do
11: for all computationalservice in C do
12: if computationalservice.partitionValue() = regionName then
13: for all regionValue in regionMap.getValueSet(region Name) do
14: deviceList ← deviceListByRegionValue.getValueSet

(regionValue)

15: selectedDevice ← selectRandomDeviceFromList(d eviceList)

16: mappingOutput[selectedDevice] ← computational service

17: end for
18: end if
19: end for
20: end for
21: return mappingOutput
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a fixed location. Listing 5 illustrates a deployment specification of

the smart building application. This snippet describes a device called

TemperatureMgmt-Device-1with an attachedTemperatureSensorand

Heater, situated in building 15, floor 11, room 1, it is JavaSE enabled

and non-mobile device.

Note that although individual listing of each device’s attributes ap-

pears tedious, (i) we envision that this information can be extracted

from inventory logs that are maintained for devices purchased and

installed in systems, and (ii) thanks to the separation between the

deployment and functional concern in our approach, the same de-

ployment specification can be re-used across IoT applications of a

given application domain.

2.6.2. Mapping

This section presents our mapping algorithm that decides devices

for a placement of computational services. It takes inputs as (1) a

list of devices D defined in a deployment specification (see Listing 5)

and (2) a list of computational services C defined in an architecture

specification (see Listing 2). It produces a mapping of computational

services to a set of devices.

We presents the mapping algorithm (see Algorithm 1) that com-

prises two steps. The first step (lines 4–9) constructs the two key-

value data structures from a deployment specification. These two data

structures are used in the second step. The second step (lines 10–20)

selects devices randomly and allocates computational services to the

selected devices.10 In order to give more clarity to readers, we de-

scribe these two steps in detail below.

The first step (Algorithm 1, lines 4–9) constructs two key-

value data structures regionMap and deviceListByRegionValue from

D. The regionMap (line 6) is a key-value data structure where

regionName (e.g., Building, Floor, Room in the Listing 5) is a key

and regionValue (e.g., 15, 11, 1 in the Listing 5) is a value. The

deviceListByRegionValue (line 7) is a key-value data structure where

regionValue is a key and device (e.g., TemperatureMgmt-Device-1 in the

Listing 5) is a value. Once, these two data structures are constructed,

we use them for the second step (lines 10–20).

The second step (Algorithm 1, lines 10–20) selects a device and

allocates computational services to the selected device. To perform

this task, the line 10 retrieves all keys (in our exampleBuilding,Floor,

Room) of regionMap using getKeySet()function. For each computational

service (e.g., Proximity, RoomAvgTemp, RoomController in Listing 2),

the selected key from the regionMap is compared with a partition

value of a computational component (line 12). If the value matches,

the next step (lines 13–17) selects a device randomly and allocates a

computational service to the selected device.

Computational complexity. The first step (Algorithm 1, lines 4–9)

takes O(mr)times, where m is a number of devices and r is a number of

region pairs in each device specification. The second step (Algorithm 1,

lines 10–20) takes O(nks) times, where n is a number of region

names (e.g., building, floor, room for the building automation domain)

defined in a vocabulary, k is a number of computational services de-

fined in an architecture specification, and s is a number of region

values specified in a deployment specification. Thus, total computa-

tional complexity of the mapping algorithm is O(mr + nks).

2.7. Specifying platform concern

This concern describes software components that act as a trans-

lator between a hardware device and an application. Because these

components are operating system-specific, the device developer im-

plements them by hand. To aid the device developer, we generate a
10 A mapping algorithm cognizant of heterogeneity, associated with devices of a

target deployment, is a part of our future work. See future work for detail.
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ocabulary framework to implement platform-specific device drivers.

n the following section, we describe it in more detail.

.7.1. Implementing device drivers

Leveraging the vocabulary specification, our system generates a

ocabulary framework to aid the device developer. The vocabulary

ramework contains concrete classes and interfaces corresponding to

esources defined in a vocabulary. A concrete class contains con-

rete methods for interacting with other software components and

latform-specific device drivers. The interfaces are implemented by

he device developer to write platform-specific device drivers. In

rder to enable interactions between concrete class and platform-

pecific device driver, we adopt the factory design pattern (Gamma

t al., 1995). This pattern provides an interface for a concrete class to

btain an instance of different platform-specific device driver imple-

entations without having to know what implementation the con-

rete class obtains. Since the platform-specific device driver imple-

entation can be updated without necessitating any changes in code

f concrete class, the factory pattern has advantages of encapsulation

nd code reuse. We illustrate this concept in the following paragraph

ith a BadgeReader example.

The class diagram in Fig. 10 illustrates the concrete class

adgeReader, the interface IBadgeReader, and the associations be-

ween them through the factory class BadgeReaderFactory. The two

bstract methods of the IBadgeReader interface (Listing 8, lines 1–

) are implemented in the AndroidBadgeReader class (Listing 9,

ines 1–10). The platform-specific implementation is accessed

hrough the BadgeReaderFactory class (Listing 7, lines 1–10). The

adgeReaderFactory class returns an instance of platform-specific

mplementations according to request by the concrete method

egisterBadgeReader() in the BadgeReader class (Listing 6, lines 12–

5). In the following, we describe this class diagram with code snippet.

oncrete class. For each resource declared in a vocabulary specifi-

ation, a concrete class is generated. This class contains concrete

ethods for interacting with other components transparently (sim-

lar to discussed in Section 2.5.2) and for interacting with platform-

pecific implementations. For example, the BadgeReader (Listing 6,

ines 1–16) class is generated from the BadgeReader declara-

ion (Listing 1, lines 14–15). The generated class contains the
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«interface»
IBadgeReader

getbadgeDetected():BadgeDetectedStruct
getbadgeDetected (handler : ListenerbadgeDetected)

AndroidBadgeReader
getbadgeDetected():BadgeDetectedStruct
getbadgeDetected(handler : ListenerbadgeDetected)

BadgeReader
setbadgeDetected(newValue : BadgeDetectedStruct)
registerBadgeReader()

BadgeReaderFactory
getBadgeReader(BadgeReaderImpl : String) : IBadgeReader

Fig. 10. Class diagram representing (1) the interface IBadgeReader and the implementation of two abstract methods in the AndroidBadgeReader class, (2) the concrete class

BadgeReader that refers the AndroidBadgeReader through the BadgeReaderFactory factory class.

1 public class BadgeReader {

2 protected void setbadgeDetected(

BadgeDetectedStruct newValue) {

3 ...

4 PubSubMiddleware.publish("badgeDetected",

newValue , DeviceInfo);

5 }

6 badgeDetected badgeDetectEvent = new

badgeDetected () {

7 public void onNewbadgeDetected(

BadgeDetectSt resp) {

8 BadgeDetectSt sBadgeDetectSt = new

BadgeDetectSt(resp.getbadgeID (),

resp.gettimeStamp ());

9 publishbadgeDetectedEvent(

sBadgeDetectSt);

10 }

11 };

12 protected void registerBadgeReader (){

13 IBadgeReader objBadgeReader =

BadgeReaderFactory.getBadgeReader("

Android");

14 objBadgeReader.getbadgeDetected(

badgeDetectEvent);

15 }

16 }

Listing 6. The Java BadgeReader class generated from the BadgeReader declaration in

the vocabulary specification.
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1 public class BadgeReaderFactory {

2 public static IBadgeReader getBadgeReader(

String nameBadgeReader) {

3

4 if(nameBadgeReader.equals("Android"))

5 return new AndroidBadgeReader ();

6

7 if (nameBadgeReader.equals("PC"))

8 return new PCBadgeReader ();

9 }

10 }

Listing 7. The Java BadgeReaderFactory class.

1 public interface IBadgeReader {

2 public BadgeDetectedStruct getbadgeDetected ();

3 public void getbadgeDetected(

ListenerbadgeDetected handler);

4 }

Listing 8. The Java interface IBadgeReader generated from the BadgeReader declaration

in the vocabulary specification.

1 public class AndroidBadgeReader implements

IBadgeReader {

2 @Override

3 public BadgeDetectedStruct getbadgeDetected () {

4 // The device developer implements

platform -specific code here

5 }

6 @Override

7 public void getbadgeDetected(

ListenerbadgeDetected handler) {

8 // The device developer implements

platform -specific code here

9 }

10 }

Listing 9. The device developer writes Android-specific device driver of a badge reader

by implementing the IBadgeReader interface.
egisterBadgeReader() method (Listing 6, lines 12–15). This method

rst obtains a reference of one (in our example Android) of platform-

pecific implementations, then uses that reference to create an object

f that device-specific type (Listing 6, line 13). This reference is used

o disseminate badgedetect event (Listing 6, lines 6–11).

nterfaces. For each resource declared in a vocabulary specifica-

ion, interfaces are generated. Each interface contains synchronous

nd asynchronous abstract methods corresponding to a resource

eclaration. These methods are implemented by the device devel-

per to write device-specific drivers. For example, our develop-

ent system generates a vocabulary framework that contains the

nterface IBadgeReader (Listing 8, lines 1–4) corresponding to the

adgeReader (Listing 1, lines 14–17) declaration in the vocabulary
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Fig. 11. Handling evolution in the functional concern.
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11 An open source version, targeting on Android- and JavaSE -enabled devices and

MQTT middleware, is available on: https://github.com/pankeshlinux/IoTSuite/wiki.
12 http://www.eclipse.org/Xtext/.
specification. The device developer programs Android-specific im-

plementations in the AndroidBadgeReader class by implementing

the methods getbadgeDetected() and getbadgeDetected(handler)
of the generated interface IBaderReader (Listing 9, lines 1–10).

2.8. Handling evolution

Evolution is an important aspect in IoT application development

where resources and computational services are added, removed, or

extended. To deal with these changes, we separate IoT application

development into different concerns and allow an iterative develop-

ment for these concerns. This iterative development requires only

a change in evolved specification and reusing dependent specifica-

tions/implementation in compilation process, thus reducing effort to

handle evolution, similar to the work in Cassou et al. (2011).

Fig. 11 illustrates evolution in the functional concern. It could be

addition, removal, or extension of computational services. A change

in an architecture specification requires recompilation of it. The re-

compilation generates a new architecture framework and preserves

the previously written application logic. This requires changes in

the existing application logic implementations manually and re-

compilation of the architecture specification to generate new map-

ping files that replace old mapping files. We now review main evo-

lution cases in each development concern and how our approach

handles them.

Changing functionality. It refers to a change in behaviors of an appli-

cation. For example, while an application might be initially defined to

switch on an air-conditioner when a temperature of room is greater

than 30 ◦C, a new functionality might be to open a window. This case

requires to write a new architecture specification and application

logic.

Adding a new computational service. It refers to the addition of a new

computational service in an architecture specification. The applica-

tion developer implements the application logic of the newly added

computational services.

Removing a computational service. It refers to the removal of an ex-

isting computation service from an architecture specification. The

application developer has to manually remove application logic files

of the removed computational service.
dding a new input source. A new input of a computational service,

epresented as consume keyword, can be added. The application de-

eloper implements a generated abstract method corresponding to a

ew input in application logic files.

emoving an input source. An input can be removed from a computa-

ional service. In this case, the abstract method that implements the

pplication logic becomes dead in application logic files. The IDE au-

omatically reports errors. The application developer has to remove

his dead abstract method manually.

emoving an output or command. An output (generate keyword) or

ommand (command keyword) can be removed from an architecture

pecification. In this case code, which deals with output or command,

ecomes dead in application logic files. The application developer has

o manually remove dead code.

. Components of IoTSuite

In the following, we demonstrate the application development

rocess, mentioned in Section 2.3, using IoTSuite11—a suite of tools,

hich is composed of different components, mentioned below, at

ach phase of application development that stakeholders can use.

ditor. It helps stakeholders to write high-level specifications, in-

luding vocabulary, architecture, and deployment specification with

he facilities of syntax coloring and syntax error reporting. We use

text12 for a full fledged editor support, similar to work in Bertran

t al. (2012). The Xtext is a framework for a development of domain-

pecific languages, and provides an editor with syntax coloring by

riting Xtext grammar.

We take an example of building automation domain vocabulary

o demonstrate an editor support provided by IoTSuite, illustrated

n Fig. 12. The zone 1 shows the editor, where the domain expert

rites a domain vocabulary. The zone 2 shows the menu bar, where

he domain expert invokes the compiler for vocabulary to generate

https://github.com/pankeshlinux/IoTSuite/wiki
http://www.eclipse.org/Xtext/
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Parser
Mapping
Algorithm

Code
Generator

Deployment
Spec.

Architecture
Spec.

Mapping
files

Mapper

Data
structures

Mapping
decisions

Fig. 12. Editor support for writing vocabulary specification in IoTSuite.

Fig. 13. Architecture of the mapper component in IoTSuite.
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framework, a customized architecture grammar, and deployment

rammar.

ompiler. The compiler parses high-level specifications and trans-

ates them into code that can be used by other components in the sys-

em. The parser module of compiler is implemented using ANTLR,13

well-known parser generator that creates parser files from gram-

ar descriptions. The code generator module of compiler manages a

epository of plug-ins. Each plug-in, defined as template files, is spe-

ific to a target implementation language (e.g., Java, Python). The key

dvantage of it is that it simplifies an implementation of a new code

enerator for a target implementation. The plug-ins are implemented

sing StringTemplate Engine,14 a Java template engine for generating

ource code or any other formatted text output. We build two compil-

rs to aid stakeholders shown in Fig. 3. (1) Compiler for a vocabulary

pecification, and (2) compiler for an architecture specification. The

urrent version of these compilers generates frameworks, compatible

ith Eclipse IDE.
13 http://www.antlr.org/.
14 http://www.stringtemplate.org/.

l

f

J

E

apper. The mapper produces a mapping from a set of computa-

ional services to a set of devices. Fig. 13 illustrates the architec-

ure of the mapper component. The parser converts high-level spec-

fications into appropriate data structures that can be used by a

apping algorithm. The mapping algorithm produces mapping de-

isions into appropriate data structures. The code generator con-

umes the data structures and generates mapping files. Our current

mplementation of the mapper randomly maps computational ser-

ices to a set of devices. However, due to generality of our architec-

ure, more sophisticated mapping algorithm can be plugged into the

apper.

inker. It combines and packs code generated by various stages of

ompilation into packages that can be deployed on devices. The out-

ut of the linker is a set of platform-specific projects for devices, spec-

fied in the deployment specification. These projects are not binaries.

hey need to be compiled, which can be done by any device-specific

ompiler designed for the target platform. The current version of the

inker generates Java source packages for Android and JavaSE plat-

orm. Fig. 14 illustrates packages for 3 target devices (2 packages for

avaSE devices and 1 for Android device), which can be imported into

clipse IDE.

http://www.antlr.org/
http://www.stringtemplate.org/
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Fig. 14. Packages for target devices compatible with Eclipse IDE.
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Fig. 15. Architecture of the fire detection application, similar to work in Cassou et al.

(2011).
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Runtime system. The main responsibility of the runtime system is

a distributed execution of IoT applications. It is composed of three

parts: (1) middleware: It runs on each individual device and provides

a support for executing distributed tasks. (2) wrapper: It plugs pack-

ages, generated by the linker module, and middleware. (3) support

library: It separates packages, produced by the linker component, and

underlying middleware by providing interfaces that are implemented

by each wrapper. The integration of a new middleware into IoTSuite

consists of an implementation of the following interfaces, specified

by the support library, in the wrapper.

• publish(). It is an interface for publishing data from a sender. The

definition of this interface contains: an event name (e.g., temper-

ature), event data (e.g., a temperature value, Celsius), and pub-

lisher’s information such as location.
• subscribe(). It is an interface for receiving event notifications. An

interest of events is expressed by sending a subscription request,

which contains: an event name (e.g., temperature), information for

filtering events such as regions of interest (e.g., a RoomAvgTemp

component wants to receive events only from a current room),

and subscriber’s information.
• command(). It is an interface for triggering an action of an actuator.

A command contains: a command name (e.g., switch-on heater),

command parameters (e.g., set temperature of heater to 30 ◦C),

and a sender’s information.
• request-response(). It is an interface for requesting data from

a requester. In reply, a receiver sends a response. A request con-

tains a request name (e.g., give profile information), request pa-

rameters (e.g., give profile of person with identification 12), and

information about the requester.

The current implementation of IoTSuite uses the MQTT15 middle-

ware, which enables interactions among Android devices and JavaSE

enabled devices.

4. Evaluation

The goal of this section is to describe how well the proposed ap-

proach addresses our aim in a quantitative manner. Unfortunately,

the goal is very vague because quality measures are not well-defined

and they do not provide a clear procedural method to evaluate de-

velopment approaches in general. We explore development effort,

which indicates effort required to create an application, that is vital

for the productivity of stakeholders (Cassou et al., 2011).

To evaluate our approach we consider two representative IoT ap-

plications: (1) the smart building application described in Section 1.1

and (2) a fire detection application, which aims to detect fire by ana-

lyzing data from smoke and temperature sensors. When fire occurs,

residences are notified on their smart phones by an installed appli-

cation. Additionally, residents of the building and neighborhood are
15 http://mqtt.org/.

t

p

nformed through a set of alarms. Fig. 15 shows the architecture of

he fire detection application. A fire state is computed based on a cur-

ent average temperature value and smoke presence by a local fire

tate service (i.e., roomFireState) deployed per room, then a state

s sent to a service (i.e., floorFireState) deployed per floor, and fi-

ally a computational service (i.e., buildingFireController) decides

hether alarms should be activated and users should be notified or

ot.

.1. Development effort

In order to measure effort to develop an application, we evaluate

percentage of a total number of lines of code generated by our ap-

roach and effort to develop an application involving a large number

f devices using our approach. We have implemented two IoT appli-

ations discussed in the previous section using our approach. These

pplications are implemented independently. We did not reuse speci-

cations and implementations of one application in other application.

e deployed the two applications on 10 simulated devices running on

op of a middleware that simulates network on a single PC dedicated

o the evaluation.

We measured development effort using Eclipse EclEmma 2.2.1

lug-in. This tool counts actual Java statement as lines of code and

http://mqtt.org/
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Table 2

Lines of code in smart building and fire detection applications.

Application Handwritten (lines of code) Generated (lines of code) % of Generated code Code

name Vocabulary Architecture Deployment Device Application Mapping Architecture Vocabulary generated
handwritten+generated

coverage

specification specification specification driver logic code framework framework

(devices=10)

Smart building 41 28 81 98 131 561 408 757 81.99% 92.22

Fire detection 27 21 81 53 72 528 292 476 83.61% 90.38

Table 3

Number of devices involved in the development effort assessment and hand-written

lines of code to develop the smart building application.

Number of Handwritten (lines of code)

devices Vocabulary Architecture Deployment Device Application

specification specification specification driver logic

10 41 28 81 98 131

34 41 28 273 98 131

50 41 28 401 98 131

62 41 28 497 98 131

86 41 28 689 98 131

110 41 28 881 98 131

200 41 28 1601 98 131

300 41 28 2401 98 131

350 41 28 2801 98 131

500 41 28 4001 98 131
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oes not consider blank lines or lines with comments. Our measure-

ents reveal that more than 82% of the total number of lines of code

s generated in two applications (see Table 2).

The measure of lines of code is only useful if the generated code

s actually executed. We measured code coverage of the generated

rogramming frameworks of two applications (see Table 2) using the

clEmma16 Eclipse plug-in. Our measures show that more than 90%

f generated code is actually executed, the other portion being error-

andling code for errors that did not happen during the experiment.

his high value indicates that most of the execution is spent in gener-

ted code and that, indeed, our approach reduces development effort

y generating useful code.

The above experiment was conducted for 10 simulated devices.

t does not demonstrate development effort using our approach for

large number of devices. Therefore, the primary aim of this exper-

ment is to evaluate effort to develop an IoT application involving a

arge number of devices. In order to achieve the above aim, we have

eveloped the smart building application on a set of simulated device

unning on top of the middleware dedicated to the evaluation. The

ssessments were conducted over an increasing number of devices.

he first development effort assessment was conducted on 10 de-

ices instrumented with heterogeneous sensors, actuators, storages,

nd user interfaces. In the next subsequent assessments, we kept in-

reasing the number of devices equipped with sensors and actuators.

n each assessment, we have measured lines of code to specify vo-

abulary, architecture, and deployment, application logic, and device

rivers. Table 3 illustrates the assessment results containing a num-

er of devices involved in the experiment and hand-written lines of

ode to develop the smart building application.

In Table 3, we have noted the following two observations and their

easons:

1. As the number of devices increases, lines of code for vocabulary

and architecture specification, device drivers, and application logic

remain constant for a deployment consisting a large number of de-

vices. The reason is that our approach provides the ability to spec-

ify an application at a global level rather than individual nodes.
16 http://www.eclemma.org/.

e

t

s

2. As the number of devices increases, lines of code for a deployment

specification increase. The reason is that the network manager

specifies each device individually in the deployment specification.

This is a limitation of SDL. Our future work will be to investigate

how a deployment specification can be expressed in a concise and

flexible way for a network with a large number of devices. We

believe that the use of regular expressions is a possible technique

to address this problem.

. Related work

This section focuses on existing works in literature that would ad-

ress the research challenges discussed in Section 1.2. As stated ear-

ier, while the application development life-cycle has been discussed

n general in the software engineering domain, a similar structured

pproach is largely lacking in the IoT for the development of Sense-

omputer-Control (SCC) (Taylor et al., 2009, p. 97) applications. Con-

equently, in this section we present existing approaches geared to-

ard the IoT, but also its precursor fields of pervasive computing

nd wireless sensor networking. These are mature fields, with sev-

ral excellent surveys available on programming models (Mottola and

icco, 2011; Sugihara and Gupta, 2008) and middleware (Henricksen

nd Robinson, 2006).

We organize this section based on the perspective of the system

rovided to the stakeholders by the various approaches. Section 5.1

resents the node-level programming approaches, where the devel-

per has significant control over the actions of each device in the

ystem, which comes at the cost of complexity. Section 5.2 summa-

izes approaches that aim to abstract the entire (sensing) system as a

atabase on which one can run queries. Section 5.3 presents the evolu-

ion of these approaches to macroprogramming inspired by general-

urpose programming languages, where abstractions are provided to

pecify high-level collaborative behaviors at the system-level while

iding low-level details from stakeholders. Section 5.4 then describes

he macroprogramming approaches more grounded in model-driven

evelopment techniques, which aim to provide a cleaner separation

f concerns during the application development process. We summa-

ize all these approaches in Table 4.

.1. Node-centric programming

In the following, we present systems that adopt the node-centric

pproach.

In the pervasive computing domain, Olympus (Ranganathan et al.,

005) is a programming model on top of Gaia (Román et al., 2002)—

distributed middleware infrastructure for pervasive environments.

takeholders write a C++ program that consists of a high-level de-

cription about active space entities (including service, applications,

evices, physical objects, and locations) and common active opera-

ions (e.g., switching devices on/, starting/stopping applications). The

lympus framework takes care of resolving high-level description

ased on properties specified by stakeholders. While this approach

ertainly simplifies the SCC application development involving het-

rogeneous devices, stakeholders have to write a lot of code to in-

erface hardware and software components, as well as to interface

oftware components and its interactions with a distributed system.

http://www.eclemma.org/
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Table 4

Comparison of existing approaches.
√

—Supported, ×—not supported, ∼—not adequately supported.

Existing approaches Division of roles Heterogeneity Scale Life-cycle phases

Development phase Deployment phase Maintenance phase

ContextToolkit (Dey et al., 2001) × ∼ × × × ∼
Node-centric Olympus (Ranganathan et al., 2005) × √ × × × ×
programming Henricksen et al. (Bettini et al., 2010) × ∼ × ∼ × ×

Dominique et al. (Guinard et al., 2010) × √ × ∼ × ∼
TinyDB (Madden et al., 2005) × × ∼ Not clear × ×
IrisNet (Gibbons et al., 2003) × ∼ ∼ Not clear × ×

Database SINA (Shen et al., 2001) × × √
Not clear × ×

approach TinyREST (Luckenbach et al., 2005) × √ × × × ∼
Semantic Streams (Whitehouse et al., 2006) × ∼ × ∼ × ×
Priyantha et al. (Priyantha et al., 2008) × √ × × × ∼

Macroprogramming Kairos (Gummadi et al., 2005) × × √ ∼ ∼ ×
languages Regiment (Newton et al., 2007) × × ∼ ∼ ∼ ×

MacroLab (Hnat et al., 2008) × × √ ∼ √ ∼
RuleCaster (Bischoff and Kortuem, 2007) × × √ ∼ ∼ ∼

Model-driven Pantagruel (Drey et al., 2009) ∼ ∼ × ∼ × ∼
development PervML (Serral et al., 2010) ∼ √ × ∼ ∼ ∼

DiaSuite (Cassou et al., 2011) ∼ √ × √ × ∼
ATaG (Pathak and Prasanna, 2011) × ∼ √ ∼ √ ∼
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This makes it tedious to develop applications involving a large num-

ber of devices.

The Context toolkit (Dey et al., 2001; Salber et al., 1999) simplifies

the context-aware application development on top of heterogeneous

data sources by providing three architectural components, namely,

widgets, interpreters, and aggregators. These components separate

application semantics from platform-specific code. For example, an

application does not have to be modified if an Android-specific sensor

is used rather than a Sun SPOT sensor. It means stakeholders can treat

a widget in a similar fashion and do not have to deal with differences

among platform-specific code. Although context toolkit provides sup-

port for acquiring the context data from the heterogeneous sensors, it

does not support actuation that is an essential part of IoT applications.

Henricksen et al. (Bettini et al., 2010; Henricksen and Indulska,

2006) propose a middleware and a programming framework to

gather, manage, and disseminate context to applications. This work

introduces context modeling concepts, namely, context modeling lan-

guages, situation abstraction; and preference and branching models.

This work presents a software engineering process that can be used

in conjunction with the specified concepts. However, the clear sepa-

ration of roles among the various stakeholders is missing. Moreover,

this framework limits itself to context gathering applications, thus not

providing the actuation support that is important for IoT application

development.

Physical-Virtual mashup. As indicated by its name, it connects web

services from both the physical and virtual world through visual con-

structs directly from web browsers. The embedded device runs tiny

web servers (Duquennoy et al., 2009) to answer HTTP queries from

users for checking or changing the state of a device. For instance, users

may want to see temperature of different places on map. Under such

requirements, stakeholders can use the mashup to connect physi-

cal services such as temperature sensors and virtual services such

as Google map. Many mashup prototypes have been developed that

include both the physical and virtual services (Blackstock and Lea,

2012; Castellani et al., 2012; Ghidini et al., 2012; Guinard et al., 2010;

Gupta et al., 2010). The mashup editor usually provides visual com-

ponents representing web service and operations (such as add, filter)

that stakeholders need to connect together to program an applica-

tion. The framework takes care of resolving these visual components

based on properties specified by stakeholders and produces code to

interface software components and distributed system. The main ad-

vantage of this mashup approach is that any service, either physical
r virtual, can be mashed-up if they follow the standards (e.g., REST).

he Physical-Virtual mashup significantly lowers the barrier of the

pplication development. However, stakeholders have to manage a

otentially large graph for an application involving a large number of

ntities. This makes it difficult to develop applications containing a

arge number of entities.

.2. Database approach

In TinyDB (Madden et al., 2005) and Cougar (Yao and Gehrke,

002) systems, an SQL-like query is submitted to a WSN. On receiving

query, the system collects data from the individual device, filters

t, and sends it to the base station. They provide a suitable inter-

ace for data collection in a network with a large number of devices.

owever, they do not offer much flexibility for introducing the appli-

ation logic. For example, stakeholders require extensive modifica-

ions in the TinyDB parser and query engine to implement new query

perators.

The work on SINA (Sensor Information Networking Architec-

ure) (Shen et al., 2001) overcomes this limitation on specification

f custom operators by introducing an imperative language with an

QL query. In SINA, stakeholders can embed a script written in Sensor

uerying and Tasking Language (SQTL) (Jaikaeo et al., 2000) in the

QL query. By this hybrid approach, stakeholders can perform more

ollaborative tasks than what SQL in TinyDB and Cougar can describe.

The TinyDB, Cougar, and SINA systems are largely limited to ho-

ogeneous devices. The IrisNet (Internet-Scale Resource-Intensive

ensor Network) (Gibbons et al., 2003) allows stakeholders to query

large number of distributed heterogeneous devices. For example,

nternet-connected PCs source sensor feeds and cooperate to answer

ueries. Similar to the other database approaches, stakeholders view

he sensing network as a single unit that supports a high-level query

n XML. This system provides a suitable interface for data collection

rom a large number of different types of devices. However, it does

ot offer flexibility for introducing the application logic, similar to

inyDB and Cougar.

Semantic Streams (Whitehouse et al., 2006) allows stakeholders

o pose a declarative query over semantic interpretations of sensor

ata. For example, instead of querying raw magnetometer data, stake-

olders query whether a vehicle is a car or truck. The system infers

his query and decides sensor data to use to infer the type of vehicle.

he main benefit of using this system is that it allows people, with

ess technical background to query the network with heterogeneous



P. Patel, D. Cassou / The Journal of Systems and Software 103 (2015) 62–84 81

d

c

l

S

b

s

o

l

s

a

t

e

m

t

d

m

f

S

t

a

i

m

b

o

T

c

a

m

t

a

R

l

s

5

a

p

i

a

a

d

p

m

d

d

n

m

o

t

d

t

s

a

w

g

f

t

a

c

T

t

p

e

h

b

c

fl

g

a

e

a

5

m

s

T

a

e

p

d

t

a

i

p

c

m

b

d

P

s

a

a

t

h

v

d

a

m

p

a

s

t

p

d

o

d

t

t

m

p

d

g

e

p

w

a

s

evices. However, it presents a centralized approach for sensor data

ollection that limits its applicability for handling a network with a

arge number of devices.

tandardized protocols-based systems. A number of systems have

een proposed to expose functionality of devices accessible through

tandardized protocols without having worry about the heterogeneity

f underlying infrastructure (Mohamed and Al-Jaroodi, 2011). They

ogically view sensing devices (e.g., motion sensor, temperature sen-

or, door and window sensor) as service providers for applications

nd provide abstractions usually through a set of services. We discuss

hese examples below.

Priyantha et al. (2008) present an approach based on SOAP (Box

t al., 2000) to enable an evolutionary WSN where additional devices

ay be added after the initial deployment. To support such a sys-

em, this approach has adopted two features. (1) Structured data: the

ata generated by sensing devices are represented in an XML for-

at for that may be understood by any application. (2) Structured

unctionality: the functionality of a sensing device is exposed by Web

ervice Description Language (WSDL) (Chinnici et al., 2007). While

his system addresses the evolution issue in a target deployment, the

uthors do not demonstrate the evolution scenarios such as a change

n functionality of an application, technological advances in deploy-

ent devices.

A number of approaches based on REST (Fielding, 2000) have

een proposed to overcome the resource needs and complexity

f SOAP-based web services for sensing and actuating devices.

inyREST (Luckenbach et al., 2005) is one of first attempts to over-

ome these limitations. It uses the HTTP-based REST architecture to

ccess a state of sensing and actuating devices. The TinyREST gateway

aps the HTTP request to TinyOS messages and allows stakeholders

o access sensing and actuating devices from their applications. The

im of this system is to make services available through standardized

EST without having to worry about the heterogeneity of the under-

ying infrastructure; that said, it suffers from a centralized structure

imilar to TinySOA.

.3. Macroprogramming languages

In the following, we present macroprogramming languages for IoT

pplication development, which are grounded in traditional general

urpose programming languages (whether imperative or functional)

n order to provide developers with familiar abstractions.

Kairos (Gummadi et al., 2005) allows stakeholders to program an

pplication in a Python-based language. The Kairos developers write

centralized program of a whole application. Then, the pre-processor

ivides the program into subprograms, and later its compiler com-

iles it into binary code containing code for accessing local and re-

ote variables. Thus, this binary code allows stakeholders to program

istributed sensor network applications. Although Kairos makes the

evelopment task easier for stakeholders, it targets homogeneous

etwork where each device executes the same application.

Regiment (Newton et al., 2007) provides a high-level program-

ing language based on Haskell to describe an application as a set

f spatially distributed data streams. This system provides primitives

hat facilitate processing data, manipulating regions, and aggregating

ata across regions. The written program is compiled down to an in-

ermediate token machine language that passes information over a

panning tree constructed across the WSN. In contrast to the database

pproaches, this approach provides greater flexibility to stakeholders

hen it comes to the application logic. However, the regiment pro-

ram collects data to a single base station. It means that the flexibility

or any-to-any device collaboration for reducing scale is difficult.

MacroLab (Hnat et al., 2008) offers a vector programming abstrac-

ion similar to Matlab for applications involving both sensing and
ctuation. Stakeholders write a single program for an entire appli-

ation using Matlab like operations such as addition, find, and max.

he written macroprogram is passed to the MacroLab decomposer

hat generates multiple decompositions of the program. Each decom-

osition is analyzed by the cost analyzer that calculates the cost of

ach decomposition with respect to a cost profile (provided by stake-

olders) of a target deployment. After choosing a best decomposition

y the cost analyzer, it is passed to the compiler that converts the de-

omposition into a binary executable. The main benefit is that it offers

exibility of decomposing code according to cost profiles of the tar-

et platform. While this system certainly separates the deployment

spect and functionality of an application, this approach remains gen-

ral purpose and provides little guidance to stakeholders about the

pplication domain.

.4. MDD approach

A number of model-driven approaches have been proposed to

ake IoT application development easy, described below.

PervML (Serral et al., 2010) allows stakeholders to specify perva-

ive applications at a high-level of abstraction using a set of models.

his system raises the level of abstraction in program specification,

nd code generators produce code from these specifications. Nev-

rtheless, it adopts generic UML notations to describe them, thus

rovides little guidance to stakeholders about the specific application

omain. In addition to this, the main focus of this work is to address

he heterogeneity associated with pervasive computing applications,

nd the consideration of a large number of devices in an application

s missing. PervML integrates the mapping process at the deployment

hase. However, stakeholders have to link the application code and

onfigure device drivers manually. This manual work in the deploy-

ent phase is not suitable for IoT applications involving a large num-

er of devices. Moreover, the separation between deployment and

omain-specific features is missing. These limitations would restrict

ervML to a certain level.

DiaSuite (Cassou et al., 2011) is a suite of tools to develop perva-

ive computing applications. It combines design languages and covers

pplication development life-cycle. The design language defines both

taxonomy of an application domain and an application architec-

ure. Stakeholders define entities in a high-level manner to abstract

eterogeneity. However, the consideration of a large number of de-

ices in an application is largely missing. Moreover, the application

eployment for a large number of heterogeneous devices using this

pproach is difficult because stakeholders require manual effort (e.g.,

apping of computational services to devices).

ATaG (Pathak and Prasanna, 2011), which is a WSN is a macro-

rogramming framework to develop SCC applications. ATaG presents

compilation framework that translates a program, containing ab-

tract notations, into executable node-level programs. Moreover, it

ackles the issue of scale reasonably well. The ATaG linker and map-

er modules support the application deployment phase by producing

evice-specific code to result in a distributed software system collab-

ratively hosted by individual devices, thus providing automation at

eployment phase. Nevertheless, the clear separation of roles among

he various stakeholders in the application development, as well as

he focus on heterogeneity among the constituent devices are largely

issing. Moreover, the ATaG program notations remain general pur-

ose and provide little guidance to stakeholders about the application

omain.

RuleCaster (Bischoff and Kortuem, 2006, 2007) introduces an en-

ineering method to provide support for SCC applications, as well as

volutionary changes in the application development. The RuleCaster

rogramming model is based on a logical partitioning of the net-

ork into spatial regions. The RuleCaster compiler takes as input the

pplication program containing rules and a network model that de-

cribes device locations and its capabilities. Then, it maps processing
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17 http://siafusimulator.org/.
tasks to devices. Similar to ATaG, this system handles the scale issue

reasonably well by partitioning the network into several spatial re-

gions. Moreover, it supports automation at the deployment phase by

mapping computational components to devices. However, the clear

separation of roles among the various stakeholders, support for ap-

plication domain, as well as the focus on heterogeneity among the

constituent devices are missing.

Pantagruel (Drey et al., 2009) is a visual approach dedicated to

the development of home automation applications. The Pantagruel

application development consists of three steps: (1) specification of

taxonomy to define entities of the home automation domain (e.g.,

temperature sensor, alarm, door, smoke detector, etc.), (2) specifica-

tion of rules to orchestrate these entities using the Pantagruel visual

language, and (3) compilation of the taxonomy and orchestration

rules to generate a programming framework. The novelty of this ap-

proach is that the orchestration rules are customized with respect to

entities defined in the taxonomy. While this system reduces the re-

quirement of having domain-specific knowledge for other stakehold-

ers, the clear separation of different development concerns, support

for large scale, automation both at the development and deployment

phase are largely missing. These limitations make it difficult to use

for IoT application development.

6. Conclusion

This paper presents a development methodology for IoT applica-

tion development, based on techniques presented in the domains of

sensor network macroprogramming and model-driven development.

It separates IoT application development into different concerns and

integrates a set of high-level languages to specify them. This approach

is supported by automation techniques at different phases of IoT ap-

plication development and allows an iterative development to handle

evolutions in different concerns. Our evaluation based on two realis-

tic IoT applications shows that our approach generates a significant

percentage of the total application code, drastically reduces develop-

ment effort for IoT applications involving a large number of devices.

Our approach addresses the challenges discussed in Section 1.2 in the

following manner:

Lack of division of roles. Our approach identifies roles of each stake-

holder and separates them according to their skills. The clear identifi-

cation of expectations and specialized skills of each stakeholder helps

them to play their part effectively, thus promoting a suitable division

of work among stakeholders involved in IoT application development.

Heterogeneity. SAL and SVL provide abstractions to specify different

types of devices, as well as heterogeneous interaction modes in a high-

level manner. Further, high-level specifications written using SAL and

SVL are compiled to a programming framework that (1) abstracts

heterogeneous interactions among software components and (2) aids

the device developers to write code for different platform-specific

implementations.

Scale. SAL allows the software designer to express his requirements

in a compact manner regardless of the scale of a system. Moreover, it

offers scope constructs to facilitate scalable operations within an ap-

plication. They reduce scale by enabling hierarchical clustering in an

application. To do so, these constructs group devices to form a clus-

ter based on their spatial relationship (e.g., “devices are in room#1”).

Within a cluster, a cluster head is placed to receive and process data

from its cluster of interest. The grouping could be recursively ap-

plied to form a hierarchy of clusters. The scale issue is thus handled,

thanks to the use of a middleware that supports logical scopes and

regions.
ifferent life cycle phases. Our approach is supported by code gen-

ration, task-mapping, and linking techniques. These techniques to-

ether provide automation at different life cycle phases. At the de-

elopment phase, the code generator produces (1) an architecture

ramework that allows the application developer to focus on the ap-

lication logic by producing code that hides low-level interaction

etails and (2) a vocabulary framework to aid the device developer

o implement platform-specific device drivers. At the deployment

hase, the mapping and linking together produce device-specific code

o result in a distributed software system collaboratively hosted by

ndividual devices. To support maintenance phase, our approach sep-

rates IoT application development into different concerns and allows

n iterative development, supported by the automation techniques.

. Future work

This paper addresses the challenges, presented by the steps in-

olved in IoT application development, and prepares a foundation

or our future research work. Our future work will proceed in the

ollowing complementary directions, discussed below.

apping algorithms cognizant of heterogeneity. While the notion of

egion labels is able to reasonably tackle the issue of scale at an ab-

traction level, the problem of heterogeneity among the devices still

emains. We will provide rich abstractions to express both the prop-

rties of the devices (e.g., processing and storage capacity, networks

t is attached to, as well as monetary cost of hosting a computational

ervice), as well as the requirements from stakeholders regarding the

referred placement of the computational services of the applica-

ions. These will then be used to guide the design of algorithms for

fficient mapping (and possibly migration) of computational services

n devices.

eveloping concise notion for SDL. In the current version of SDL, the

etwork manager is forced to specify the detail of each device indi-

idually. This approach works reasonably well in a target deployment

ith a small number of devices. However, it may be time-consuming

nd error-prone for a target deployment consisting of hundreds to

housands of devices. Our future work will be to investigate how the

eployment specification can be expressed in a concise and flexible

ay for a network with a large number of device. We believe that

he use of regular expressions is a possible technique to address this

roblem.

esting support for IoT application development. Our near term future

ork will be to provide support for the testing phase. A key advantage

f testing is that it emulates the execution of an application before

eployment so as to identify possible conflicts, thus reducing applica-

ion debugging effort. The support will be provided by integrating an

pen source simulator. This simulator will enable transparent testing

f IoT applications in a simulated physical environment. Moreover, we

xpect to enable the simulation of a hybrid environment, combining

oth real and physical entities. Currently, we are investigating open

ource simulators for IoT applications. We see Siafu17 as a possible

andidate due to its open source and thorough documentation.

un-time adaptation in IoT applications. Even though our approach

ddresses the challenges posed by evolutionary changes in target de-

loyments and application requirements, stakeholders have to still

ecompile the updated code. This is common practice in a single PC-

ased development environment, where recompilation is generally

ecessary to integrate changes. However, it would be very interesting

o investigate how changes can be injected into the running applica-

ion that would adapt itself accordingly. For instance, when a new

http://siafusimulator.org/
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evice is added into the target deployment, an IoT application can au-

onomously include a new device and assign a task that contributes

o the execution of the currently running application.
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