
JOURNAL OF OBJECT TECHNOLOGY
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Mercury: Properties and Design of a
Remote Debugging Solution using

Reflection
Nick Papouliasa Noury Bouraqadib Luc Fabresseb

Stéphane Ducassea Marcus Denkera

a. RMoD, Inria Lille Nord Europe, France
http://rmod.lille.inria.fr

b. Mines Telecom Institute, Mines Douai
http://car.mines-douai.fr/

Abstract Remote debugging facilities are a technical necessity for devices that
lack appropriate input/output interfaces (display, keyboard, mouse) for program-
ming (e.g., smartphones, mobile robots) or are simply unreachable for local
development (e.g., cloud-servers). Yet remote debugging solutions can prove
awkward to use due to re-deployments. Empirical studies show us that on aver-
age 10.5 minutes per coding hour (over five 40-hour work weeks per year) are
spent for re-deploying applications (including re-deployments during debugging).
Moreover current solutions lack facilities that would otherwise be available in a
local setting because it is difficult to reproduce them remotely. Our work identifies
three desirable properties that a remote debugging solution should exhibit, namely:
run-time evolution, semantic instrumentation and adaptable distribution. Given
these properties we propose and validate Mercury, a remote debugging model
based on reflection. Mercury supports run-time evolution through a causally
connected remote meta-level, semantic instrumentation through the reification
of the underlying execution environment and adaptable distribution through a
modular architecture of the debugging middleware.

Keywords Remote Debugging, Reflection, Mirrors, Run-Time Evolution, Se-
mantic Instrumentation, Adaptable Distribution, Agile Development

1 Introduction

More and more of our computing devices cannot support an IDE (such as our smartphones or
tablets) because they lack input/output interfaces (keyboard, mouse or screen) for development
(e.g., robots) or are simply locally unreachable (e.g., cloud-servers). Remote debugging is
a technical necessity in these situations since targeted devices have different hardware or
environment settings than development machines.

Nick Papoulias, Noury Bouraqadi, Luc Fabresse, Stéphane Ducasse, Marcus Denker. Mercury: Properties and Design of a
Remote Debugging Solution using Reflection. Licensed under Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0).
In Journal of Object Technology, vol. V, no. N, 2014, pages M:1–0. doi:10.5381/jot.201Y.VV.N.aN

http://www.jot.fm/
http://rmod.lille.inria.fr
http://car.mines-douai.fr/
http://creativecommons.org/licenses/by-nd/4.0/
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

2 · Nick Papoulias et al.

Yet remote debuggers can prove awkward to use due to re-deployments in-between remote
debugging sessions. Given that testing and debugging are estimated to cover roughly 50% of
the developement time [Bei90b] and that validation activities - such as debugging and verifica-
tion - cover 50 % to 75 % of the total developement costs [BH02], lenghty re-compilations
and re-deployments of applications to remote targets can indeed have a negative impact on the
development cycle. Empirical studies show us that on average 10.5 minutes per coding hour
(over five 40-hour work weeks per year) are spent for re-deploying applications (including
re-deployments during debugging) [Zer11]. This means that the specific facilities that a remote
debugging solution offers (e.g.,. for incremental updating) during a remote debugging session
can have a significant influence on productivity.

Moreover current solutions lack facilities that would otherwise be available in a local
setting because its difficult to reproduce them remotely (e.g.,., object-centric debugging
[RBN12]). This fact can impact the amount of experimentation during a remote debugging
session - compared to a local setting. Empirical studies on software evolution [SMDV06]
support this argument, identifying cases where the relationship or the interaction between
two or more objects at runtime are more relevant to the programmer than the examination
of execution at specific lines of code. Although emulators for target devices can help in this
case, they are not always available, and are often of limited accuracy when sensory input or
actuators are involved.

Finally remote debugging targets are becoming more and more diverse. Designing a
debugging communication middleware to cover a wide range of applications (from mobile
apps to server side deployments) that indeed operate under very different assumptions can
be challenging. This fact has been pushing debugging middleware towards more and more
extensible solutions.

In this work we identify three desirable properties for remote debugging: run-time evo-
lution, semantic instrumentation and adaptable distribution. Given these properties we first
evaluate existing solutions and then propose a live model for remote debugging that relies on
reflection and more specifically on the concept of Mirrors [BU04]. We show how our model
leverages both structural and computational reflection to meet the properties we have identified
and present its implementation in the Pharo language [BDN+09] discussing the trade-offs
that remote debugging imposes on reflective facilities. Finally we validate our proposal by
exemplifying remote debugging techniques supported by Mercury’s properties, such as remote
agile debugging and remote object instrumentation.

The contributions of this paper are the following:

• The identification of three desirable properties for remote debugging solutions.

• The definition of a remote meta-level and infrastructure for remote debugging that can
exhibit these properties.

• A prototype implementation of our model and its validation.

Our work is organized as follows: we begin by providing definitions and motivation
for remote debugging in Section 2. We then introduce the properties for remote debugging
solutions (Section 3) that we have identified. Then in Section 4 - given these properties - we
evaluate existing solutions. Section 5 presents our proposed model: Mercury. Section 6 details
our prototype implementation of the Mercury model. Section 7 presents the experimental
setting and validation of our proposal. Finally Section 8 concludes our work and presents
future perspectives.

Journal of Object Technology, vol. V, no. N, 2014

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Mercury: Properties and Design of a Remote Debugging Solution · 3

Developer's
end Target Devices

Deployment

Log
Collection

1

Coding /
Compilation

2

Execution

3

45

Post-mortem
analysis

(a) Debugging with Post-Mortem Analysis

Deployment

Inspection

Coding /
Compilation

2

Ex
ec

ut
io

n

3

Action /
Modification

1
4

5

Developer's
end Target Devices

(b) Remote debugging and interaction with a live execution

Figure 1 – Log-based Static Debugging vs. Remote Debugging

2 Background & Terminology

We provide working definitions for debugging that depend loosely on those given by Zeller
[Zel05] and Sommerville [Som01] respectively:

Debugging is a two phases process via which a programmer: i) Relates a failure in the
observational domain of a program to a defect [Bei90a, Hum99] in the program’s
code and ii) Subsequently validates the elimination of a defect by applying a fix in the
program’s code relating it to a success in the observational domain.

Debugger A debugger is an additional process of the execution domain of a program used
for run-time analysis. The debugger acts upon the process that is being debugged
(i.e., the debuggee), making a subset of the execution domain of a program part of the
observational domain.

Remote Debugging Is the process of debugging, in the context where the process of the
debugger runs on a different machine than that of the debuggee.

Figure 1(a) shows how developers can debug a target in absence of any support. Coding and
compilation (step 1 in Figure 1(a)) need to be done on a developer machine, that is supposed
to provide an IDE. Once the software is compiled, it is deployed (step 2) and executed (step 3)
on the target. Next, the execution log is collected and transferred to the developer’s machine
(step 4). Last, the developer can perform a post-mortem analysis of the execution log (step 5)
to find out hints about defect causes.

When a problem arises during execution, the developer only relies on the log verbosity
to identify the causes during the post-mortem analysis (step 5). If the log is too verbose, the
developer might be overwhelmed with the amount of data. Conversely, limited logging requires
to go again through a whole cycle, after adapting the code just for collecting more data. This
is due to the static nature of logs whose content is determined at the coding and compilation
step (step 1). These cycles for re-compilation and re-deployment are time consuming and
make debugging awkward. Nevertheless logging is the most widespread technique [Zel05]
for "manual" debugging since in its simplest form (of printf debugging) is accessible even to
inexperienced developers and can have little to zero infrastructure requirements.

In Figure 1(b) we show the different steps of a remote debugging process. Steps 1
(coding) and 2 (deployment) are the same as before. However, the execution (step 3) is now

Journal of Object Technology, vol. V, no. N, 2014

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

4 · Nick Papoulias et al.

interruptible. This interruption is either user-generated (the developer chooses to freeze the
execution to inspect it) or is based on predetermined execution events such as exceptions.
Steps 4 and 5 represent the remote debugging loop. This loop takes place at execution time
and in the presence of the execution context of the problem which can be inspected and
modified. Step 4 represents the remote inspection phase, where information about the current
execution context is retrieved from the target. While in step 5 we depict the modification
phase where the developer can provide further user-generated interruption points (breakpoints,
watchpoints, etc.), alter execution and its state (step, proceed, change the values of variables),
or incrementally update parts of the code deployed in step 2 (save-and-continue, hot-code-
swapping). Several loops can occur during the execution depending on the developers’ actions
(step, proceed, user-generated interruptions) and on execution events (exceptions, errors, etc.).
Having the ability to introspect and modify a live execution (without loosing the context) is a
major advantage compared to analyzing static logs.

3 Desirable Properties of Remote Debugging Solutions

In this Section, we present three desirable properties for remote debugging solutions that
we have identified, namely: run-time evolution, semantic instrumentation and adaptable
distribution. We introduce and discuss each property individually based on a typical software
stack for remote debugging.

As we depict in Figure 2 the target device (on the right) that runs the debugged application
must provide a middleware for communication and run-time debugging support for examining
processes, the execution stack, the system’s organization, introspection of instance and local
variables, etc.. On the other hand, the developer machine must provide a middleware layer,
debugging tools, but also a model of the running application that describes the application
running on the target (e.g., source code or breakpoints).

DEBUGGED
APPLICATION

DEVELOPER'S END TARGET

RUN-TIME
DEBUGGING SUPPORT

MIDDLEWARE

DEBUGGER / IDE

MODEL
OF THE DEBUGGED APP

MIDDLEWARE

Figure 2 – Software Entities Involved in Remote Debugging.

3.1 Run-Time Evolution

Run-time evolution is the ability to dynamically inspect and change the target’s application
code and state. By dynamically here we mean that inspections and changes on the target can
be performed while the application is running.

In Figure 2, there is an implicit relationship between the model of the debugged application
(on the developer’s end), and the state of the debugged application (on the target). This
relationship can be either static or dynamic, depending on whether a change in either one of
them updates the other. When a remote debugging solution supports run-time evolution, this
relationship is dynamic.

The fact that the target application does not need to be restarted to be debugged and evolved
allows developers to:

Journal of Object Technology, vol. V, no. N, 2014

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Mercury: Properties and Design of a Remote Debugging Solution · 5

• Track the origins of bugs and fix them without losing the execution context.

• Fix flaws [Zel05] from within the debugger. Flaws are architectural bugs that are not
associated with a specific location in the source file and require an architectural update
(removing or adding new code) in order to be addressed.

• Increase productivity while debugging applications with a long startup time.

• Debug critical applications (e.g., server side applications) that cannot be restarted.

• Experiment with heisenbugs [Gra86] as they are observed.

In OO languages developers should be able to evolve every organizational module of the
target application while debugging. These changes ought to include:

Add/Rem Packages The ability to introduce new packages 1 and remove existing ones.

Add/Rem Classes/Prototypes The ability to introduce new classes or prototypes and to
remove existing ones.

Hierarchy/Delegation Editing The ability to add/remove superclasses or edit a delegation
chain.

Add/Rem Methods The ability to introduce new methods and to edit or remove existing
ones.

Add/Rem Fields The ability to add/remove fields to a class or prototype.

3.2 Semantic Instrumentation

With the term semantic instrumentation we refer to the ability of a debugging solution to alter
the semantics of a running process to assist debugging. Instrumentation is the underlying
mechanism through which breakpoints and watchpoints are implemented. A debugging
solution instruments the running process to halt at specific locations in the code, or when
specific events occur (such as variable access) to either return control to the debugging
environment or to perform predetermined checks and actions (such as breakpoint conditions).

In OO languages developers should be able to halt and inspect the running program both
at specific locations in the source code and on specific semantical events that involve objects.
In literature these events are referred to as dynamic reification categories [RC00]. These
categories are a set of operations that can be thought of as events which are required for object
execution [McA95][RRGN10].

Taking into account these semantic events, instrumentation categories for debugging should
at least include:

Statement Execution The ability to halt at a specific statement or line in the source code.

Method Execution The ability to halt at a specific method in the source code upon entry.
This is an event that can be triggered by multiple objects that share the same method
(either through inheritance or through delegation).

Object Creation The ability to halt at object creation of specific classes or prototypes.

1We use the term package in its more general form here i.e., as a named collection of related functionality

Journal of Object Technology, vol. V, no. N, 2014

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

6 · Nick Papoulias et al.

Field Read The ability to halt when a specific field of any instance of a class or prototype is
read.

Field Write The ability to halt when a specific field of any instance of a class or prototype is
written.

Object Read The ability to halt at any read attempt on a specific object.

Object Write The ability to halt at any write attempt on a specific object.

Object Send The ability to halt at any message send from a specific object. This is an event
that is triggered when any method is invoked from withing the scope of a specific object.

Object Receive The ability to halt at any message send to a specific object.

Object as Argument The ability to halt whenever a specific object is passed as an argument.

Object Stored The ability to halt whenever a new reference to a specific object is stored.

Object Interaction The ability to halt whenever two specific objects interact in any way.
This is a composite category as defined in [RRGN10]. It can be seen as a composition
of object receive, send and argument categories.

3.3 Adaptable Distribution

As seen in Figure 2 remote debugging requires a communication middleware. Designing a
communication solution for debugging to cover a wide range of applications that operate under
very different execution environments can be challenging since debugging targets are becoming
more and more diverse (ranging from small mobile devices to large server deployments on
the cloud). Adaptable middleware solutions are well-studied in literature [KCBC02] and offer
the ability of flexible configuration during runtime [RKC01] from which remote debugging
frameworks can benefit. For example targets with different resources (memory, processing
power, bandwidth) may require different serialization policies. While others such as server
applications may require different security policies when they are being debugged through an
open network.

We distinguish the following four categories of distribution support for debugging solutions,
in ascending order of adaptability:

No-Distribution (-) The debugging solution does not support remote debugging.

Fixed-Middleware (+) The debugging solution supports remote debugging via a dedicated
and fixed protocol which cannot be easily extended.

Extensible Middleware (++) The debugging solution supports remote debugging via a gen-
eral solution for distributed computing (such as an object request broker) which can be
extended, such as CORBA or DCOM.

Adaptable Middleware (+++) The debugging solution supports remote debugging via a
general solution for distributed computing which can be extended and adapted at
runtime [DL02].

Journal of Object Technology, vol. V, no. N, 2014

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Mercury: Properties and Design of a Remote Debugging Solution · 7

4 Evaluation of Existing Solutions

We now study existing debugging solutions of major OO languages in current use today
(Java and other OO JVM-based languages (JPDA) [Ora13b, Ora13a], C# (.NET Debugger)
[Mic12b], C++ and Objective-C (through Gdb) [RS03]) and Javascript [Mic12a] as well as
dynamic languages with live programming support (such as Smalltalk and its debugging model
[LP90]) taking also into account bleeding-edge technological achievements [Zer12, WHV+12,
PTP07] and very recent research results [WWS10, BNVC+11, RBN12].

4.1 Existing Solutions

JPDA/JVM Java’s debugging framework stack is JPDA [Ora13b] and it consists of a mirror
interface (JDI) [Ora13a, BU04], a communications protocol (JDWP) and the debugging
support on the target as part of the virtual-machine’s infrastructure (JVM TI). The application
on the target machine must be specifically run with debugging support from the VM (the JVM
TI) for any interaction between the client and the target to take place. JPDA does not provide
facilities to dynamically update the target other then the hot-swapping of pre-existing methods.
The communication stress is handled by the low-level debugging communication protocol
(JDWP), whose specification is statically defined.

The debugging support for other JVM-based languages such as Scala [MO06] [Dra14],
JRuby [Gra14] and Groovy [Eis14] rely on the debugging interfaces provided by JDI and
provide all or a subset of the aforementioned facilities [Bru12].

JRebel and DCE The DCE VM [WWS10] and Jrebel [Zer12] are both modifications for
the Java virtual machine that support redefinition of loaded classes at runtime. Although these
modifications of the underlying VM are not a solution for debugging themselves, they do
provide incremental updating facilities for remote targets. These modifications if used in
conjunction with the JPDA framework can support the property of run-time evolution that we
described in Section 3.

Maxine The Maxine Inspector offers debugging and dissasembling facilities for the ex-
perimental java virtual-machine Maxine [WHV+12]. Maxine is specialized for vm-level
debugging (i.e., for system programming) by virtue of targeting a meta-circular vm (i.e., a vm
written mostly in java itself). It provides a dual low-level / high-level view while debugging.
This enables Maxine to support field watchpoints on objects regardless of whether the object
has been moved or not by the gc and halt on semantical events related to garbage-collection.
Maxine has experimental support for the JDWP communication protocol of JPDA but in con-
trast with JPDA suffers from performance issues [OL14] which are nevertheless a well-studied
reality of meta-circular virtual-machines in general [USA05].

TOD TOD [PTP07] is an omniscient (i.e., back-in-time) debugger targeting the Java lan-
guage. TOD is usually used with an uninterrupted execution (without any breakpoints) in order
to trace execution events. Although omniscient debugging is out of the scope of our work, TOD
in particular relates to our discussion by providing an event-driven architecture for organizing
and storing execution traces. This architecture utilizes object-oriented instrumentation events
as the ones we describe in Section 3.2 including field write and message interception. TOD
supports instrumentation through JVMTI and ASM [BLC02].

.NET As with Java, the main remote debugging solution for .NET provided through visual
studio [Mic12b] pre-purposes a dedicated debugging deployment. In the developer’s end the

Journal of Object Technology, vol. V, no. N, 2014

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

8 · Nick Papoulias et al.

model of the running application is again static, with the developer being responsible for
providing the right sources and configuration files. In the case of .NET though the debugger
can attach to a running remote process without loosing the context, provided that the static
model for the application is available. Although the model in the developer’s end is static, a
limited form of updating is provided in the form of edit-and-continue [Mic12c] of pre-existing
methods. There is currently no support for incremental updating of the target application with
new packages, classes or methods although there are plans to add related features in the next
major release of Visual Studio 2.

GDB For Obj-C remote debugging is provided through the gnu-debugger [RS03]. Gdb uses
a dedicated process on the target machine called the gdb-server to attach to running processes.
For full debugging support though the deployed application has either to be specifically
compiled and deployed with debugging meta-information embedded on the executable or the
static model for the running application has to be provided from a separate file. Gdb supports
a limited form of updating through an edit-and-continue process of pre-existing methods by
patching the executable on memory [RS03].

Smalltalk The most prominent example of an interactive debugger is the Smalltalk debugger
[BDN+09, LP90, Gol84]. In Smalltalk the execution context after a failure is never lost since
through reflection the debugger can readily be spawned as a separate process and access
the environments’ reifications for: processes, exceptions, contexts etc. Moreover it supports
incremental updating in such a way that introducing new behavior through the debugger is
not only possible but is actually advised [BDN+09]. Indeed incremental updating through
debugging encourages and supports agile development processes, and more specifically Test
Driven Development (TDD) [ABF05]. In addition both the debugging and the reflecting
facilities of Smalltalk are extensible. On the one hand the debugger model is written itself in
Smalltalk. On the other hand the Smalltalk MOP is readily editable from within the system
itself. Illustrative examples of MOP extensions in Smalltalk are given from Rivard in [Riv96].
In terms of distribution, middleware proposals like Dist. Smalltalk [Ben88] and OpenCorba
[Led99] can be in principle used to allow simple exception forwarding.

Bifrost In Smalltalk supporting advanced debugging techniques through instrumentation is
illustrated in the Bifrost reflection framework [RRGN10] and through object-centric debugging
[RBN12]. Bifrost is an extension to the Smalltalk MOP that relies on explicit meta-objects
to provide sub-method [DDLM07] and partial behavioral reflection [TNCC03]. Bifrost is
implemented through dynamic re-compilation of methods. Method invocations are intercepted
using reflective methods [Mar06] similarly to the wrappers abstraction introduced by Brant et
al. [BFJR98]. These are subsequently recompiled using AST meta-objects that control the
generated bytecode. With Bifrost intercession techniques such as the explicit interception of
variable access, is made available at the instance level.

JS/Rivet In–browser debugging of client-side web-applications is out of scope of our current
work. Nevertheless we surveyed the debugging tools of the following web-browsers: IE
[Mic14], Mozilla [Moz14] and Chrome [Goo14] in terms of the features discussed in Section
3. These solutions apart from classic debugging facilities for execution control and breakpoints,
offer event-driven debugging facilities for the DOM (Document Object Model [WAC+98])
and some limited form of live-editing for slots and pre-existing methods.

Our own work is more related to the debugging facilities of standalone javascript appli-
cations (like those of Node.js [Joy14]) which have nevertheless very rudimentary support

2https://www.visualstudio.com/en-us/downloads/visual-studio-2015-ctp-vs

Journal of Object Technology, vol. V, no. N, 2014

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Mercury: Properties and Design of a Remote Debugging Solution · 9

for execution control and breakpoints. The experimental solution of Rivet from Microsoft
[Mic12a] comes closer than other solutions for JS to what we have described in Section 3. It
supports run-time evolution through live-patching and has an easily extensible communication
architecture build on top of HTTP.

AmbientTalk AmbientTalk is an ambient-oriented programming language dedicated to
mobile ad-hoc networks. AmbientTalk’s reflective model supports mirages [MCTT07] which
are an extension to the mirror model adding implicit reflection capabilities. Through implicit
reflection AmbientTalk extends the contemporary API of mirrors with the following three
methods: a doesNotUnderstand(selector) protocol for message sends and two implicit hooks
for object marshalling (pass() and resolve()) [MVCT+09]. These hooks can be used during
a debugging session to support some of the object-oriented execution events we describe in
Section 3, such as instantiation events, slot editing and interception [Cut14]. REME-D (the
debugging framework of AmbientTalk) supports classical features of remote debuggers, such
as step-by-step execution, state introspection and breakpoints and builds upon the reflective
capabilities of AmbientTalk to support asynchronous message breakpoints and epidemic
debugging [BNVC+11]. These features although domain specific to mobile ad-hoc networks
are nevertheless supported by a communication paradigm (AmOP) that is very robust and
adaptable.

4.2 Comparison

In this Section we compare existing solutions in terms of run-time evolution,semantic instru-
mentation and adaptable distribution. Table 3 of Appendix A presents our findings in details
(per sub-properties) while Table 1 (also part of Section 5) gives a summary per-solution.

4.2.1 Run-Time Evolution

As seen in Table 3 debugging environments of mainstream OO languages (JPDA, .Net Debug-
ger, Gdb) do not support run-time evolution with the exception of a save-and-continue facility
for pre-existing methods. In the case of Gdb method hotswapping can lead to inconsistencies
[Zel05] since it is supported through memory patching, which is a blind process that replaces
execution instructions in memory, without knowledge of the underlying semantics of the
language. In the Java world recent developments (through Jrebel and DCE) provide full
support for this property as do more dynamic environments such as Smalltalk, Bifrost and
Rivet.

4.2.2 Semantic Instrumentation

In Table 3 we also do a comparison in terms of semantic instrumentation and its sub-properties
as they were defined in Section 3. We have also included a last category marked as condi-
tion/action that describes whether in all instrumentation events the debugging solution can
support both user-generated checks and code in order to provide a more fine-grain control.
As an example we can consider a conditional breakpoint that is able to execute user specified
actions when triggered.

As we can see from our comparison, Bifrost is the front-runner of instrumentation with all
mainstream solutions supporting only plain breakpoints and watchpoints while other – more
experimental solutions – having a partial coverage. Bifrost though lacks an Object Stored
event which is useful for following an object’s reference propagation and counting. Finally
only Bifrost and Gdb provide support for both conditions and actions on instrumentation
events.

Journal of Object Technology, vol. V, no. N, 2014

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

10 · Nick Papoulias et al.

4.2.3 Adaptable Distribution

Finally Table 3 presents our comparison in terms of distribution. Solutions are marked with -
for not supporting distribution, + for supporting distribution through a fixed-middleware, ++
for an extensible middleware and +++ for an adaptable middleware.

As we can see no general purpose solution supports an adaptable middleware, besides
AmbientTalk which is an environment tailored to mobile ad-hoc networks. Nevertheless
even in mainstream solutions we notice a trend towards more and more dynamicity. The
.NET debugging framework for example follows in the comparison using a general purpose
and extensible communication solution (DCOM) [Mic13] together with Rivet’s HTTP-based
protocol. We should note here that in the case of Smalltalk (which does not have a dedicated
solution for remote debugging), there were some efforts in the past to support remote develop-
ment (including simple exception forwarding for debugging) in Cincom Smalltalk based on
[Ben88], which were discontinued.

4.2.4 Comparison Overview

In Table 1 we present an overview of our comparison in terms of all properties that were
described in Section 3:

Property JPDA/JVM .NET GNU-DEBUGGER DCE JREBEL SMALLTALK

Run-Time Evolution + (1/6) + (1/6) + (1/6) +++ (6/6) +++ (6/6) +++ (6/6)
Sem. Instrumentation + (4/13) + (4/13) + (5/13) + (4/13) + (4/13) + (3/13)

Ad. Distribution + (fixed) ++ (extensible) + (fixed) + (fixed) + (fixed) - (no)

Property JS/RIVET TOD AMBIENTTALK MAXINE BIFROST MERCURY

Run-Time Evolution +++ (6/6) + (1/6) + (2/6) + (1/6) +++ (6/6) +++ (6/6)
Sem. Instrumentation + (2/13) ++ (7/13) ++ (8/13) ++ (7/13) +++ (12/13) +++ (13/13)

Ad. Distribution ++ (extentible) + (fixed) +++ (adaptable) + (fixed) - (no) +++ (adaptable)

Table 1 – Comparison Overview for Existing Solutions and Mercury (Section 5)

As we can see from Table 1 debugging solutions based on reflection (such as Smalltalk
and Bifrost in the local scenario) offer the most complete solutions in terms of run-time
evolution and semantic instrumentation, but lack support for adaptable distribution (as in the
case of AmbientTalk). On the other hand solutions of mainstream OO languages (JPDA, .Net
Debugger, Gdb) and their extensions (Jrebel, DCE) lack support for either run-time evolution
or instrumentation (or in some cases both). Other solutions (Rivet, TOD, AmbientTalk,
Maxine) have partial support for some but not all of our properties. There is no solution that
meets all our criteria in a satisfactory way.

5 Our Solution: Mercury

Our solution proposes a model of the debugged application (cf. Figure 3 (1)) that is dynamic
and acts as a meta-level for target applications. It relies on specific meta-objects known as
Mirrors defined by Bracha and Unghar as “intermediary objects [...] that directly correspond
to language structures and make reflective code independent of a particular implementa-
tion” [BU04]. Mirrors are located on the developer’s side. They are causally connected to the
debugged application and support run-time evolution. The run-time debugging support on
the target (cf. Figure 3 (2)) reifies the underlying execution environment to support semantic
instrumentation. Finally our middleware follows a modular architecture to be adaptable even
during runtime (cf. Figure 3 part (3)).

Journal of Object Technology, vol. V, no. N, 2014

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Mercury: Properties and Design of a Remote Debugging Solution · 11

DEBUGGED
APPLICATION

DEVELOPER'S END TARGET

RUN-TIME
DEBUGGING SUPPORT

MIDDLEWARE

DEBUGGER / IDE

MODEL
OF THE DEBUGGED APP

MIDDLEWARE

1
2

3

Causally connected
mirror-based live

meta-level

Reification of the
underlying execution

environment
Factory based

modular architecture

Figure 3 – Overview of our Solution

The rest of this section describes our solution based on this live meta-level and how it
supports the three properties which were identified in Section 3.

5.1 The Core Meta-Level

The meta-level located on the development machine (left part of Figure 4) is a set of mirrors
that reflect on objects (e.g., instance of the class Point) on the target side (right part of Figure 4).
The target machine also includes support for reflection and debugging. This is the role of the
package RTSupport that includes the RunTimeDebuggingSupport class (our remote facade).

Target Side

Object Point

aPoint

instance of
RTSupport

RunTimeDebuggingSupport

+ objectinstVarAt(forObject:
Object, anIvName: String):
Object
+ ...

.....

Mirror

- targetObject: Object

ObjectMirror

- rtMirror: RunTimeMirror

+ instVarAt(anIvName:
String): ObjectMirror
+ ...

mirrorO
nAPoint

RunTimeMirror

- runTime: RTDebuggingSupport

+ objectinstVarAt(forObject: Object,
anIvName: String): ObjectMirror
+ ...

.....

aRunTime
Mirror

runTimeDebuggingSupp
ort

1*

1 1

reflects on

instance of

Development Side

M
I
D
D
L
E
W
A
R
E

Figure 4 – Our core model

On the left side of Figure 4, we depict the 3 core classes of our meta-level. The root is
the Mirror class, that declares the targetObject field. So, every mirror holds a remote reference
to one object on the target. Nevertheless, an object on the target can be reflected by multiple
mirrors on the development side.

Both on the developer’s end and on the target, a unique object is responsible to handle
all communications to the other side. This object is an instance of RunTimeMirror on the
developer’s end and an instance of RunTimeDebuggingSupport on the target. On the developer’s
end, all mirrors can retrieve this object in their inherited field named rtMirror. The API of

Journal of Object Technology, vol. V, no. N, 2014

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

12 · Nick Papoulias et al.

the RunTimeMirror is completely equivalent to the one of RunTimeDebuggingSupport with one
crucial difference: each call to the target side results in a mirror or a collection of mirrors
being returned to the developer’s side ensuring the encapsulation of the remote debugging
facilities. This cascading encapsulation between calls to a mirror object is equivalent to the
transitive wrapping mechanism described by C. Teruel et al. [TCD13] for proxies, only in this
case an entire remote environment is being wrapped rather than a local object-graph.

To show how communication and reflection is handled between the development machine
and the target, consider the example of the mirror mirrorOnAPoint and its target object aPoint
on Figure 5. Suppose that the developer wants to get the class of aPoint. To perform this
operation, the IDE sends the getClass message to mirrorOnAPoint. As a result, mirrorOnAPoint
sends the getClass(targetRef) message to aRunTimeMirror passing as a parameter the remote ref-
erence that it holds. Then, aRunTimeMirror invokes through the middleware the corresponding
getClass(targetRef) method on runTimeDebuggingSuppport located on the target. The runTimeDe-
buggingSuppport retrieves the class Point and answers it back through the middleware. The
class on the target is retrieved either via local reflection or through direct vm-support provided
by the RunTimeDebuggingSupport class of Figure 4. On the developer side, aRunTimeMirror
receives a remote reference on the Point class, and creates a new mirror on the remote class. It
is this mirror on the Point class that is returned back to mirrorOnAPoint.

mirrorOnAPoint aRunTimeMirror runTimeDebuggingSupport aPoint

getClass()

getClass(targetRef)

getClass(targetRef)
class()

Local Reflection
or

Direct VM supportThrough Middleware

Point
PointRef

mirrorOnPoint

mirrorOnPoint

Figure 5 – Sequence Diagram detailing Remote Reflection with Mercury

Communication can also be initiated by the target as shown in Figure 6 to trigger updates
of the remote meta-level on the developer’s side. For example when a new exception is
thrown on the target (right side of Figure 6) the asynchronous newException(exceptionRef)
message is send carrying a remote reference to this newly raised exception. As before
aRunTimeMirror will receive the remote reference and will create a new exception mirror. It is
this exception mirror that will be forwarded to interested listeners who have registered through
the registerListener(aListener) message of the run-time mirror. Typically a listener will be an
instance of the EnviromentMirror class (see Figure 7) through which interrupted processes
and unhandled exceptions are accessed.

5.2 Run-Time Evolution

To support run-time evolution, the model of the debugged application on the developer’s end
and the state of the debugged application on the target (cf. Figure 2) needs to be causally
connected. This means that an arbitrary change in either one of them should update the other.

Journal of Object Technology, vol. V, no. N, 2014

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Mercury: Properties and Design of a Remote Debugging Solution · 13

aRunTimeMirror runTimeDebuggingSupport

registerListener(aListener)

newException(exceptionRef)

newException(exceptionMIrror)

aListener

Through Middleware

Figure 6 – Asynchronous communication initiated by the target

We describe how our model supports this property through the class hierarchy and the
API of our meta-level (starting from ObjectMirror). Figure 7 depicts 8 core classes of our
meta-level which are divided into two groups: the ones that reify the structure of the debugged
application (structural reflection) and the ones that reify the computation (computational
reflection) [Fer89, Mae87].

In our model, both structural reflection and computational reflection are causally connected
to the other side. For structural reflection, this means that the addition of a new package, a
new class or method through mirrors, etc. in the development side results in a structural update
of the running application on the other side. These 8 core classes depicted in Figure 7 define
an API that supports run-time evolution. Instances of these classes reflect on remote objects
on the target and all of their methods can be executed while the application is running.

ObjectMirror. An ObjectMirror enables retrieving information from the object reflected such
as its class, reading/setting its fields or sending new messages to it but also changing its
class (setClass).

EnvironmentMirror. It is the entry point mirror to the target application depicting the remote
environment as a whole. Through the environment mirror globals are read/written,
loaded packages are retrieved, interrupted processes and unhandled exceptions are
accessed, code is evaluated (evaluate) and packages can be created, removed, or edited
(newPackage, removePackage, etc.).

PackageMirror. A package mirror reflects on loaded packages on the target application. This
mirror gives access to package’s meta-information such as its name and the classes it
contains. Classes can also be added or removed using the methods newClassNamed and
removeClassNamed.

ClassMirror. Through a class mirror the name, superclass, fields, methods and enclosing
package of the reflected class can be retrieved. The superclass can be changed, new
instance variables and methods can be added/removed or edited (setSuperClass, addInst-
VarName, deleteInstVarName, addMethod, deleteMethod, etc.).

Journal of Object Technology, vol. V, no. N, 2014

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

14 · Nick Papoulias et al.

(2) Computational
 Reflection

ExceptionMirror

ProcessMirror

ContextMirror
+ saveAndContinue
(newSrc: String):
ContextMirror

(1) Structural Reflection Mirror
- targetObject: Object

RunTimeMirror
- runTime:
RunTimeDebuggingSupport

ObjectMirror
- rtMirror: RunTimeMirror

+ setClass(aClassMirror: ClassMirror): ClassMirror

.....

EnvironmentMirror
+ newPackageNamed(aPackageName:
String): PackageMirror
+ removePackageNamed(aPackageName:
String): PackageMirror

ClassMirror
+ setSuperClass(aClassMirror: ClassMirror):
ClassMirror
+ addInstVarName(anIvName: String):
ClassMirror
+ deleteInstVarName(anIvName: String):
ClassMirror
+ addMethod(methodName: String, source:
String): MethodMirror
+ deleteMethod(methodName: String):
MethodMirror

PackageMirror
+ newClassNamed(aClassName: String):
ClassMirror
+ removeClassNamed(aClassName: String):
ClassMirror

MethodMirror
+ recompileWithSource(src: String):
MethodMirror

Figure 7 – Core classes and API for supporting Run-Time Evolution

MethodMirror. Apart from retrieving the name, source or class membership of a Method,
the developer can edit a method in place (recompileWithSource).

ProcessMirror. It allows one to retrieve meta-information on a process such as its stack and
manipulate the execution flow.

ExceptionMirror. It is the reification of exceptions on the target. Through an exception
mirror the description of an unhandled exception can be retrieved, as well as the process
that it occurred and the offending execution context.

ContextMirror. It is the reification of a stack frame (context) on the target application.
Through a contextMirror its process, method, receiver and sender can be retrieved,
temporaries and arguments of the invocation can be read/written, its execution can be
restarted but also the method that was invoked and created the context can be edited
before continuing the execution (saveAndContinue).

5.3 Semantic Instrumentation

Semantic Instrumentation in our model is supported through intercession. Specifically the
underlying execution environment is reified inside the run-time environment of the target as to
be able to control the semantics of a running process.

The model of our solution uses the following patterns:

Journal of Object Technology, vol. V, no. N, 2014

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Mercury: Properties and Design of a Remote Debugging Solution · 15

The observer [ABW98] An observer defines a dependency between an object and its depen-
dents, so that the dependents are notified for state changes on that object.

The implicit meta-object [Mae87] Implicit meta-objects are meta-objects that are invoked
automatically by the underlying execution mechanism.

Objects can be instrumented either to perform user-generated conditions and actions upon
invocation of specific events (e.g., RunTimeDebuggingSupport»objectOnReceive) or to halt
the process on those specific events (e.g., RunTimeDebuggingSupport»objectHaltOnReceive).

Figure 8 depicts the reification of the Interpreter (the underlying execution environment)
which acts as our observer, connecting instances of Object (regular objects) to instances
of ImplicitMetaObject (dependents). Whenever an event of interest is being applied to an
object (such as a message send) the underlying execution mechanism invokes the Interpreter
reification, which in turn notifies the ImplicitMetaObjects. The Interpreter resolves the
relationship between objects and meta-objects through the MetaEnvironment, which acts as
an environment dictionary for the meta-level. The MetaEnvironment provides a one-to-one
mapping between objects and meta-objects.

Implicit meta-objects when notified, will invoke a callback (class Closure in Figure 8)
which can be either a local callback or a remote callback from the developer’s end. The
RunTimeDebuggingSupport maintains a reference to the Interpreter reification to register
these callbacks coming from mirrors on the developer’s side. Thus our implicit meta-objects
extend our mirror model in order to add implicit reflection capabilities as in Mostinckx et
al. [MCTT07] (see also AmbientTalk on Section 4). In our case though these meta-objects
implement all additional implicit events for remote debugging described in Section 3 which
are made possible by our reification of the underlying execution environment.

Object

Closure

LocalCallBack

RemoteCallBack

ImplicitMetaObject
- onReceive: Closure
- onSend: Closure
- onRead: Closure
- onWrite: Closure
….

Interpreter
baseMetaDict: Dictionary

RunTimeDebuggingSupport

+ ...
+ objectHalt(): Object
+ objectHaltOnReceive(): Object
+ objectOnReceive(callBack:
LocalCallBack)
+ objectOnReceive(callBack:
RemoteCallBack)

interpreter: Interpreter

values: Dictionary<Object>

MetaEnvironment

1

1

1

1

*

*

*

1

*
1

Figure 8 – Core classes for Instrumentation support in the Target

5.4 Adaptable Distribution

To support distribution via an adaptable middleware, we modeled our solution using the
concept of the abstract Factory [ABW98], through which families of related objects can be
assembled and parametrized at runtime. Our model for adaptable distribution is part of our
proposed model for remote debugging. It is specifically tailored for this context and should
not be considered a contribution on its own.

Figure 9 depicts the core classes of our model for distribution:

Journal of Object Technology, vol. V, no. N, 2014

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

16 · Nick Papoulias et al.

Middleware
Daemon

Marshaller

DistributionPolicy Transporter

SecurityPolicy

Figure 9 – Core classes of our adaptable middleware

Middleware Daemon This abstract class defines methods for the orchestration (assembling)
and initialization of our middleware, acting as an Abstract Factory. It is also responsible
for loading the RTSupport package (cf Figure 4) on the target upon the successful
authentication of a client.

Transporter The concrete subclasses of this abstract class handle the actual communication
between peers. Different transporters can support different communication protocols
(e.g., tcp, udp or web-sockets)

Marshaller The marshaller (through its concrete subclasses) is responsible for serializing
and materializing information, passed through the connection. Different marshallers
can support different transcoding algorithms to fit the needs of the debugging context
(e.g., serializing to xml, json or binary-form).

Distribution Policy This class (through its concrete subclasses) decides how specific ob-
jects or group of objects will be distributed among peers. Options can include: full
serialization, shallow serialization, proxying, etc..

Security Policy The concrete subclasses of this abstract class are responsible for authenti-
cation and for restricting access (either message sending or distribution) for specific
instances or whole classes of objects.

5.5 Comparison with Existing Solutions

In this Section we compare the state-of-the-art debugging solutions (which we discussed in
Section 4.2.4) with our work in terms of run-time evolution, semantic instrumentation and
adaptable distribution.

As we can see from Tables 1 and 3 (Appendix A) our solution manages to cover all three
properties that were identified in Section 3 being comparable only to the Bifrost framework (in
the local scenario) in terms of run-time evolution and semantic instrumentation. In our case
though these properties are brought to remote debugging through an adaptable middleware. In
terms of distribution Mercury is only comparable to AmbientTalk and to a lesser extend to
Rivet and the .NET debugging framework which both use an extensible (but not adaptable)
communication middleware (DCOM) [Mic13].

Finally since both our solution and Bifrost are based on Smalltalk, we were also able
to perform a micro-benchmark to compare the two, in terms of the overhead introduced
by instrumentation. The benchmark is based on Tanter [TNCC03] and the Bifrost metrics
are those reported in [Res12]. The benchmark measures the slowdown introduced by each
solution for one million messages send to a test object when a) no instrumentation is present
b) instrumentation is loaded but is disabled for this specific object and c) instrumentation is
enabled on the test object of the micro-benchmark.

Journal of Object Technology, vol. V, no. N, 2014

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Mercury: Properties and Design of a Remote Debugging Solution · 17

BIFROST MERCURY

No instrumentation 1x 1x
Disabled instrumentation 1x 1x
Enabled instrumentation 35x 8x

Table 2 – Instrumentation benchmark for Bifrost and Mercury

As we see in Table 2 for both solutions there is no overhead introduced when a specific
object is not being instrumented, regardless of whether the solution is loaded into the environ-
ment. This is important for practical reasons so as to avoid slowing down the whole system
while debugging. While instrumenting a specific object our solution introduces a significantly
smaller overhead than Bifrost. We believe that this is due to the fact that our solution is based
on the underlying virtual-machine rather than on byte-code manipulation as in the case of
Bifrost.

5.6 Limitations

In contrast with the debugging solutions presented in Section 4 our solution has the following
limitiations:

Distributed Applications Mercury is a model for remote debugging and can thus seperately
debug the connected parties of a distributed application, as is usually the case with debugging
remote server or client applications. Special debugging facilities for distributed applications
- such as asynchronous breakpoints supported by REME-D [BNVC+11] - were outside the
focus of our work.

VM-Debugging Also our solution concerns itself exclusively with language-side debugging,
in contrast for e.g., with Maxine [WHV+12]. Maxine targets a meta-circular language-vm
system and can thus be used to debug both the Maxine virtual-machine as well as the java
program running on top of it.

In-browser Debugging Finally Mercury cannot be used to debug in-browser client-side
applications. We nevertheless surveyed several javascript debugging solution in terms of the
properties discussed in Section 3.

6 Mercury’s Implementation

6.1 Implementation Overview

Given our state-of-the-art survey in Section 4 we chose to implement Mercury in a platform
that was as close as possible to our goals. We chose to implement a prototype3 of our model
(described in Section 5) in Pharo [BDN+09] and Slang [IKM+97]. Pharo is a reflective,
object-oriented and dynamically typed programming environment that is inspired by Smalltalk.
Slang is a subset of the Smalltalk syntax with procedural semantics that can be easily translated
to C. In Figure 10 we show the different constituents of our implementation.

3http://ss3.gemstone.com/ss/Mercury-Prototype.html

Journal of Object Technology, vol. V, no. N, 2014

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

18 · Nick Papoulias et al.

Mercury-Core Mercury-Ui

Seamless MetaStackVM

(Alexandria)

Figure 10 – Core parts of Mercury’s Prototype

MetaStackVM Is a dedicated virtual-machine for debugging targets, that extends the reflec-
tive facilities of the standard Stack VM of Pharo [Mir08] in order to support interces-
sion [Pap13].

Seamless Is our adaptable middleware that provides flexible communication facilities be-
tweens peers during debugging sessions.

Mercury-Core Is the sub-project of Mercury that hosts the debugging meta-level and the
debugging run-time support.

Mercury-UI Is a debugging front-end that exemplifies key functionalities of our solution.

All four part of our prototype implementation for Mercury are released under the MIT
license 4.

6.2 Discussion: Implementation trade-offs

6.2.1 Supporting Run-Time Evolution

Implementors of our model have essentially two options for supporting run-time evolution
through the RunTimeDebuggingSupport (depicted in the left side of Figure 4):

(a) Local reflection Local reflection on the target can be used to provide the corresponding
API for run-time evolution. This solution is applicable to languages that already provide
a rich set of local reflective facilities. It is also a portable and extensible solution since
the debugging support is written in the same language as the target application.

(b) Virtual Machine support Debugging support on the target can be also hard-coded inside
the virtual-machine of the target. This solution fits better with languages that do not
support advanced reflective facilities on their own. It is also an attractive option for
system debugging, in cases where core language reflection itself has to be debugged.
This solution is less portable and extensible if it is not supported by the vendor of the
target language.

In our prototype we used a combination of the two approaches mentioned above. Remote
reflection on the instance level is separated from local reflection on the target and can thus
support some limited form of system debugging. However, we also make use of local
reflective facilities on the target for system-organization reflection (packaging meta-objects)
and computational reflection (reifications of contexts and processes). Our implementation
currently depends on the compiler on the target. Ideally, the developers’ end compiler should
be used and the target should not host a compiler itself to further minimize the footprint.

4http://opensource.org/licenses/MIT

Journal of Object Technology, vol. V, no. N, 2014

http://opensource.org/licenses/MIT
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Mercury: Properties and Design of a Remote Debugging Solution · 19

6.2.2 Supporting Instrumentation

To support semantic instrumentation the following options can apply:

(a) Bytecode Manipulation The compiler can be used to re-compile part of the system to
transparently introduce crosscuts that perform instrumentation checks (for message
sending, field access, etc.). This solution has the disadvantage of instrumenting only
static entities (such as classes or methods) and may perform poorly when specific objects
(runtime entities) need to be instrumented. For example when instrumenting message
sending on a specific object, all the methods of its class and its superclasses have to be
re-compiled to introduce the crosscuts. On the other hand in the case of a self-hosted
compiler this option favors portability.

(b) Virtual Machine support Instrumentation support on the target can be also hard-coded
inside the virtual-machine of the target. This solution fits better with instrumentation of
run-time entities, since the checking can be performed on the object itself while it is
being interpreted by the underlying execution environment. Portability may be an issue
in this case if instrumentation is not supported by the vendor.

In our prototype we supported instrumentation by extending the stack-based virtual ma-
chine of Pharo. We chose to provide virtual-machine support since our focus was on instru-
menting run-time rather than static entities. Furthermore we did not wish to have further
dependencies on the compiler of the target.

6.3 Discussion: Implementing Mercury in Java

We take the Java language as an example to investigate the feasibility of implementing Mercury
in other languages. We discuss the technological prerequisites for implementors for each part
of our model as was discussed in Section 5.

A causally connected dynamic meta-level for debugging that can support run-time evolu-
tion can be build for Java by combining the currently available debugging infrastructure found
in JPDA [Ora13b] with the incremental updating facilities of the DCE VM project [WWS10]
or those found in the JRebel vm-plugin [Zer12] (see also Section 4). Support for semantic
instrumentation can be build on top of solutions for bytecode manipulation or reflective inter-
cession for Java like those in Iguana/J [RC00], Reflex [TBN01], ASM [BLC02] or JavaAssist
[CN03]. We should note here however that since Java is more static in nature - compared to
Pharo - these frameworks should be able to inter-operate with the incremental updating support
we discussed previously (DCE, JRebel) to apply the required adaptations at run-time as we do
with Mercury. Supporting remote debugging through an adaptable middleware can be achieved
in Java by substituting the static low-level debugging communication protocol (JDWP) of
JPDA with a more dynamic and flexible middleware solution like Cajo [Cat14]. Another
approach would be to reconcile core reflection with remote method invocation bypassing the
restrictions imposed by the Java reflection API. This was proposed in the work of Richmond
and Noble [RN01] through a set of carefully designed local and remote proxies.

7 Mercury’s Validation

In this Section we first show some basic examples of Mercury in terms of API (sub. 7.1) and
then continue by validating Mercury’s properties in an experimental setting (sub. 7.2). Two
case studies are considered involving remote debugging of multiple remote devices. The first

Journal of Object Technology, vol. V, no. N, 2014

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

20 · Nick Papoulias et al.

case study details how the property of interactiveness can be used to support a remote agile
debugging paradigm (sub. 7.3). While the second shows how Mercury brings the idea of
object-centric debugging in a distributed setting through remote object instrumentation (sub.
7.4).

7.1 Basic API Examples

7.1.1 Inspecting remote environments and accessing objects

On line 1 of Script 1, the current process on the developer machine uses the mirror factory
Reflection to access an environment on the remote target at address minesdouai.fr:8080. On
line 2 a package meta-object is accessed named: #Graphics-Primitives, then on line 3 a class
meta-object inside this package named: #Point is retrieved. On line 4 a new instance of the class
#Point is created on the target and its corresponding meta-object is returned on the developer’s
machine. Finally on line 5 the instance variable named x of this newly created object is set to
a new value.

Example Script 1: Inspecting a remote environment and editing remote objects

1 anEnvironmentMirror:= Reflection on: RemoteEnvironment @ ’mines-douai.fr:8080’.
2 aPackageMirror := anEnvironmentMirror packageNamed: #’Graphics-Primitives’.
3 aClassMirror := aPackageMirror classNamed: #Point.
4 anObjectMirror := aClassMirror newInstance.
5 anObjectMirror instVarAt: #x put: 100.

7.1.2 Handling remote exceptions

In Script 2, as before the remote environment is accessed through our mirror factory (line
1). Then on line 2 an expression is evaluated on the remote target: ‘3 / 0’. Then we show
that if a remote exception occurs during the evaluation of an expression, a corresponding
exception meta-object is returned and can be used by clients of our meta-level. In this case
a LocalDebuggingClient class which makes use of our meta-level, is invoked with our remote
exception meta-object.

Example Script 2: Handling a remote exception

1 anEnvironmentMirror := Reflection on: RemoteEnvironment @ ’mines-douai.fr:8080’.
2 anEnvironmentMirror
3 evaluate: ’3 / 0’
4 onRemoteExceptionDo: [:aRemoteExceptionMirror |
5 LocalDebuggingClient debug: aRemoteExceptionMirror]

7.1.3 Changing variables and controlling execution flow

On line 2 of Script 3, we access all interrupted processes (threads) on the remote target. These
are all execution threads that have raised unhandled exceptions or have been interrupted for
inspection by the developer. Then on line 3 we retrieve the top context on the stack of the first
interrupted process. On line 4 we modify a temporary value inside that context. Then finally
on line 5 we make the process to proceed with the interrupted execution.

Example Script 3: Controlling execution flow

1 anEnvironmentMirror := Reflection on: RemoteEnvironment @ ’mines-douai.fr:8080’.
2 interruptedProcessesMirrors := anEnvironmentMirror interruptedProcesses.
3 aContextMirror := interruptedProcessMirrors first topContext
4 aTempObjMirror := aContextMirror tempNamed: ’x’ put: ’3’.
5 interruptedProcessesMirrors first proceed.

Journal of Object Technology, vol. V, no. N, 2014

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Mercury: Properties and Design of a Remote Debugging Solution · 21

7.1.4 Incrementally changing the target’s code and state

On Script 4, we show how a developer can introduce new behavior in the targeted application
(interactiveness). On line 2 we introduce an empty new package through our environment
meta-object. From line 3 to 5, we add a new class in this package with two instance variables
and one method named hypothesis. We instantiate this new class (line 6) and send a message to
this new instance (line 7) through its meta-object. As before (on Script 3) if our message-send
raises an exception, a corresponding exception meta-object will be returned which can be used
by clients of our meta-level.

Example Script 4: Incrementally updating the remote target to test a bug

1 anEnvironmentMirror := Reflection on: RemoteEnvironment @ ’mines-douai.fr:8080’.
2 aPackageMirror := aRemoteEnvironment newPackageNamed: #NewPackage.
3 aClassMirror := aPackageMirror newClassNamed: #NewClass.
4 aClassMirror := aClassMirror ivs: { #x . #y}.
5 aClassMirror := aClassMirror addMethod: ’hypothesis: aNumber ...’
6 anObjectMirror := aClassMirror newInstance.
7 anObjectMirror perform: #hypothesis
8 withArguments: { 3 }
9 onRemoteExceptionDo: [:aRemoteExceptionMirror |
10 LocalDebuggingClient debug: aRemoteExceptionMirror]

7.1.5 Introducing breakpoints on execution events

In Script 5, we show how instrumentation can be used to alter semantics on the target
application and provide facilities such as object-centric watchpoints. Especially in this example
we show how halting on object creation can be achieved by conditioning the message receive
event on a class.

On line 1 a class mirror is retrieved. On line 2 a remote callback is registered for instru-
menting message sending on the remote class. This callback accepts one or more arguments
that provide meta-information about the event, such as the name of the method being invoked.
On line 3 a condition and an action are set within the callback. Specifically when the message
new (responsible for object creation) is sent to the remote class, the class that triggered the
event (i.e reifications trigger) will cause the remote process to halt, effectively producing a
watch-point on object creation.

Example Script 5: Instrumentation of object creation

1 aClassMirror := aPackageMirror classNamed: #Point.
2 aClassMirror onReceive: [:reifications |
3 reifications message selector = #new ifTrue: [reifications trigger halt]]

7.1.6 Distribution

In Script 6, we show how we can adapt the middleware’s serialization policy at runtime while
debugging. On line 1 we retrieve a class mirror (on the class #Class) and then on line 2,
we ask the class mirror for an object mirror on its instance variable: #localSelectors. The
localSelectors instance variable is a Set holding all selectors (method names) defined locally
in that class. Since this is a collection of basic instances (i.e symbols), further processing on it
(like printing) would be more convenient if instead of a mirror (i.e the ivMirror in this case)
we had a local copy. This is achieved on line 3 where we send the message resolveLocally to
the ivMirror. This message (at run-time) instructs the middleware to override its serialization
policy specifically for this instance and return a local copy of the underlying remote reference.

Example Script 6: Adapting serialization at run-time

1 aClassMirror := aRemoteEnvironment globalAt: #Class.
2 ivMirror := aClassMirror objInstVarNamed: #localSelectors.
3 localSet := ivMirror resolveLocally.

Journal of Object Technology, vol. V, no. N, 2014

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

22 · Nick Papoulias et al.

7.2 Experimental Setting

For validating Mercury we have considered three different kinds of devices as debugging
targets. These devices (see Figure 11) where chosen as illustrative examples of either:

• Targets that have different hardware or environment settings than development machines.

• Targets that are not locally or easily accessible.

• Targets that have no input/output interfaces for local development.

Through this setting, we have verified the applicability of Mercury for different debugging
targets. We experimented on how a debugging session can benefit from Mercury’s properties,
by studying the following two use-cases:

1. Combining agile development [ABF05] with debugging in a single remote debugging
session without the need of re-deployment.

2. Supporting both OO-centric [RBN12] and Stack-based debugging in a remote setting
through remote object instrumentation.

Developer-Machine

Mac-Mini - (2.3 GHz / 4GB RAM)
Ubuntu 12.04

Device (A)
Phone

Galaxy Nexus - (1.2 GHz / 1GB RAM)
Android 4.3

Device (B)
Tablet

Galaxy Tab - (1.0 GHz / 1GB RAM)
Android 4.0

Device (C)
Remote Server

Running

HP Workstation - (2.3 GHz / 4GB RAM)
Ubuntu 12.04

over wifi
over wifi

over ethernet

ETH: 10.1.10.206
WIFI: 10.1.160.116

WIFI: 10.1.160.158 ETH: 10.1.10.81

WIFI: 10.1.160.92

Mercury IDE

Figure 11 – Experimental Set-up for our Debugging Targets

Figure 11 shows the set-up of our experiment. In the upper part of the figure we depict our
debugging targets. Device A is a smart-phone target connected to our development machine
through wifi. Device B is a tablet target also connected through a wireless network, while
Device C is a remote server to which we connect through ethernet.

In the lower part of the figure we show the development machine running our debugging
front-end. A cropped screenshot of the Mercury IDE is shown at the center of the figure. Each
tab corresponds to tools supporting remote development and debugging of a single target.

Journal of Object Technology, vol. V, no. N, 2014

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Mercury: Properties and Design of a Remote Debugging Solution · 23

The developer machine connects to our targets through the two communication interfaces
designated as ETH and WIFI for ethernet and wireless communication channels respectively.
For our two android devices (phone and tablet), we have also tested communication through a
usb channel that establishes ethernet connections using port forwarding. 5

7.2.1 The Droid and Cloud File Browsers

Figure 17 shows the Droid-Browser application running on the phone and tablet devices
(middle and right part of Figure 17 respectively). The Droid-Browser is a local file browsing
application that presents the option to upload local files stored on the device to the cloud (i.e
the remote server of our experimental setting).

On the other hand the Cloud-Browser is a normal web-application that presents the option
to download files that where previously uploaded on the server.

The two applications share part of their code for file browsing and serving of web-pages as
seen in Figure 12. The core logic of both applications resides in two subclasses of a common
ancestor class named FileBrowser. FileBrowser is itself a subclass of WAComponent which is
part of the Seaside [DLR04] web-framework.

FileBrowser

DroidBrowser

CloudBrowser

WAComponent

...Seaside Web-Framework

FileBrowserTest

+ suffixOf: aString
+ testSuffixWithDot
+ testSuffixWithoutDot
+ testLongFilePath

TestCase

Figure 12 – Left: The Droid and Cloud browser apps implemented as Seaside components
Right: FileBrowserTest class and methods introduced through run-time evolution

7.3 Case Study I: Remote Agile Debugging

Our starting point is the deployment of our target software in all three devices, and the
subsequent launch of the applications.

We then connect through the debugging front-end of Mercury to our remote targets. All
our targets upon start-up raised the same error. From the exception name and the remote stack
we can deduce that a NotFound error was triggered from inside the #detect: method of class
Collection, as seen in Script 8.

Script 8: The method which raised the initial error

detect: aBlock
1 "Evaluate aBlock with each of the receiver’s elements as the argument.
2 Answer the first element for which aBlock evaluates to true."
3
4 ^ self detect: aBlock ifNone: [self errorNotFound: aBlock]

After navigating the stack through our context mirrors we come to the first context related
with our application, which can be seen in Script 9. The method in Script 9 is an extension

5http://developer.android.com/tools/help/adb.html

Journal of Object Technology, vol. V, no. N, 2014

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

24 · Nick Papoulias et al.

of our application for the system class String, which calculates the suffix of a given filename.
Mercury informs us that the offending method call to #detect: originated from our code on
line 3.

Script 9: Calculating a filename suffix

String>>suffix
1 | dot dotPosition |
2 dot := FileDirectory dot.
3 dotPosition := (self size to: 1 by: -1) detect: [:i | (self at: i) = dot].
4 ^ self copyFrom: dotPosition + 1 to: self size

In turn the method suffix was called while the Droid Browser was trying to render a
corresponding icon for a file system entry according to its suffix, as seen in Script 10. The
method #renderPathOn: in Script 10 belongs to the class FileBrowser (superclass of both
Droid and CloudBrowser as seen in Figure 12) which seems to be the reason why all of our
targets failed to render their ui. To validate this hypothesis we check the stack on all 3 targets
and browse the offending file system entries for each case:

Phone: ’/charger’

Tablet: ’/default.prop’

Server: ’/var/www/User/.profile-xmind-portable-201212250029’

Script 10: Icon rendering code calling the suffix method

FileBrowser>>renderPathOn: html
[...]

html image url: (FileIcons urlOf: (each asString suffix , ’Png’) asSymbol).
[...]

The entries unfortunately tells us three different things: the suffix method fails both when
it is invoked on a filename with no extension (as in the case of our smart-phone target) and
on file paths that do have an extension (as in the case of our tablet target). Moreover in the
case of the server target the failing filename is a longer file-path whose dot signifies something
other than an extension (the fact that this is a hidden file on unix systems), which may be a
contributing factor.

7.3.1 Remote Agile Debugging through Run-Time Evolution

Up until now we have seen a normal remote debugging session, where we where able to
browse remote targets, navigate their stack and control execution. We will now see how we can
use Mercury to dynamically introduce new code and tests while debugging without lengthy
re-deployments of our applications.

By doing so we aim to achieve the following:

1. Re-produce the initial error multiple times in order to test different hypothesis without
the need of re-deployment.

2. Simplify the offending context without re-starting the debugging session.

3. Maintain the state and suspended execution flow of the initial unhandled errors:

(a) In order to cross-examine the initial failing state with new findings.

(b) In case the initial errors are not easily reproducible (as is the case with heisenbugs
[Gra86])

Journal of Object Technology, vol. V, no. N, 2014

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Mercury: Properties and Design of a Remote Debugging Solution · 25

Our next step is shown in Figure 12. Since Mercury can dynamically evolve the target’s
code (run-time evolution) we can remotely introduce new classes and methods for testing to
all of our targets while debugging.

In this case we introduce the test class FileBrowserTest (right part of Figure 12) as a
subclass of the class TestCase which is part of the SUnit framework on the target. Getting
a class mirror on FileBrowserTest will allows us to incrementally run tests on our remote
machines and debug their results, without ever quitting our current debugging session.

The code of our FileBrowserTest class is given on Script 11. Our first method #suffixOf:
is a helper method that replicates the behavior of the String»#suffix method of Script 9. Our
second method #testSuffixWithDot invokes our helper method on a simple dotted filename and
makes an assertion about the return value of this invocation (this case is similar to our initial
error on our tablet). Method #testSuffixWithoutDot makes an assertion for the case of a not-
dotted filename (similar to our initial error for the smart-phone). Finally testHiddenFilePath
tests a long hidden filename with its full path (similar to our initial error on the cloud server).
Note here that all three tests will raise a new exception both when our helper method has a
defect as well as in the case of a failed assertion.

Script 11: Test methods

FileBrowserTest>>suffixOf: aString
"assumes that I’m a file name, and answers my suffix, the part after the last dot"
| dot dotPosition |
dot := FileDirectory dot.
dotPosition := (aString size to: 1 by: -1) detect: [:i | (aString at: i) = dot].
^ aString copyFrom: dotPosition + 1 to: aString size

FileBrowserTest>>testSuffixWithDot
self assert:

(self suffixOf: ’filename.ext’) = ’ext’

FileBrowserTest>>testSuffixWithoutDot
self assert:

(self suffixOf: ’filename’) = ’’

FileBrowserTest>>testHiddenFilePath
self assert:

(self suffixOf: ’/var/www/User/.a-looooooooong-hidden-filename’) =
’a-looooooooong-hidden-filename’

We add our test class and methods to all three targets, and run the tests. This way we will
be able to determine if there is some device-specific cause for the error on one of the devices
(e.g., different representation of file-systems). This process is shown in Figure 13.

On Step 1 we run each test individually, on Step 2 we examine the results on the bottom
left panel. If the results informs us of an error we can hit the debug button to examine and
manipulate it (Step 3). Finally on Step 4 we can see that we are able to switch and cross-
examine state and execution between the initial error and the re-produced errors from the test
cases. Note here that it is possible to run and debug a single test multiple times, although in
this case we run and debug each test only once.

We repeat this process for all three devices and find that all tests fail on all three of our
targets. By doing so we deduce that there is no device-specific cause underlying each case,
although each one of the tests may be failing for different reasons.

7.3.2 Debugging Hypotheses and Fixes

At this point having 12 different threads of execution at our disposal spanning 3 different
devices, we can start debugging our hypotheses.

Our expectation for the String»suffix method is to return an empty string for filenames
without a dot. Since our second test fails with a NotFound error notification we can now device

Journal of Object Technology, vol. V, no. N, 2014

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

26 · Nick Papoulias et al.

Figure 13 – Remotely Running and Debugging multiple Test-Cases while maintaining the initial error

a possible fix. We need to introduce an error handler for this case which will return the empty
string when the error is raised. We want of course to test this possible fix before applying it to
the String»suffix method, especially because we are not expecting that the fix will solve the
two other cases of the defect.

In order to do so we remotely update the FileBrowserTest»suffixOf: method as seen in
Script 12. In line 5 of Script 12 we introduce an #on:do: exception handler that returns an
empty string when the NotFound error is raised. Subsequently we re-run all tests. The results
are shown in Figure 14.

Script 12: Updating the suffixOf: method

FileBrowserTest>>suffixOf: aString
[...]

4 dotPosition := [(aString size to: 1 by: -1) detect: [:i | (aString at: i) = dot]]
5 on: NotFound do: [^ ’’].
6 ^ aString copyFrom: dotPosition + 1 to: aString size

In Figure 14 on the left we can see that our #testSuffixWithoutDot test now runs success-
fully, ensuring the applicability of our fix for this case. For the two other cases though as we
expected the tests fail. After the introduction of the error handler in FileBrowserTest»suffixOf:
the defect manifests itself as failed assertions on our two remaining tests. Debugging these
last two failed assertions will be the focus of our second case study.

7.3.3 Results

Using our results shown in Figures 13 and 14 we can now verify that by being able to
dynamically evolve the target’s code (run-time evolution) we were able to introduce and debug
tests without lengthy application re-starts or re-deployments.

7.4 Case Study II: Remote Object Instrumentation

7.4.1 Introduction

In Section 5 we saw how the Mercury model supports the instrumentation of semantical events
in a remote setting. Our goal now in this second case study is two-fold:

Journal of Object Technology, vol. V, no. N, 2014

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Mercury: Properties and Design of a Remote Debugging Solution · 27

Figure 14 – Successfully debugged first failing test (left). Defect now manifests itself as failed asser-
tions (right).

1. Verify that the remote object instrumentation facilities of Mercury can bring the idea of
oo-centric debugging in a distributed setting.

2. Provide an example where Mercury uses the two paradigms (i.e stack-based and oo-
centric debugging) in a complementary fashion.

7.4.2 The Hidden Path Hypothesis

We continue where we left off in our first case-study (Figure 14) but now turn our attention to
the hidden path failure on the server that we discussed on Section 7.3.

We would now like to examine the execution of the FileBrowserTest»suffixOf: method
more closely. We restart the execution of the current context and then we step-into the suffixOf:
method (Script 11).

In order to get to our point of interest though we now have to follow the iteration seen
on line 4 of Script 11 (inside the block closure argument to the #detect: method). Getting
inside the loop requires in total 10 control-flow commands from our initial execution point and
for each additional iteration 3 commands more. A breakpoint inside the loop can reduce the
number of commands we need to issue from the ui (to 1 command per iteration), but still the
placement of the dot is such that we would need 30 iterations to get there (the loop iterates the
string starting from the end). So even setting a break-point will be time consuming, especially
if we need to reproduced and re-examine the failed assertion several times. In addition we
do not know the specific inner working of the #detect: method and if we continue using a
stack-based approach we would need to step-into the #detect method between iterations.

7.4.3 Combining Object and Stack Debugging in a Remote Setting

Stack-based debugging got us this far, but it is becoming cumbersome. We need to narrow
the domain of our examination. What is needed here is either a conditional break-point or a
watch-point breaking exactly at the required iteration. A generalized object-oriented version of
such facilities as we saw was proposed by Ressia [Res12]. In a nutshell these facilities instead
of using source-code locations (line numbers or method-names) as their point of reference
for interrupting execution, use run-time objects of interest and their events. For instance, the

Journal of Object Technology, vol. V, no. N, 2014

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

28 · Nick Papoulias et al.

programmer can put a breakpoint on the next message send that will be received by an object
or the next read (or write) of one of its instance variable. We will now see how Mercury brings
this object-centric debugging to a distributed setting through remote instrumentation.

We continue from our execution point inside the suffixOf: method (Script 11) but instead
of trying to navigate through the loop or inside the #detect: method we now invoke the remote
instrumentation interface of Mercury (seen in Figure 15).

In the left part of Figure 15 we can see the failed assertion and its stack, the execution is
currently suspended in the FileBrowserTest»suffixOf: method. In the right we can see the
remote instrumentation ui. From the panel in Step 1 we can choose the semantical event
which we wish to instrument (Object Interaction in our case). The text entry in Step 2 receives
an expression whose result will be returned as a mirror in the developers machine. This
mirror will serve as a target for the semantical event of Step 1. The text entry in Step 3
receives additional information related to the event which we wish to instrument. In the case
of the Object Interaction event we need to supply an additional expression for calculating the
mirror of the interacting object. Finally on Step 4 we can supply an optional condition for the
meta-action we wish to perform and the meta-action itself which will be triggered upon the
semantical event defined by Steps 1 through 3.

The code for implementing the instrumentation’s meta-action can be seen in Script 13. On
line 1 we can see that the meta-action receives two arguments. The first argument (named
reifications on our Script) represents meta-information relating to the event (such as the object
that triggered a particular event), while the second argument reifies the reflectogram [TNCC03]
of this particular meta-jump, which can control meta-level execution. On line 3 we instruct
the execution on the remote target to halt in a context of the object that triggered the event.
While on lines 4 through 6 we instruct the reflectogram to perform the default action (for this
semantical event) when execution resumes from the breakpoint of line 3.
Script 13: Object-centric conditional watchpoint meta-action

1 [:reifications :reflectogram |
2
3 reifications trigger halt.
4 reflectogram
5 override: true;
6 returnValue: reflectogram defaultAction.
7
8]

Figure 15 – Remote Object Instrumentation

In a nutshell we have instructed Mercury through this process to halt execution the next time
the dot inside the hidden filepath will interact in anyway with the dot object (representing the

Journal of Object Technology, vol. V, no. N, 2014

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Mercury: Properties and Design of a Remote Debugging Solution · 29

suffix separator defined by the FileSystem). This way through remote object instrumentation
we have implemented a custom conditional watchpoint for our case with object-centric
semantics. The results of this process are seen in Figure 16.

Figure 16 – Halting on Semantical Events

In the left part of Figure 16 we can see that the assertion’s execution continued up until the
semantical event that we defined above and then halted (Step 1). Specifically (as seen in the
code editor of Figure 16) execution halted when the two objects we were targeting (the dot
inside the filepath and the dot of the FileSystem interacted). The interaction took place while
we were comparing the two objects ((aString at: i) = dot).

After examining the two objects we were targeting (Step 2) we pinpoint a mismatch. We
are comparing two dots with different string representations (i.e $. and ’.’). The defect causing
our assertion to fail now becomes apparent: we are comparing a Character instance ($.) to a
String instance (’.’) which Pharo does not automatically cast.

We test our hypothesis by restarting execution on our suspended context and changing the
code of the suffixOf: method compared to Script 12 as follows:

Script 14: Fix applied to the suffixOf: method

[...]
3 dot := FileDirectory dot first.

[...]

By resuming execution we now validate that the ui on all three targets is now rendering
properly as seen in Figure 17. We show highlighted the filenames responsible for the initial
defect.

7.4.4 Results

Using our results shown in Figures 15 and 16 we can now verify that through remote object in-
strumentation Mercury can support the idea of oo-centric debugging in a remote setting. More
specifically we provided a real-world example where in a single remote-debugging session
the two approaches (stack-based and oo-centric debugging) where used in complementary
fashion to provide a custom mechanism for object-centric conditional watchpoints.

Journal of Object Technology, vol. V, no. N, 2014

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

30 · Nick Papoulias et al.

Figure 17 – Debugged applications on Server, Mobile and Tablet targets

8 Conclusion and Future Work

In this work we have proposed Mercury: a live mirror-based model and infrastructure for
remote debugging. Mercury exhibits three desirable properties that we have identified as
important for remote debugging, namely: run-time evolution, semantic instrumentation, and
adaptable distribution. Run-time evolution is the ability of a remote debugging solution to
incrementally update all parts of a remote application without losing the running context (i.e
without stopping the application). Semantic instrumentation is the ability of a debugging
solution to alter the semantics of a running process to assist debugging. Finally, adaptable
distribution is the ability of a debugging solution to adapt its underlying middleware while
debugging a remote target.

Mercury supports run-time evolution through a causal connection between the meta-level
running on the developer machine, and the application to debug (the base-level) on the target
device. The two levels are connected both computationally and structurally. It supports
semantic instrumentation through the reification of the underlying execution environment
(virtual-machine) inside the run-time environment of the target (as an interpreter). Finally
adaptable distribution is supported through a modular architecture of the underlying middle-
ware. We have validated the applicability of our proposal through a prototype implementation
in the Pharo language. We have illustrated our approach through several working examples in
an experimental setting of two case-studies.

Future Work A future perspective for this work is to examine the prerequisites of sup-
porting advanced debugging facilities such as delta-debugging [Zel02] in a remote setting.
We also plan to explore more issues of mirror-based systems in a remote setting such as
ontological correspondence [BU04]. Finally we would like to extend our implementation to be
completely independent from local reflection facilities on the target (such as the host compiler)
as exemplified in our previous work with MetaTalk [PBD+11].

References

[ABF05] Alex Abacus, Mike Barker, and Paul Freedman. Using test-driven software
development tools. IEEE Software, 22(2):88–91, 2005.

[ABW98] Sherman R. Alpert, Kyle Brown, and Bobby Woolf. The Design Patterns
Smalltalk Companion. Addison Wesley, Boston, MA, USA, 1998.

Journal of Object Technology, vol. V, no. N, 2014

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Mercury: Properties and Design of a Remote Debugging Solution · 31

[BDN+09] Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz, Damien Pollet,
Damien Cassou, and Marcus Denker. Pharo by Example. Square Bracket
Associates, Kehrsatz, Switzerland, 2009. URL: http://pharobyexample.org/.

[Bei90a] Boris Beizer. Software Testing Techniques. Thomson Computer Press, 1990.

[Bei90b] Boris Beizer. Software testing techniques (2nd ed.). Van Nostrand Reinhold
Co., New York, NY, USA, 1990.

[Ben88] John K. Bennett. Distributed smalltalk: Inheritance and reactiveness in dis-
tributed systems, 1988.

[BFJR98] John Brant, Brian Foote, Ralph E. Johnson, and Donald Roberts. Wrappers
to the rescue. In IN PROCEEDINGS ECOOP ’98, VOLUME 1445 OF LNCS,
pages 396–417. Springer-Verlag, 1998.

[BH02] Padmanabhan Santhanam Brent Hailpern. Software debugging, testing, and
verification. IBM Systems Journal, 2002.

[BLC02] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. ASM: A code manipu-
lation tool to implement adaptable systems. In Proceedings of Adaptable and
Extensible Component Systems, Grenoble, France, November 2002.

[BNVC+11] Elisa Gonzalez Boix, Carlos Noguera, Tom Van Cutsem, Wolfgang
De Meuter, and Theo D’Hondt. Reme-d: A reflective epidemic message-
oriented debugger for ambient-oriented applications. In Proceedings of the
2011 ACM Symposium on Applied Computing, SAC ’11, pages 1275–1281,
New York, NY, USA, 2011. ACM. doi:10.1145/1982185.1982463.

[Bru12] Eric Bruno. A long look at jvm languages. http://www.drdobbs.com/jvm/

a-long-look-at-jvm-languages/240007765, 2012.

[BU04] Gilad Bracha and David Ungar. Mirrors: design principles for meta-level
facilities of object-oriented programming languages. In Proceedings of
the International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’04), ACM SIGPLAN Notices, pages
331–344, New York, NY, USA, 2004. ACM Press. URL: http://bracha.org/mirrors.

pdf.

[Cat14] John Catherino. The cajo project. https://java.net/projects/cajo/pages/Home, 2014.

[CN03] Shigeru Chiba and Muga Nishizawa. An easy-to-use toolkit for efficient Java
bytecode translators. In In Proceedings of the second International Confer-
ence on Generative Programming and Component Engineering (GPCE’03),
volume 2830 of LNCS, pages 364–376, 2003.

[Cut14] Tom Van Cutsem. Ambient-oriented programming – reflective programming.
http://soft.vub.ac.be/amop/at/tutorial/reflection, 2014.

[DDLM07] Marcus Denker, Stéphane Ducasse, Adrian Lienhard, and Philippe Marschall.
Sub-method reflection. In Journal of Object Technology, Special Issue. Pro-
ceedings of TOOLS Europe 2007, volume 6/9, pages 231–251. ETH, October
2007. URL: http://rmod.lille.inria.fr/archives/papers/Denk07b-TOOLS07-Submethod.pdf.

[DL02] Pierre-Charles David and Thomas Ledoux. An infrastructure for adaptable
middleware. In On the Move to Meaningful Internet Systems 2002: CoopIS,
DOA, and ODBASE, volume 2519 of Lecture Notes in Computer Science,
pages 773–790. Springer Berlin Heidelberg, 2002. URL: http://dx.doi.org/10.1007/

3-540-36124-3_52.

Journal of Object Technology, vol. V, no. N, 2014

http://pharobyexample.org/
http://dx.doi.org/10.1145/1982185.1982463
http://www.drdobbs.com/jvm/a-long-look-at-jvm-languages/240007765
http://www.drdobbs.com/jvm/a-long-look-at-jvm-languages/240007765
http://bracha.org/mirrors.pdf
http://bracha.org/mirrors.pdf
https://java.net/projects/cajo/pages/Home
http://soft.vub.ac.be/amop/at/tutorial/reflection
http://rmod.lille.inria.fr/archives/papers/Denk07b-TOOLS07-Submethod.pdf
http://dx.doi.org/10.1007/3-540-36124-3_52
http://dx.doi.org/10.1007/3-540-36124-3_52
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

32 · Nick Papoulias et al.

[DLR04] Stéphane Ducasse, Adrian Lienhard, and Lukas Renggli. Seaside — a multiple
control flow web application framework. In Proceedings of 12th International
Smalltalk Conference (ISC’04), pages 231–257, September 2004. URL: http:

//scg.unibe.ch/archive/papers/Duca04eSeaside.pdfhttp://www.iam.unibe.ch/publikationen/

techreports/2004/iam-04-008.

[Dra14] Iulian Dragos. Scala ide documentation – scala debugger. http://scala-ide.org/docs/

current-user-doc/features/scaladebugger/index.html, 2014.

[Eis14] Andrew Eisenberg. New groovy debug support in sts 2.5.1. http://spring.io/blog/

2010/11/30/new-groovy-debug-support-in-sts-2-5-1/, 2014.

[Fer89] Jacques Ferber. Computational reflection in class-based object-oriented
languages. In Proceedings OOPSLA ’89, ACM SIGPLAN Notices, volume 24,
pages 317–326, October 1989.

[Gol84] Adele Goldberg. Smalltalk 80: the Interactive Programming Environment.
Addison Wesley, Reading, Mass., 1984.

[Goo14] Google. Debugging javascript. https://developer.chrome.com/devtools/docs/

javascript-debugging, 2014.

[Gra86] Jim Gray. Why do computers stop and what can be done about it? In Sym-
posium on Reliability in Distributed Software and Database Systems, pages
3–12, 1986.

[Gra14] David Grayson. Using the jruby debugger. https://github.com/jruby/jruby/wiki/

UsingTheJRubyDebugger, 2014.

[Hum99] Watts S. Humphrey. Bugs or defects ? Technical Report Vol. 2, Issue 1, 1999.

[IKM+97] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Back
to the future: The story of Squeak, a practical Smalltalk written in itself. In
Proceedings of the 12th ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications (OOPSLA’97), pages 318–
326. ACM Press, November 1997. URL: http://www.cosc.canterbury.ac.nz/~wolfgang/

cosc205/squeak.html, doi:10.1145/263700.263754.

[Joy14] Inc Joyent. Node.js v0.10.32 manual & documentation. http://nodejs.org/api/

debugger.html, 2014.

[KCBC02] Fabio Kon, Fabio Costa, Gordon Blair, and Roy H. Campbell. The case
for reflective middleware. Commun. ACM, 45(6):33–38, June 2002. URL:
http://doi.acm.org/10.1145/508448.508470, doi:10.1145/508448.508470.

[Led99] Thomas Ledoux. Opencorba: a reflective open broker. In Pierre Cointe, editor,
Meta-Level Architectures and Reflection, volume 1616 of Lecture Notes in
Computer Science, pages 197–214. Springer Berlin Heidelberg, 1999. URL:
http://dx.doi.org/10.1007/3-540-48443-4_19, doi:10.1007/3-540-48443-4_
19.

[LP90] Wilf R. LaLonde and John R. Pugh. Inside Smalltalk: vol. 1. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1990.

[Mae87] Pattie Maes. Concepts and experiments in computational reflection. In
Proceedings OOPSLA ’87, ACM SIGPLAN Notices, volume 22, pages 147–
155, December 1987.

[Mar06] Philippe Marschall. Persephone: Taking Smalltalk reflection to the sub-
method level. Master’s thesis, University of Bern, December 2006. URL:
http://scg.unibe.ch/archive/masters/Mars06a.pdf.

Journal of Object Technology, vol. V, no. N, 2014

http://scg.unibe.ch/archive/papers/Duca04eSeaside.pdf http://www.iam.unibe.ch/publikationen/techreports/2004/iam-04-008
http://scg.unibe.ch/archive/papers/Duca04eSeaside.pdf http://www.iam.unibe.ch/publikationen/techreports/2004/iam-04-008
http://scg.unibe.ch/archive/papers/Duca04eSeaside.pdf http://www.iam.unibe.ch/publikationen/techreports/2004/iam-04-008
http://scala-ide.org/docs/current-user-doc/features/scaladebugger/index.html
http://scala-ide.org/docs/current-user-doc/features/scaladebugger/index.html
http://spring.io/blog/2010/11/30/new-groovy-debug-support-in-sts-2-5-1/
http://spring.io/blog/2010/11/30/new-groovy-debug-support-in-sts-2-5-1/
https://developer.chrome.com/devtools/docs/javascript-debugging
https://developer.chrome.com/devtools/docs/javascript-debugging
https://github.com/jruby/jruby/wiki/UsingTheJRubyDebugger
https://github.com/jruby/jruby/wiki/UsingTheJRubyDebugger
http://www.cosc.canterbury.ac.nz/~wolfgang/cosc205/squeak.html
http://www.cosc.canterbury.ac.nz/~wolfgang/cosc205/squeak.html
http://dx.doi.org/10.1145/263700.263754
http://nodejs.org/api/debugger.html
http://nodejs.org/api/debugger.html
http://doi.acm.org/10.1145/508448.508470
http://dx.doi.org/10.1145/508448.508470
http://dx.doi.org/10.1007/3-540-48443-4_19
http://dx.doi.org/10.1007/3-540-48443-4_19
http://dx.doi.org/10.1007/3-540-48443-4_19
http://scg.unibe.ch/archive/masters/Mars06a.pdf
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Mercury: Properties and Design of a Remote Debugging Solution · 33

[McA95] Jeff McAffer. Meta-level programming with coda. In W. Olthoff, editor,
Proceedings ECOOP ’95, volume 952 of LNCS, pages 190–214, Aarhus,
Denmark, August 1995. Springer-Verlag.

[MCTT07] Stijn Mostinckx, Tom Van Cutsem, Stijn Timbermont, and Eric Tanter. Mi-
rages: Behavioral intercession in a mirror-based architecture. In Proceedings
the ACM Dynamic Languages Symposium (DLS 2007), October 2007.

[Mic12a] James Mickens. Rivet: Browser-agnostic remote debugging for web applica-
tions. In USENIX Annual Technical Conference, pages 333–345, 2012.

[Mic12b] Microsoft. How to: Set up remote debugging, visual studio 2012. http://msdn.

microsoft.com/en-us/library/bt727f1t.aspx, 2012.

[Mic12c] Microsoft. Supported code changes (c#), visual studio 2012. http://msdn.microsoft.

com/en-us/library/ms164927.aspx, 2012.

[Mic13] Microsoft. Setting up remote debugging, visual studio 2013. http://msdn.microsoft.

com/en-us/library/bt727f1t%28v=vs.71%29.aspx, 2013.

[Mic14] Microsoft. Using the f12 developer tools to debug javascript errors. http:

//msdn.microsoft.com/en-us/library/ie/gg699336(v=vs.85).aspx, 2014.

[Mir08] Eliot Miranda. Cog blog. speeding up croquet and squeak with a new open-
source vm from qwaq, 2008. URL: http://www.mirandabanda.org/cogblog/.

[MO06] Sean McDirmid and Martin Odersky. The scala plugin for eclipse. In Proceed-
ings of Workshop on Eclipse Technology eXchange (ETX), 2006.

[Moz14] Mozilla. Mdn – debugging javascript. https://developer.mozilla.org/en/docs/

Debugging_JavaScript, 2014.

[MVCT+09] Stijn Mostinckx, Tom Van Cutsem, Stijn Timbermont, Elisa Gonzalez Boix,
Éric Tanter, and Wolfgang De Meuter. Mirror-based reflection in ambienttalk.
Softw. Pract. Exper., 39(7):661–699, May 2009. doi:10.1002/spe.v39:
7.

[OL14] Oracle Oracle Labs. The maxine inspector. https://wikis.oracle.com/display/

MaxineVM/The+Maxine+Inspector, 2014.

[Ora13a] Oracle. Java debug interface (jdi). http://docs.oracle.com/javase/7/docs/jdk/api/jpda/jdi/

index.html, 2013.

[Ora13b] Oracle. Java platform debugger architecture (jpda). http://docs.oracle.com/javase/7/

docs/technotes/guides/jpda/, 2013.

[Pap13] Nikolaos Papoulias. Remote Debugging and Reflection in Resource Con-
strained Devices. These, Université des Sciences et Technologie de Lille - Lille
I, December 2013.

[PBD+11] Nikolaos Papoulias, Noury Bouraqadi, Marcus Denker, Stéphane Ducasse,
and Luc Fabresse. Towards structural decomposition of reflection with
mirrors. In Proceedings of International Workshop on Smalltalk Tech-
nologies (IWST’11), Edingburgh, United Kingdom, 2011. URL: http:

//hal.inria.fr/inria-00629175/en/.

[PTP07] Guillaume Pothier, Éric Tanter, and José Piquer. Scalable omniscient de-
bugging. Proceedings of the 22nd Annual SCM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages and Applications (OOP-
SLA’07), 42(10):535–552, 2007. doi:10.1145/1297105.1297067.

Journal of Object Technology, vol. V, no. N, 2014

http://msdn.microsoft.com/en-us/library/bt727f1t.aspx
http://msdn.microsoft.com/en-us/library/bt727f1t.aspx
http://msdn.microsoft.com/en-us/library/ms164927.aspx
http://msdn.microsoft.com/en-us/library/ms164927.aspx
http://msdn.microsoft.com/en-us/library/bt727f1t%28v=vs.71%29.aspx
http://msdn.microsoft.com/en-us/library/bt727f1t%28v=vs.71%29.aspx
http://msdn.microsoft.com/en-us/library/ie/gg699336(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ie/gg699336(v=vs.85).aspx
http://www.mirandabanda.org/cogblog/
https://developer.mozilla.org/en/docs/Debugging_JavaScript
https://developer.mozilla.org/en/docs/Debugging_JavaScript
http://dx.doi.org/10.1002/spe.v39:7
http://dx.doi.org/10.1002/spe.v39:7
https://wikis.oracle.com/display/MaxineVM/The+Maxine+Inspector
https://wikis.oracle.com/display/MaxineVM/The+Maxine+Inspector
http://docs.oracle.com/javase/7/docs/jdk/api/jpda/jdi/index.html
http://docs.oracle.com/javase/7/docs/jdk/api/jpda/jdi/index.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/
http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/
http://hal.inria.fr/inria-00629175/en/
http://hal.inria.fr/inria-00629175/en/
http://dx.doi.org/10.1145/1297105.1297067
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

34 · Nick Papoulias et al.

[RBN12] Jorge Ressia, Alexandre Bergel, and Oscar Nierstrasz. Object-centric
debugging. In Proceeding of the 34rd international conference on Soft-
ware engineering, ICSE ’12, 2012. URL: http://scg.unibe.ch/archive/papers/

Ress12a-ObjectCentricDebugging.pdf, doi:10.1109/ICSE.2012.6227167.

[RC00] Barry Redmond and Vinny Cahill. Iguana/J: Towards a dynamic and efficient
reflective architecture for java. In Proceedings of European Conference
on Object-Oriented Programming, workshop on Reflection and Meta-Level
Architectures, 2000.

[Res12] Jorge Ressia. Object-Centric Reflection. PhD thesis, Institut fur Informatik und
angewandte Mathematik, 2012.

[Riv96] Fred Rivard. Smalltalk: a reflective language. In Proceedings of REFLECTION
’96, pages 21–38, April 1996.

[RKC01] Manuel Rom, Fabio Kon, and Roy H. Campbell. Reflective middleware:
From your desk to your hand. IEEE Distributed Systems Online, 2(5), 2001.
doi:http://doi.ieeecomputersociety.org/10.1109/MDSO.
2001.5.

[RN01] Michael Richmond and James Noble. Reflections on remote reflection. In Pro-
ceedings of the 24th Australasian Conference on Computer Science, ACSC
’01, pages 163–170, Washington, DC, USA, 2001. IEEE Computer Society.
URL: http://dl.acm.org/citation.cfm?id=545564.545585.

[RRGN10] Jorge Ressia, Lukas Renggli, Tudor Gîrba, and Oscar Nierstrasz. Run-time
evolution through explicit meta-objects. In Proceedings of the 5th Workshop on
Models@run.time at the ACM/IEEE 13th International Conference on Model
Driven Engineering Languages and Systems (MODELS 2010), pages 37–48,
October 2010. http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-641/.
URL: http://scg.unibe.ch/archive/papers/Ress10a-RuntimeEvolution.pdf.

[RS03] Stan Shebs Richard Stallman, Roland Pesch. Debugging with GDB. Gnu Press,
2003.

[SMDV06] J. Sillito, G.C. Murphy, and K. De Volder. Questions programmers ask during
software evolution tasks. In Proceedings of the 14th International Symposium
on Foundations on Software Engineering, SIGSOFT ’06/FSE-14, pages 23–
34. ACM, 2006.

[Som01] Ian Sommerville. Software Engineering (6th ed.). Addison-Wesley, 2001.

[TBN01] Éric Tanter, Noury Bouraqadi, and Jacques Noyé. Reflex — towards an open
reflective extension of Java. In Proceedings of the Third International Con-
ference on Metalevel Architectures and Separation of Crosscutting Concerns,
volume 2192 of LNCS, pages 25–43. Springer-Verlag, 2001.

[TCD13] Camille Teruel, Damien Cassou, and Stéphane Ducasse. Object Graph Iso-
lation with Proxies. In DYLA - 7th Workshop on Dynamic Languages and
Applications, Collocated with 26th European Conference on Object-Oriented
Programming - 2013, Montpellier, France, 2013.

[TNCC03] Éric Tanter, Jacques Noyé, Denis Caromel, and Pierre Cointe. Partial behav-
ioral reflection: Spatial and temporal selection of reification. In Proceedings
of OOPSLA ’03, ACM SIGPLAN Notices, pages 27–46, nov 2003. URL:
http://www.dcc.uchile.cl/~etanter/research/publi/2003/tanter-oopsla03.pdf.

Journal of Object Technology, vol. V, no. N, 2014

http://scg.unibe.ch/archive/papers/Ress12a-ObjectCentricDebugging.pdf
http://scg.unibe.ch/archive/papers/Ress12a-ObjectCentricDebugging.pdf
http://dx.doi.org/10.1109/ICSE.2012.6227167
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MDSO.2001.5
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MDSO.2001.5
http://dl.acm.org/citation.cfm?id=545564.545585
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-641/
http://scg.unibe.ch/archive/papers/Ress10a-RuntimeEvolution.pdf
http://www.dcc.uchile.cl/~etanter/research/publi/2003/tanter-oopsla03.pdf
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

Mercury: Properties and Design of a Remote Debugging Solution · 35

[USA05] David Ungar, Adam Spitz, and Alex Ausch. Constructing a metacircular
virtual machine in an exploratory programming environment. In OOPSLA ’05:
Companion to the 20th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 11–20, New York,
NY, USA, 2005. ACM. doi:10.1145/1094855.1094865.

[WAC+98] Lauren Wood, Vidur Apparao, Laurence Cable, Mike Champion, Mark Davis,
Joe Kesselman, Tom Pixley, Jonathan Robie, Peter Sharpe, and Chris Wilson.
Document object model (dom) level 1 specification. w3C recommendation, 1,
1998.

[WHV+12] Christian Wimmer, Michael Haupt, Michael L. Van De Vanter, Mick Jordan,
Laurent Daynes, and Douglas Simon. Maxine: An approachable virtual
machine for, and in, java. Technical Report 2012-0098, Oracle Labs, 2012.

[WWS10] Thomas Würthinger, Christian Wimmer, and Lukas Stadler. Dynamic code
evolution for java. In Proceedings of the 8th International Conference on the
Principles and Practice of Programming in Java, PPPJ ’10. ACM, 2010.

[Zel02] Andreas Zeller. Isolating cause-effect chains from computer programs. In
SIGSOFT ’02/FSE-10: Proceedings of the 10th ACM SIGSOFT symposium
on Foundations of software engineering, pages 1–10, New York, NY, USA,
2002. ACM Press. doi:10.1145/587051.587053.

[Zel05] Andreas Zeller. Why Programs Fail: A Guide to Systematic Debugging.
Morgan Kaufmann, October 2005.

[Zer11] ZeroTurnAround. Java ee productivity report 2011. http://zeroturnaround.com/

wp-content/uploads/2010/11/Java_EE_Productivity_Report_2011_finalv2.pdf, 2011.

[Zer12] ZeroTurnAround. What developers want: The end of application re-deploys.
http://files.zeroturnaround.com/pdf/JRebelWhitePaper2012-1.pdf, 2012.

Journal of Object Technology, vol. V, no. N, 2014

http://dx.doi.org/10.1145/1094855.1094865
http://dx.doi.org/10.1145/587051.587053
http://zeroturnaround.com/wp-content/uploads/2010/11/Java_EE_Productivity_Report_2011_finalv2.pdf
http://zeroturnaround.com/wp-content/uploads/2010/11/Java_EE_Productivity_Report_2011_finalv2.pdf
http://files.zeroturnaround.com/pdf/JRebelWhitePaper2012-1.pdf
http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

36 · Nick Papoulias et al.

Appendices
A Detailed Evaluation of Existing Solutions and Comparison

Property
JPD

A
/JV

M
.N

E
T

G
N

U
-D

E
B

U
G

G
E

R
D

C
E

JR
E

B
E

L
SM

A
L

LTA
L

K

R
un-Tim

e
E

volution
A

dd/R
em

Packages
7

7
7

3
3

3

A
dd/R

em
C

lasses/Prototype
7

7
7

3
3

3

A
dd/R

em
IV

s
7

7
7

3
3

3

A
dd/R

em
M

ethods
7

7
7

3
3

3

M
ethod

(B
ody)H

otSw
apping

3
3

7
3

3
3

H
ierarchy/D

elegation
E

diting
7

7
7

3
3

3

Sem
.Instrum

entation
M

ethod
E

xecution
3

3
3

3
3

3

Statem
entE

xecution
3

3
3

3
3

3

Field
R

ead
3

7
7

3
3

7

Field
W

rite
3

7
7

3
3

7

O
bjectR

ead
7

7
7

7
7

7

O
bjectW

rite
7

7
7

7
7

7

O
bjectSend

7
7

7
7

7
7

O
bjectR

eceive
7

7
7

7
7

7

O
bjectas

A
rgum

ent
7

7
7

7
7

7

O
bjectC

reation
7

7
7

7
7

7

O
bjectInteraction

7
7

7
7

7
7

O
bjectStored

7
7

7
7

7
7

C
ondition/A

ction
7 6

7
3

7
7

3

A
d.D

istribution
+

++
+

+
+

-

Property
JS/R

IV
E

T
TO

D
A

M
B

IE
N

T
TA

L
K

M
A

X
IN

E
B

IFR
O

ST
M

E
R

C
U

R
Y

R
un-Tim

e
E

volution
A

dd/R
em

Packages
3

7
7

7
3

3

A
dd/R

em
C

lasses/Prototypes
3

7
7

7
3

3

A
dd/R

em
IV

s
3

7
3

7
3

3

A
dd/R

em
M

ethods
3

7
7

7
3

3

M
ethod

(B
ody)H

otSw
apping

3
3

3
3

3
3

H
ierarchy/D

elegation
E

diting
3

7
7

7
3

3

Sem
.Instrum

entation
M

ethod
E

xecution
3

3
3

3
3

3

Statem
entE

xecution
3

3
3

3
3

3

Field
R

ead
7

3
3

3
3

3

Field
W

rite
7

3
3

3
3

3

O
bjectR

ead
7

3
3

3
3

3

O
bjectW

rite
7

3
3

3
3

3

O
bjectSend

7
7

7
7

3
3

O
bjectR

eceive
7

3
3

7
3

3

O
bjectas

A
rgum

ent
7

7
7

7
3

3

O
bjectC

reation
7

7
3

7
3

3

O
bjectInteraction

7
7

7
7

3
3

O
bjectStored

7
7

7
3

7
3

C
ondition/A

ction
7

7
7

7
3

3

A
d.D

istribution
++

+
+++

+
-

+++

Table
3

–
Properties

evaluation
ofM

ercury
and

existing
debugging

solutions

6
Java-based

solutions
have

condition-only
support

Journal of Object Technology, vol. V, no. N, 2014

http://dx.doi.org/10.5381/jot.201Y.VV.N.aN

	Introduction
	Background & Terminology
	Desirable Properties of Remote Debugging Solutions
	Run-Time Evolution
	Semantic Instrumentation
	Adaptable Distribution

	Evaluation of Existing Solutions
	Existing Solutions
	Comparison
	Run-Time Evolution
	Semantic Instrumentation
	Adaptable Distribution
	Comparison Overview

	Our Solution: Mercury
	The Core Meta-Level
	Run-Time Evolution
	Semantic Instrumentation
	Adaptable Distribution
	Comparison with Existing Solutions
	Limitations

	Mercury's Implementation
	Implementation Overview
	Discussion: Implementation trade-offs
	Supporting Run-Time Evolution
	Supporting Instrumentation

	Discussion: Implementing Mercury in Java

	Mercury's Validation
	Basic API Examples
	Inspecting remote environments and accessing objects
	Handling remote exceptions
	Changing variables and controlling execution flow
	Incrementally changing the target's code and state
	Introducing breakpoints on execution events
	Distribution

	Experimental Setting
	The Droid and Cloud File Browsers

	Case Study I: Remote Agile Debugging
	Remote Agile Debugging through Run-Time Evolution
	Debugging Hypotheses and Fixes
	Results

	Case Study II: Remote Object Instrumentation
	Introduction
	The Hidden Path Hypothesis
	Combining Object and Stack Debugging in a Remote Setting
	Results

	Conclusion and Future Work
	Appendices
	Detailed Evaluation of Existing Solutions and Comparison

