Chapter 6

Regular Expressions in Pharo

with the participation of:
Oscar Nierstrasz (oscar.nierstrasz@acm.org)

Regular expressions are widely used in many scripting languages such
as Perl, Python and Ruby. They are useful to identify strings that match
a certain pattern, to check that input conforms to an expected format, and
to rewrite strings to new formats. Pharo also supports regular expressions
due to the Regex package contributed by Vassili Bykov. Regex is installed by
default in Pharo.

A regular expression! is a template that matches a set of strings. For

example, the regular expression 'h.-0' will match the strings 'ho', 'hiho' and
hello', but it will not match 'hi' or 'yo'. We can see this in Pharo as follows:

'ho' matchesRegex: 'h.x0' — true
'hiho' matchesRegex: 'h.x0' — true
'hello’ matchesRegex: 'h.x0' — true
'hi* matchesRegex: 'h.0' — false
'yo' matchesRegex: 'h.+0' — false

In this chapter we will start with a small tutorial example in which we
will develop a couple of classes to generate a very simple site map for a web
site. We will use regular expressions (i) to identify HTML files, (ii) to strip
the full path name of a file down to just the file name, (iii) to extract the ti-
tle of each web page for the site map, and (iv) to generate a relative path
from the root directory of the web site to the HTML files it contains. After
we complete the tutorial example, we will provide a more complete descrip-
tion of the Regex package, based largely on Vassili Bykov’s documentation

1 http://en.wikipedia.org/wiki/Regular_expression

78 Regular Expressions in Pharo

provided in the package.?

6.1 Tutorial example — generating a site map

Our job is to write a simple application that will generate a site map for a
web site that we have stored locally on our hard drive. The site map will
contain links to each of the HTML files in the web site, using the title of
the document as the text of the link. Furthermore, links will be indented to
reflect the directory structure of the web site.

Accessing the web directory

() Ifyou do not have a web site on your machine, copy a few HTML files to a local
directory to serve as a test bed.

We will develop two classes, WebDir and WebPage, to represent directories
and web pages. The idea is to create an instance of WebDir which will point
to the root directory containing our web site. When we send it the message
makeToc, it will walk through the files and directories inside it to build up the
site map. It will then create a new file, called toc.html, containing links to all
the pages in the web site.

One thing we will have to watch out for: each WebDir and WebPage must
remember the path to the root of the web site, so it can properly generate
links relative to the root.

Q Define the class WebDir with instance variables webDir and homePath, and de-
fine the appropriate initialization method. Also define class-side methods to prompt
the user for the location of the web site on your computer, as follows:

WebDir>>setDir: dir home: path
webDir := dir.
homePath := path

WebDir class>>onDir: dir
A self new setDir: dir home: dir pathName

WebDir class>>selectHome
A self onDir: FileList modalFolderSelector

The last method opens a browser to select the directory to open. Now,
if you inspect the result of WebDir selectHome, you will be prompted for the
directory containing your web pages, and you will be able to verify that

2The original documentation can be found on the class side of RxParser.

Tutorial example — generating a site map 79

webDir and homePath are properly initialized to the directory holding your
web site and the full path name of this directory.

It would be nice to be able to programmatically instantiate a WebDir, so
let’s add another creation method.

() Add the following methods and try it out by inspecting the result of
WebDir onPath: ’path to your web site’.

WebDir class>>onPath: homePath
A self onPath: homePath home: homePath

WebDir class>>onPath: path home: homePath
A self new setDir: (path asFileReference) home: homePath

Pattern matching HTML files

So far so good. Now we would like to use regexes to find out which HTML
files this web site contains.

If we browse the AbstractFileReference class, we find that the method
fileNames will list all the files in a directory. We want to select just those with
the file extension .html. The regex that we need is "»\.html". The first dot will
match any character.

'x' matchesRegex:'.! — true
"' matchesRegex: " — true
Character cr asString matchesRegex: ! — true

The « (known as the “Kleene star”, after Stephen Kleene, who invented it)
is a regex operator that will match the preceding regex any number of times
(including zero).

" matchesRegex: 'x»' — true
'x' matchesRegex: 'x»' — true
'xx' matchesRegex: 'x=' — true
'y' matchesRegex: 'x»' — false

Since the dot is a special character in regexes, if we want to literally match
a dot, then we must escape it.

" matchesRegex: "' — true
'x' matchesRegex: " — true
""matchesRegex: '\~ — true
'x' matchesRegex: \.' — false

Now let’s check our regex to find HTML files works as expected.

80 Regular Expressions in Pharo

'index.html' matchesRegex: ".«\.ntmI' — true
'foo.html' matchesRegex: ".<\.html' — true
'style.css' matchesRegex: '.+\.html’' — false
'index.htm' matchesRegex: '.«\.htmI' — false

Looks good. Now let’s try it out in our application.

(0 Add the following method to WebDir and try it out on your test web site.

WebDir>>htmlFiles
A webDir fileNames select: [:each | each matchesRegex: ".\.html']

If you send htmiFiles to a WebDir instance and print it, you should see some-
thing like this:

(WebDir onPath: "...") htmlFiles —— #(index.html' ...)

Caching the regex

Now, if you browse matchesRegex:, you will discover that it is an extension
method of String that creates a fresh instance of RxParser every time it is sent.
That is fine for ad hoc queries, but if we are applying the same regex to every
file in a web site, it is smarter to create just one instance of RxParser and reuse
it. Let’s do that.

0 Add a new instance variable htmiRegex to WebDir and initialize it by sending
asRegex to our regex string. Modify WebDir>>htmlFiles to use the same regex each
time as follows:

WebDir>>initialize
htmIRegex :=".»\.html' asRegex

WebDir>>htmlFiles
A webDir fileNames select: [:each | htmIRegex matches: each]

Now listing the HTML files should work just as it did before, except that
we reuse the same regex object many times.
Accessing web pages

Accessing the details of individual web pages should be the responsibility of
a separate class, so let’s define it, and let the WebDir class create the instances.

Q Define a class WebPage with instance variables path, to identify the HTML file,
and homePath, to identify the root directory of the web site. (We will need this to

Tutorial example — generating a site map 81

correctly generate links from the root of the web site to the files it contains.) Define
an initialization method on the instance side and a creation method on the class side.

WebPage>>initializePath: filePath homePath: dirPath
path := filePath.
homePath := dirPath

WebPage class>>on: filePath forHome: homePath
A self new initializePath: filePath homePath: homePath

A WebDir instance should be able to return a list of all the web pages it
contains.

(0 Add the following method to WebDir, and inspect the return value to verify that
it works correctly.

WebDir>>webPages
A self htmlFiles collect:
[:each | WebPage
on: webDir fullName, '/, each
forHome: homePath]

You should see something like this:

(WebDir onPath: '...") webPages —— an Array(a WebPage a WebPage ...)

String substitutions

That’s not very informative, so let’s use a regex to get the actual file name
for each web page. To do this, we want to strip away all the characters from
the path name up to the last directory. On a Unix file system directories end
with a slash (/), so we need to delete everything up to the last slash in the file
path.

The String extension method copyWithRegex:matchesReplacedWith: does what
we want:

'hello’ copyWithRegex: '[elo]+' matchesReplacedWith: 'i' —— 'hi'

In this example the regex [elo] matches any of the characters e, | or 0. The
operator + is like the Kleene star, but it matches exactly one or more instances
of the regex preceding it. Here it will match the entire substring ‘ello' and
replay it in a fresh string with the letter i.

) Add the following method and verify that it works as expected.

82 Regular Expressions in Pharo

WebPage>>fileName
A path copyWithRegex: '.»/' matchesReplacedWith: "

Now you should see something like this on your test web site:

(WebDir onPath: '...") webPages collect: [:each | each fileName]
— #('index.html' ...)

Extracting regex matches

Our next task is to extract the title of each HTML page.

First we need a way to get at the contents of each page. This is straight-
forward.

) Add the following method and try it out.

WebPage>>contents
A (FileStream oldFileOrNoneNamed: path) contents

Actually, you might have problems if your web pages contain non-ascii
characters, in which case you might be better off with the following code:

WebPage>>contents
A (FileStream oldFileOrNoneNamed: path)
converter: Latin1TextConverter new;
contents

You should now be able to see something like this:

(WebDir onPath: '...") webPages first contents — '<head>
<title>Home Page</title>

Now let’s extract the title. In this case we are looking for the text that
occurs between the HTML tags <title> and <ftitle>.

What we need is a way to extract part of the match of a regular expression.
Subexpressions of regexes are delimited by parentheses. Consider the regex
("aeiou]+)([aeiou]+). It consists of two subexpressions, the first of which will
match a sequence of one or more non-vowels, and the second of which will
match one or more vowels. (The operator " at the start of a bracketed set of
characters negates the set. %)

3NB: In Pharo the caret is also the return keyword, which we write as ». To avoid confu-
sion, we will write * when we are using the caret within regular expressions to negate sets of
characters, but you should not forget, they are actually the same thing.

Tutorial example — generating a site map 83

Now we will try to match a prefix of the string 'pharo’ and extract the sub-
matches:

re :='(["aeiou]+)([aeiou]+)' asRegex.
re matchesPrefix: 'pharo’ — true

re subexpression: 1 — 'pha’
re subexpression: 2 — 'ph'
re subexpression: 3 — 'a

After successfully matching a regex against a string, you can always send
it the message subexpression: 1 to extract the entire match. You can also send
subexpression: n where n — 1 is the number of subexpressions in the regex.
The regex above has two subexpressions, numbered 2 and 3.

We will use the same trick to extract the title from an HTML file.

Q) Define the following method:

WebPage>>title
|re|
re := TWw\W]<title>(.+)</title>' asRegexIgnoringCase.
A (re matchesPrefix: self contents)
ifTrue: [re subexpression: 2 |
ifFalse: ['(', self fileName, ' —— untitled)']

As HTML does not care whether tags are upper or lower case, so we must
make our regex case insensitive by instantiating it with asRegexIgnoringCase.

Now we can test our title extractor, and we should see something like
this:

(WebDir onPath: '...") webPages first title — 'Home page'

More string substitutions

In order to generate our site map, we need to generate links to the individual
web pages. We can use the document title as the name of the link. We just
need to generate the right path to the web page from the root of the web site.
Luckily this is trivial —it is simple the full path to the web page minus the
full path to the root directory of the web site.

We must only watch out for one thing. Since the homePath variable does
not end in a /, we must append one, so that relative path does not include a
leading /. Notice the difference between the following two results:

'’"home/testweb/index.html' copyWithRegex: '/home/testweb' matchesReplacedWith: "
— '/index.html’

'’Thome/testweb/index.html' copyWithRegex: '/home/testweb/' matchesReplacedWith: "
— 'index.html'

84 Regular Expressions in Pharo

The first result would give us an absolute path, which is probably not
what we want.

(0 Define the following methods:

WebPage>>relativePath
A path
copyWithRegex: homePath , '/'
matchesReplacedWith: "

WebPage>>link
N ', self title, ''

You should now be able to see something like this:

(WebDir onPath: '...") webPages first ink — 'Home Page'

Generating the site map

Actually, we are now done with the regular expressions we need to generate
the site map. We just need a few more methods to complete the application.

() If you want to see the site map generation, just add the following methods.

If our web site has subdirectories, we need a way to access them:

WebDir>>webDirs
A webDir directoryNames
collect: [:each | WebDir onPath: webDir pathName , '/, each home: homePath]

We need to generate HTML bullet lists containing links for each web page
of a web directory. Subdirectories should be indented in their own bullet
list.

WebDir>>printTocOn: aStream
self htmlFiles
ifNotEmpty: [
aStream nextPutAll: ''; cr.
self webPages
do: [:each | aStream nextPutAll: '';
nextPutAll: each link;
nextPutAll: ''; cr].
self webDirs
do: [:each | each printTocOn: aStream].
aStream nextPutAll: ''; cr]

We create a file called “toc.html” in the root web directory and dump the
site map there.

Regex syntax 85

WebDir>>tocFileName
A 'toc.html'

WebDir>>makeToc
| tocStream |
tocStream := (webDir / self tocFileName) writeStream.
self printTocOn: tocStream.
tocStream close.

Now we can generate a table of contents for an arbitrary web directory!

WebDir selectHome makeToc

800 toc.htm!

> + 3ﬁle‘,'NU;ersfoscarfDu(uments,'Frcuecls,'Squeak\magesfFBEfDummy’WebSllep’tuchlml C | ' Google

« Pharo By Example -- Home Page
+ Pharo Par L'Exemple -- Home Page
* (toc.himl -- untitled

<o About Pharo by Example

o About Pharo Par L'Exemple

Figure 6.1: A small site map

6.2 Regex syntax

We will now have a closer look at the syntax of regular expressions as sup-
ported by the Regex package.

The simplest regular expression is a single character. It matches exactly
that character. A sequence of characters matches a string with exactly the
same sequence of characters:

'a' matchesRegex: 'a’ — true
'foobar' matchesRegex: 'foobar’ — true
'blorple’ matchesRegex: 'foobar' — false

Operators are applied to regular expressions to produce more complex
regular expressions. Sequencing (placing expressions one after another) as
an operator is, in a certain sense, “invisible” —yet it is arguably the most
common.

86 Regular Expressions in Pharo

We have already seen the Kleene star () and the + operator. A regular
expression followed by an asterisk matches any number (including 0) of
matches of the original expression. For example:

'ab' matchesRegex: 'asb' — true
'aaaaab’ matchesRegex: 'asb’ — true
'b' matchesRegex: 'a*b’ — true
'aac' matchesRegex: 'a«b’ — false "b does not match"

The Kleene star has higher precedence than sequencing. A star applies to
the shortest possible subexpression that precedes it. For example, ab« means
a followed by zero or more occurrences of b, not “zero or more occurrences
of ab”:

'abbb' matchesRegex: 'abs' — true
'abab' matchesRegex: 'ab«'’ — false

To obtain a regex that matches “zero or more occurrences of ab”, we must
enclose ab in parentheses:

'abab' matchesRegex: '(ab)+' — true
'abcab’ matchesRegex: '(ab)s —— false "c spoils the fun”

Two other useful operators similar to = are + and ?. + matches one or more
instances of the regex it modifies, and ? will match zero or one instance.

'ac' matchesRegex: 'ab+c' — true

'ac' matchesRegex: 'ab+c’ — false ‘"need at least one b"
'abbc' matchesRegex: 'ab+c' — true

'abbc’ matchesRegex: 'ab?c’ —— false "foo many b's"”

As we have seen, the characters +, +, ?, (, and) have special meaning
within regular expressions. If we need to match any of them literally, it
should be escaped by preceding it with a backslash \. Thus, backslash is
also special character, and needs to be escaped for a literal match. The same
holds for all further special characters we will see.

'ab+' matchesRegex: 'abs' —— false "starin the right string is special”
'ab+' matchesRegex: 'ab\«' — true
'a\c' matchesRegex: 'a\c'’ — true

The last operator is |, which expresses choice between two subexpres-
sions. It matches a string if either of the two subexpressions matches the
string. It has the lowest precedence —even lower than sequencing. For ex-
ample, abs|ba» means “a followed by any number of b’s, or b followed by any
number of a’s”:

'abb’ matchesRegex: 'ab«|bax' — true

Regex syntax 87

'‘baa' matchesRegex: 'ab+|bax' — true
'‘baab' matchesRegex: 'ab«|bas' — false

A bit more complex example is the expression c(ald)+r, which matches the
name of any of the Lisp-style car, cdr, caar, cadyr, ... functions:

'car' matchesRegex: 'c(ald)+r' — true
'cdr' matchesRegex: 'c(a|d)+r' — true
'cadr' matchesRegex: 'c(ald)+r' — true

It is possible to write an expression that matches an empty string, for
example the expression a| matches an empty string. However, it is an error
to apply +, +, or ? to such an expression: (al)« is invalid.

So far, we have used only characters as the smallest components of regular
expressions. There are other, more interesting, components. A character set
is a string of characters enclosed in square brackets. It matches any single
character if it appears between the brackets. For example, [01] matches either
Oor1:

'0' matchesRegex: '[01]' — true
'3' matchesRegex: '[01]' — false
'11" matchesRegex: '[01] —— false "a set matches only one character”

Using plus operator, we can build the following binary number recog-
nizer:

'10010100" matchesRegex: '[01]+ — true
'10001210' matchesRegex: '[01]+" — false

If the first character after the opening bracket is ", the set is inverted: it
matches any single character not appearing between the brackets:

'0' matchesRegex: T'01]' —— false
'3' matchesRegex: ['01]' —— true

For convenience, a set may include ranges: pairs of characters separated
by a hyphen (-). This is equivalent to listing all characters in between: '[0-9]
is the same as '[0123456789]'. Special characters within a set are *, -, and],
which closes the set. Below are examples how to literally match them in a
set:

matchesRegex: [017]' — true 'put the caret anywhere except the start"
'—"matchesRegex: [01-] —— true ‘"putthe hyphen at the end"
" matchesRegex: '[]01]' — true ‘put the closing bracket at the start"

Thus, empty and universal sets cannot be specified.

88 Regular Expressions in Pharo

Syntax What it represents

a literal match of character a

. match any char

() group subexpression

\ escape following special character

* Kleene star —match previous regex zero or more times
+ match previous regex one or more times

? match previous regex zero times or once

| match choice of left and right regex

[abcd] match choice of characters abcd
["abcd] match negated choice of characters

[0-9] match range of characters 0 to 9
\w match alphanumeric

W match non-alphanumeric

\d match digit

\D match non-digit

\s match space

\S match non-space

Table 6.1: Regex Syntax in a Nutshell

Character classes

Regular expressions can also include the following backquote escapes to re-
fer to popular classes of characters: \w to match alphanumeric characters, \d
to match digits, and \s to match whitespace. Their upper-case variants, \W,
\D and \S, match the complementary characters (non-alphanumerics, non-
digits and non-whitespace). We can see a summary of the syntax seen so far
in Table 6.1.

As mentioned in the introduction, regular expressions are especially use-
ful for validating user input, and character classes turn out to be especially
useful for defining such regexes. For example, non-negative numbers can be
matched with the regex d+:

'42' matchesRegex: \d+' — true
'—1'matchesRegex: \d+' — false

Better yet, we might want to specify that non-zero numbers should not
start with the digit 0:

'0' matchesRegex: '0|([1—-9]\dx)’" — true
'"1" matchesRegex: '0|([1-9]\dx)' — true
'42' matchesRegex: '0|([1—9]\d»)' — true

Regex syntax 89

'099' matchesRegex: '0|([1-9\d*)' —— false ‘"leading 0"

We can check for negative and positive numbers as well:

'0' matchesRegex: '(0]((\+|—)?[1—9]\d+))' — true
'—1' matchesRegex: '(0|((\+|—=)?[1—9]\d«))' — true

'42' matchesRegex: '(0|((\+|—)?[1—-9]\d+))' — true

'+99' matchesRegex: '(O|((\+|-)?[1-9]\d%))' — true

'—0' matchesRegex: '(0|((\+|—)?[1—9]\dx))' — false ‘"negative zero"
'01" matchesRegex: '(0|((\+|—)?[1-9]\d*))’ — false ‘leading zero"

Floating point numbers should require at least one digit after the dot:

'0"' matchesRegex: '(0]((\+]=)?[1-9]\d*))(\.\d+)?' — true
'0.9' matchesRegex: '(0]((\+|=)?[1—-9]\d*))(\.\d+)?' — true
'3.14' matchesRegex: '(0|((\+|=)?[1-9]\d+))(\.\d+)?" — true
'—42"' matchesRegex: '(0|((\+|—)?[1-9]\d%))(\.\d+)?" — true
'2." matchesRegex: '(0]((\+|—)?[1-9]\d+))(\.\d+)?' — false "need digits after."

For dessert, here is a recognizer for a general number format: anything
like 999, or 999.999, or —999.999e+21.

'~999.999e+21' matchesRegex: '(\+|-)\d+(\\d+)2((e|E)(\+|-)\d+)?' —> true

Character classes can also include the grep(1)-compatible elements listed
in Table 6.2.

Syntax ~ What it represents

[:alnum:] any alphanumeric

[:alpha:] any alphabetic character

[:entrl] any control character (ascii code is < 32)
[digit:] any decimal digit

[:graph]] any graphical character (ascii code >= 32)
[lower:] any lowercase character

[:print:] any printable character (here, the same as [:graph:])
[;punct] any punctuation character

[:space;] any whitespace character

[:upper:] any uppercase character

[ixdigit] any hexadecimal character

Table 6.2: Regex character classes

Note that these elements are components of the character classes, i.e., they
have to be enclosed in an extra set of square brackets to form a valid regular
expression. For example, a non-empty string of digits would be represented
as [[:digit:]]+. The above primitive expressions and operators are common to
many implementations of regular expressions.

90 Regular Expressions in Pharo

'42' matchesRegex: '[:digit:]l+ —— true

Special character classes

The next primitive expression is unique to this Smalltalk implementation. A
sequence of characters between colons is treated as a unary selector which
is supposed to be understood by characters. A character matches such an
expression if it answers true to a message with that selector. This allows a
more readable and efficient way of specifying character classes. For example,
[0-9] is equivalent to :isDigit:, but the latter is more efficient. Analogously to
character sets, character classes can be negated: :"isDigit: matches a character
that answers false to isDigit, and is therefore equivalent to ['0-9].

So far we have seen the following equivalent ways to write a regular
expression that matches a non-empty string of digits: [0-9]+, d+, [\d]+, [[:digit:
1]+, :isDigit:+.

'42' matchesRegex: T0-9]+' — true
'42' matchesRegex: "\d+' — true
'42' matchesRegex: T\d]+' — true
'42' matchesRegex: '[[:digit:]][+' —— true
'42' matchesRegex: "isDigit:+' — true

Matching boundaries

The last group of special primitive expressions is shown in Table 6.3, and is
used to match boundaries of strings.

Syntax What it represents

match an empty string at the beginning of a line

$ match an empty string at the end of a line

\b match an empty string at a word boundary

\B match an empty string not at a word boundary

\< match an empty string at the beginning of a word
\> match an empty string at the end of a word

Table 6.3: Primitives to match string boundaries

'hello world' matchesRegex: '.«\bw." — true "word boundary before w"
'hello world' matchesRegex: '.«\bo.»' —— false "no boundary before 0"

Regex API 91

6.3 Regex API

Up to now we have focussed mainly on the syntax of regexes. Now we
will have a closer look at the different messages understood by strings and
regexes.

Matching prefixes and ignoring case

So far most of our examples have used the String extension method
matchesRegex:.

Strings also understand the following messages: prefixMatchesRegex:,
matchesRegexIgnoringCase: and prefixMatchesRegexIgnoringCase:.

The message prefixMatchesRegex: is just like matchesRegex, except that the
whole receiver is not expected to match the regular expression passed as the
argument; matching just a prefix of it is enough.

'abacus' matchesRegex: '(alb)+' — false
'abacus' prefixMatchesRegex: '(a|b)+' — true
'ABBA' matchesRegexIgnoringCase: '(a|b)+' — true
'Abacus' matchesRegexIgnoringCase: '(alb)+' — false
'Abacus' prefixMatchesRegexIgnoringCase: '(alb)+" — true

Enumeration interface

Some applications need to access all matches of a certain regular expression
within a string. The matches are accessible using a protocol modeled after
the familiar Collection-like enumeration protocol.

regex:matchesDo: evaluates a one-argument aBlock for every match of the
regular expression within the receiver string.

list := OrderedCollection new.
'Jack meet Jill' regex: \w+' matchesDo: [:word | list add: word].
list —— an OrderedCollection('Jack' 'meet' Jill')

regex:matchesCollect: evaluates a one-argument aBlock for every match of
the regular expression within the receiver string. It then collects the results
and answers them as a SequenceableCollection.

'Jack meet Jill' regex: "\w+' matchesCollect: [:word | word size] —
an OrderedCollection(4 4 4)

allRegexMatches: returns a collection of all matches (substrings of the re-
ceiver string) of the regular expression.

92 Regular Expressions in Pharo

‘Jack and Jill went up the hill' allRegexMatches: \w+' —
an OrderedCollection('Jack’ 'and' 'Jill' 'went' 'up' 'the" 'hill')

Replacement and translation

It is possible to replace all matches of a regular expression with a certain
string using the message copyWithRegex:matchesReplacedWith:.

'Krazy hates Ignatz' copyWithRegex: "\<[[:lower:]]+\>' matchesReplacedWith: 'loves'
— 'Krazy loves Ignatz'

A more general substitution is match translation. This message evaluates
a block passing it each match of the regular expression in the receiver string
and answers a copy of the receiver with the block results spliced into it in
place of the respective matches.

'Krazy loves Ignatz' copyWithRegex: "b[a—z]+\b' matchesTranslatedUsing: [:each | each
asUppercase] — 'Krazy LOVES Ignatz'

All messages of enumeration and replacement protocols perform a case-
sensitive match. Case-insensitive versions are not provided as part of a String
protocol. Instead, they are accessible using the lower-level matching inter-
face presented in the following question.

Lower-level interface

When you send the message matchesRegex: to a string, the following happens:

1. A fresh instance of RxParser is created, and the regular expression string
is passed to it, yielding the expression’s syntax tree.

2. The syntax tree is passed as an initialization parameter to an instance
of RxMatcher. The instance sets up some data structure that will work
as a recognizer for the regular expression described by the tree.

3. The original string is passed to the matcher, and the matcher checks for
a match.

The Matcher

If you repeatedly match a number of strings against the same regular expres-
sion using one of the messages defined in String, the regular expression string
is parsed and a new matcher is created for every match. You can avoid this

Regex API 93

overhead by building a matcher for the regular expression, and then reusing
the matcher over and over again. You can, for example, create a matcher at a
class or instance initialization stage, and store it in a variable for future use.
You can create a matcher using one of the following methods:

* You can send asRegex or asRegexIgnoringCase to the string.

* You can directly instantiate a RxMatcher using one of its class methods:
forString: or forString:ignoreCase: (which is what the convenience methods
above will do).

Here we send matchesin: to collect all the matches found in a string:

octal := '8r[0-9A—-F]+' asRegex.
octal matcheslin: '8r52 = 16r2A' —— an OrderedCollection('8r52")

hex :='16r[0—-9A-F]+' asRegexIgnoringCase.
hex matchesln: '8r52 = 16r2A' — an OrderedCollection('16r2A")

hex := RxMatcher forString: '16r[0—9A—Fa—f]+' ignoreCase: true.
hex matchesin: '8r52 = 16r2A' = —— an OrderedCollection('16r2A")

Matching

A matcher understands these messages (all of them return true to indicate
successful match or search, and false otherwise):

matches: aString — true if the whole argument string (aString) matches.

w+' asRegex matches: 'Krazy' — true

matchesPrefix: aString — true if some prefix of the argument string (not nec-
essarily the whole string) matches.

"w+' asRegex matchesPrefix: 'Ignatz hates Krazy' — true

search: aString — Search the string for the first occurrence of a matching
substring. (Note that the first two methods only try matching from the very
beginning of the string). Using the above example with a matcher for a+, this
method would answer success given a string 'baaa’, while the previous two
would fail.

"

\b[a—z]+\b' asRegex search: 'Ignatz hates Krazy' —— true "finds 'hates

The matcher also stores the outcome of the last match attempt and can
report it: lastResult answers a Boolean: the outcome of the most recent match
attempt. If no matches were attempted, the answer is unspecified.

94 Regular Expressions in Pharo

number := \d+' asRegex.
number search: 'Ignatz throws 5 bricks'.
number lastResult — true

matchesStream:, matchesStreamPrefix: and searchStream: are analogous to the
above three messages, but takes streams as their argument.

ignatz := ReadStream on: 'Ignatz throws bricks at Krazy'.
names := "\<[A-Z][a-z]+\>' asRegex.
names matchesStreamPrefix: ignatz — true

Subexpression matches

After a successful match attempt, you can query which part of the original
string has matched which part of the regex. A subexpression is a parenthe-
sized part of a regular expression, or the whole expression. When a regular
expression is compiled, its subexpressions are assigned indices starting from
1, depth-first, left-to-right.

For example, the regex ((\d+)\\s«(\w+)) has four subexpressions, including
itself.

1: ((\d+)\sx(\w+)) "the complete expression”

2: (\d+)\s*(\w+) "top parenthesized subexpression”
3: \d+ "first leaf subexpression”

4: \w+ "second leaf subexpression”

The highest valid index is equal to 1 plus the number of matching paren-
theses. (So, 1 is always a valid index, even if there are no parenthesized
subexpressions.)

After a successful match, the matcher can report what part of the original
string matched what subexpression. It understands these messages:

subexpressionCount answers the total number of subexpressions: the high-
est value that can be used as a subexpression index with this matcher. This
value is available immediately after initialization and never changes.

subexpression: takes a valid index as its argument, and may be sent only
after a successful match attempt. The method answers a substring of the
original string the corresponding subexpression has matched to.

subBeginning: and subEnd: answer the positions within the argument string
or stream where the given subexpression match has started and ended, re-
spectively.
items :='((\d+)\s*(\w+))' asRegex.
items search: 'lgnatz throws 1 brick at Krazy'.

Regex API 95

items subexpressionCount — 4
items subexpression: 1 '1 brick' "complete expression”
items subexpression: 2 "1 brick' "top subexpression”

items subexpression: 3 1" "first leaf subexpression”
items subexpression: 4 'brick’ "second leaf subexpression”
items subBeginning: 3 an OrderedCollection(14)

items subEnd: 3 an OrderedCollection(15)
items subBeginning: 4 an OrderedCollection(16)
items subEnd: 4 an OrderedCollection(21)

LULLLLL

As a more elaborate example, the following piece of code uses a MMM DD,
YYYY date format recognizer to convert a date to a three-element array with
year, month, and day strings:

date := '(Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)\s+(\d\d?)\s*,\s*19(\d\d)'
asRegex.
result := (date matches: 'Aug 6, 1996")
ifTrue: [{ (date subexpression: 4) .
(date subexpression: 2) .
(date subexpression: 3) }]
ifFalse: ['no match'].
result — #('96' 'Aug' '6")

Enumeration and Replacement

The String enumeration and replacement protocols that we saw earlier
in this section are actually implemented by the matcher. = RxMatcher
implements the following methods for iterating over matches within
strings: matchesln:, matchesin:do:, matchesin:collect:, copy:replacingMatchesWith:
and copy:translatingMatchesUsing:.

seuss := 'The cat in the hat is back'.
aWords = "<([*aeiou]|[a])+\>' asRegex. "match words with ‘a'in them"
aWords matchesin: seuss
— an OrderedCollection('cat' 'hat' 'back’)
aWords matchesin: seuss collect: [:each | each asUppercase]
— an OrderedCollection('CAT' 'HAT' 'BACK")
aWords copy: seuss replacingMatchesWith: 'grinch’
— 'The grinch in the grinch is grinch’
aWords copy: seuss translatingMatchesUsing: [:each | each asUppercase]
— 'The CAT in the HAT is BACK'

There are also the following methods for iterating over matches within
streams: matchesOnStream:, matchesOnStream:do:, matchesOnStream:collect:,
copyStream:to:replacingMatchesWith: and copyStream:to:translatingMatchesUsing:.

in := ReadStream on: '12 drummers, 11 pipers, 10 lords, 9 ladies, etc.'.

96 Regular Expressions in Pharo

out := WriteStream on: ".
numMatch = \<\d+\>' asRegex.
numMatch
copyStream: in
to: out
translatingMatchesUsing: [:each | each asNumber asFloat asString].
out close; contents —— '12.0 drummers, 11.0 pipers, 10.0 lords, 9.0 ladies, etc.'

Error Handling

Several exceptions may be raised by RxParser when building regexes. The
exceptions have the common parent RegexError. You may use the usual
Smalltalk exception handling mechanism to catch and handle them.

* RegexSyntaxError is raised if a syntax error is detected while parsing a
regex

* RegexCompilationError is raised if an error is detected while building a
matcher

* RegexMatchingError is raised if an error occurs while matching (for exam-
ple, if a bad selector was specified using "<selector>:' syntax, or because
of the matcher’s internal error)

['+' asRegex] on: RegexError do: [:ex | » ex printString] —
'RegexSyntaxError: nullable closure'

6.4 Implementation notes by Vassili Bykov

What to look at first. In 90% of the cases, the method String»matchesRegex:
is all you need to access the package.

RxParser accepts a string or a stream of characters with a regular expres-
sion, and produces a syntax tree corresponding to the expression. The tree is
made of instances of Rxs« classes.

RxMatcher accepts a syntax tree of a regular expression built by the parser
and compiles it into a matcher: a structure made of instances of Rxm- classes.
The RxMatcher instance can test whether a string or a positionable stream of
characters matches the original regular expression, or it can search a string
or a stream for substrings matching the expression. After a match is found,
the matcher can report a specific string that matched the whole expression,
or any parenthesized subexpression of it. All other classes support the same
functionality and are used by RxParser, RxMatcher, or both.

Chapter summary 97

Caveats. The matcher is similar in spirit, but not in design to Henry
Spencer’s original regular expression implementation in C. The focus is on
simplicity, not on efficiency. I didn’t optimize or profile anything. The
matcher passes H. Spencer’s test suite (see “test suite” protocol), with quite
a few extra tests added, so chances are good there are not too many bugs.
But watch out anyway.

Acknowledgments. Since the first release of the matcher, thanks to the in-
put from several fellow Smalltalkers, I became convinced a native Smalltalk
regular expression matcher was worth the effort to keep it alive. For the
advice and encouragement that made this release possible, I want to thank:
Felix Hack, Eliot Miranda, Robb Shecter, David N. Smith, Francis Wolinski
and anyone whom I haven’t yet met or heard from, but who agrees this has
not been a complete waste of time.

6.5 Chapter summary

Regular expressions are an essential tool for manipulating strings in a trivial
way. This chapter presented the Regex package for Pharo. The essential
points of this chapter are:

¢ For simple matching, just send matchesRegex: to a string

* When performance matters, send asRegex to the string representing the
regex, and reuse the resulting matcher for multiple matches

® Subexpression of a matching regex may be easily retrieved to an arbi-
trary depth

* A matching regex can also replace or translate subexpressions in a new
copy of the string matched

* An enumeration interface is provided to access all matches of a certain
regular expression

¢ Regexes work with streams as well as with strings.

	Preface
	Libraries
	Zero Configuration Scripts and Command-Line Handlers
	Getting the VM and the Image
	Getting the VM only
	Handling command line options
	Anatomy of a handler
	Using ZeroConf script with Jenkins
	Chapter summary

	Files with FileSystem
	Getting started
	Navigating a file system
	Opening read and write Streams
	Renaming, copying and deleting Files and Directories
	The main entry point: FileReference
	Looking at FileSystem internals
	Chapter summary

	Sockets
	Basic Concepts
	TCP Client
	TCP Server
	SocketStream
	Tips for Networking Experiments
	Chapter summary

	The Settings Framework
	Settings architecture
	The Settings Browser
	Declaring a setting
	Organizing your settings
	Providing more precise value domain
	Launching a script
	Setting styles management
	Extending the Settings Browser
	Chapter summary

	Regular Expressions in Pharo
	Tutorial example—generating a site map
	Regex syntax
	Regex API
	Implementation notes by Vassili Bykov
	Chapter summary

	Source Management
	Versioning Your Code with Monticello
	Basic usage
	Exploring Monticello repositories
	Advanced topics
	Getting a change set from two versions
	Kinds of repositories
	The .mcz file format
	Chapter summary

	Gofer: Scripting Package Loading
	Preamble: Package management system
	What is Gofer?
	Using Gofer
	Gofer actions
	Some useful scripts
	Chapter summary

	Managing Projects with Metacello
	Introduction
	One tool for each job
	Metacello features
	A simple case study
	Loading a Metacello Configuration
	Managing dependencies between packages
	Baselines
	Groups
	Dependencies between projects
	About dependency granularity
	Executing code before and after installation
	Platform specific package
	Milestoning development: symbolic versions
	Load types
	Conditional loading
	Project version attributes
	Chapter summary

	Frameworks
	Glamour
	Installation and first browser
	Presentation, Transmission and Ports
	Composing and Interaction
	Chapter summary

	Agile Visualization with Roassal
	Installation and first visualization
	Roassal core model
	Detailing shapes
	Edges: linking elements
	Layouts
	Events and Callbacks
	The interaction hierarchy
	Understanding a View's Camera
	Beyond Pharo
	Chapter summary

	Scripting Visualizations with Mondrian
	Installation and first visualization
	Starting with Mondrian
	Visualizing the collection framework
	Reshaping nodes
	Multiple edges
	Colored shapes
	More on colors
	Popup view
	Subviews
	Forwarding events
	Events
	Interaction
	Chapter summary

	Language
	Handling Exceptions
	Introduction
	Ensuring execution
	Handling non-local returns
	Exception handlers
	Error codes — don't do this!
	Specifying which exceptions will be handled
	Signaling an exception
	Finding handlers
	Handling exceptions
	Comparing outer with pass
	Exceptions and [mathescape=false,backgroundcolor=white,basicstyle=]ensure:/ifCurtailed: interaction
	Example: Deprecation
	Example: Halt implementation
	Specific exceptions
	When not to use exceptions
	Exceptions implementation
	Ensure:'s implementation
	Chapter summary

	Blocks: a Detailed Analysis
	Basics
	Variables and blocks
	Variables can outlive their defining method
	Returning from inside a block
	Contexts: representing method execution
	Message execution
	Chapter conclusion

	Exploring Little Numbers
	Power of 2 and Numbers
	Bit shifting is multiplying by 2 powers
	Bit manipulation and access
	Ten's complement of a number
	Negative numbers
	Two's complement of a number
	SmallIntegers in Pharo
	Hexadecimal
	Chapter summary

	Fun with Floats
	Never test equality on floats
	Dissecting a Float
	With floats, printing is inexact
	Float rounding is also inexact
	Fun with inexact representations
	Chapter summary

	Tools
	Profiling Applications
	What does profiling mean?
	A simple example
	Code profiling in Pharo
	Read and interpret the results
	Illustrative analysis
	Counting messages
	Memorized Fibonacci
	SpaceTally for memory consumption per Class
	Few advices
	How MessageTally is implemented?
	Chapter summary

	PetitParser: Building Modular Parsers
	Writing parsers with PetitParser
	Composite grammars with PetitParser
	Testing a grammar
	Case Study: A JSON Parser
	PetitParser Browser
	Packrat Parsers
	Chapter summary

