
Oscar Nierstrasz, Stéphane Ducasse and Nathanael Schärli
Software Composition Group, University Of Bern

Vol. 5, No. 4, May–June 2006

Flattening Traits

Traits are fine-grained components that can be used to compose classes, while avoiding
many of the problems of multiple inheritance and mixin-based approaches. Since most
implementations of traits have focused on dynamically-typed languages, the question
naturally arises, how can one best introduce traits to statically-typed languages, like
Java and C#? In this paper we argue that the flattening property of traits should
be used as a guiding principle for any attempt to add traits to statically-typed lan-
guages. This property essentially states that, semantically, traits can be compiled
away. We demonstrate how this principle applies to Featherweight-Trait Java,
a conservative extension to Featherweight Java.

1 INTRODUCTION

Traits were introduced [16, 17] as a simple programming language mechanism for
incrementally composing classes from small, reusable components, while avoiding
problems of fragility in the class hierarchy that arise with approaches based on
mixins or multiple inheritance. Initial experiences using traits in Smalltalk to
refactor complex class hierarchies have been very promising [2], and the question
naturally arises, how can we apply traits to statically-typed languages like Java and
C#?

Traits are essentially sets of methods, divorced from any instance variables or
a superclass. Composite traits may be composed from subtraits using the trait
composition operators, sum, aliasing and exclusion. A trait is bound to specific
instance variables and a superclass only when that trait is used in the composition
of a given class. A trait is consequently very much like an abstract class, so perhaps
traits in statically-typed languages should be treated the same way that abstract
classes are. In particular, this would typically mean that every named trait will
define a type, since classes in C++, Java and C# define types.

The flaw in this reasoning is that traits support the flattening property, which
says that the semantics of a method defined in a trait is identical to the semantics
of the same method defined in a class that uses the trait. In principle, then, traits
can be compiled away. But if traits can be compiled away, then what happens to
the types that they define?

We propose that the flattening property actually provides us with a principle for

Cite this document as follows: O. Nierstrasz, S. Ducasse, N. Schärli: Flattening Traits, in
Journal of Object Technology, vol. 5, no. 4, May–June 2006, pages 129–148,
http://www.jot.fm/issues/issues 2006 05/article4

http://www.jot.fm/issues/issue_2006_05/article4

FLATTENING TRAITS

answering this and other questions. Instead of first asking how to integrate traits
with the semantics of a given language, we should answer the question, how can we
flatten traits to the base language. Once we know how to flatten traits, we will know
how to extend the language, since the design space will then be drastically reduced.

In particular, if we are interested in adding traits to a statically-typed language
L, then a program p should be type-safe in the extended language T if and only if
the flattened program [[p]] is type-safe in L.

Featherweight Java (FJ) is an object calculus that captures just those as-
pects of Java that are needed to explore certain questions concerning Java’s type
system [8, 9]. In particular, FJ was originally used to ascertain that Java’s type
system could be extended to accommodate generics without breaking existing pro-
grams. Since traits also offer a conservative extension to Java-like languages and
exhibit certain aspects of genericity, a natural starting point for applying traits to
Java-like languages (including C#) would be an investigation of introducing traits
to FJ. Liquori and Spiwack have taken FJ as a starting point to define Feather-
weight-Trait Java(FTJ) [11], a conservative extension of FJ that adds statically
typed traits.

We provide a brief overview of traits in Section 2. In Section 3 we show how
programs in FTJ can be flattened to FJ. This allows us to apply an “acid test” to
FTJ— expressions in FTJ should be type-safe if and only if their flattened counter-
parts are type-safe in FJ. We show that, with some small caveats, this is in fact the
case. In Section 4 we take the same approach to investigate how named traits can be
used to stand for types, if we first extend our base language to support interfaces.
In Section 5 we investigate the introduction of traits in FGJ (FJ extended with
generics). The principle of flattening leads us naturally to a notion of generic traits.
In Section 6 we provide a brief overview how traits are implemented in Smalltalk.
We briefly survey some related work in Section 7. We conclude in Section 8 with
some remarks about ongoing and future work.

2 TRAITS IN A NUTSHELL

Traits [17] are essentially groups of methods that serve as building blocks for classes
and are primitive units of code reuse. As such, they allow one to factor out common
behavior and form an intermediate level of abstraction between single methods and
complete classes. A trait consists of provided methods that implement its behavior,
and of required methods that parameterize the provided behavior. Traits cannot
specify any instance variables, and the methods provided by traits never directly
access instance variables. Instead, required methods can be mapped to state when
the trait is used by a class.

With traits, the behavior of a class is specified as the composition of traits and
some glue methods that are implemented at the level of the class. These glue methods
connect the traits together and can serve as accessor for the necessary state. The

130 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 4

2 TRAITS IN A NUTSHELL

TColor
red
green
~=
=
hash

rgb
rgb:

TDrawing
draw
refresh
refreshOn:

bounds
drawOn:

TCircle
=
hash
...
bounds
area

center
center:
radius
radius:

Circle
initialize
=
hash
rgb
rgb:
center
center:
radius
radius:
drawOn:

X

TDrawing
draw
refresh
refreshOn:

bounds
drawOn:

TCircle
=
hash
...
bounds
area

center
center:
radius
radius:

TColor
red
green
~=
=
hash

rgb
rgb:

Figure 1: Class Circle is composed from traits TCircle, TColor and TDrawing.

semantics of such a class is defined by the following three rules:

• Class methods take precedence over trait methods. This allows the glue meth-
ods defined in the class to override equally named methods provided by the
traits.

• Flattening property. A non-overridden method in a trait has the same seman-
tics as the same method implemented in the class.

• Composition order is irrelevant. All the traits have the same precedence, and
hence conflicting trait methods must be explicitly disambiguated.

Because the composition order is irrelevant, a conflict arises if we combine two
or more traits that provide identically named methods that do not originate from
the same trait. Traits enforce explicit resolution of conflicts by implementing a
glue method at the level of the class that overrides the conflicting methods, or by
method exclusion, which allows one to exclude the conflicting method from all but
one trait. In addition traits allow method aliasing. The programmer can introduce
an additional name for a method provided by a trait to obtain access to a method
that would otherwise be unreachable, for example, because it has been overridden.

VOL 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 131

FLATTENING TRAITS

Example: Geometric Objects. Suppose we want to represent a graphical object
such as a circle or square that is drawn on a canvas. Such a graphical object can be
decomposed into three reusable aspects — its geometry, its color and the way that
it is drawn on a canvas.

Figure 1 shows this for the case of a Circle class composed from traits TCircle,
TColor and TDrawing:

• TCircle defines the geometry of a circle: it requires the methods center, center:,
radius, and radius: and provides methods such as bounds, hash, and =.

• TDrawing requires the methods drawOn: bounds and provides the methods draw,
refresh, and refreshOn:.

• TColor requires the methods rgb, rgb: and provides all kind of methods ma-
nipulating colors. We only show the methods hash and = as they will conflict
with others at composition time.

The class Circle specifies three instance variables center, radius, and rgb and their
respective accessor methods. It is composed from the three traits TDrawing, TCircle,
and TColor. As there is a conflict for the methods hash and = between the traits
TCircle and TColor, we alias those methods in both traits to be able to access them
in the methods hash and = of the class Circle resolving the conflicts.

3 FLATTENING TRAITS

FJ strips Java down to a tiny functional calculus that expresses just enough of the
language to reason about the essential type features of Java. Issues like side effects,
concurrency and reflection are forgotten, but even some type issues such as interfaces
and overloading are left out as being non-essential.

Liquori and Spiwack have defined FTJ as a conservative extension of FJ, with
minimal syntactic and semantic changes to accommodate traits. But is their inter-
pretation of traits reasonable?

To answer this question, we explore in this section an alternative approach to
defining FTJ by flattening, i.e., by translation to FJ. In other words, we compile
traits away to obtain pure FJ programs. We then show that the static and dy-
namic semantics of FTJ programs is (largely) consistent with that of the flattened
programs in FJ.

The point of this exercise is to provide evidence that FTJ is in fact a reasonable
extension of FJ to traits, precisely because it correctly interprets the flattening
property. In general, we argue, any type system that accommodates traits should
have the property that programs with traits should be equivalent, in some way, to
their flattened counterparts in the base language.

132 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 4

3 FLATTENING TRAITS

CL ::= class C C C {C f;K M TA} Classes
TL ::= trait T is {M; TA} Traits
TA ::= T | TA with {m@n} | TA minus {m} Trait expressions
K ::= C(C f) {super(f);this.f=f;} Constructors
M ::= C m(C x) {↑e;} Methods
e ::= x | e.f | e.m(e) | new C(e) | (C)e Expressions

Figure 2: FTJ Syntax.

Featherweight Trait Java

The syntax of FTJ is shown in Figure 2. The only differences with the syntax of
FJ are the modification of class definitions to include a sequence of used traits TA,
and the addition of syntax for trait definitions (TL) and trait expressions (TA). As
in FJ, the notation C denotes a possible empty sequence of elements C (with or
without commas, as appropriate; • represents the empty sequence.) For the sake of
conciseness we abbreviate the keyword extends to the symbol C and the keyword
return to the symbol ↑.

With traits, the behavior of a class is specified as the composition of traits and
some glue methods (M) that are implemented at the level of the class (CL) or the
composite trait (TL). These glue methods connect the traits together and can serve
as accessor for the necessary state.

The operational semantics of FTJ specifies a modified method lookup algorithm
that ensures that methods of a class C take precedence over methods provided by
any of the used traits TA. Similarly, methods of a named trait T take precedence
over methods provided by subtraits TA used by T.

Because the composition order is irrelevant, a conflict arises if we combine two
or more traits that provide identically named methods that do not originate from
the same trait. TA is a composition of traits Ti, possibly giving rise to conflicts.
Conflicts may be resolved by overriding them with glue methods M in the class using
TA, or by excluding the conflicting methods. TA minus {m} removes the method
named m from the trait expression TA.

In addition traits allow method aliasing. The programmer can introduce an
additional name for a method provided by a trait to obtain access to a method that
would otherwise be unreachable because it has been overridden. TA with {m@n}

defines m to be an alias for the existing method named n. (Note that the aliasing
syntax of FTJ (m@n) puts the new name n after the existing method name m, whereas
the aliasing operator (→) expects its arguments in the reverse order.)

VOL 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 133

FLATTENING TRAITS

Flattening FTJ

We have previously developed a simple set-theoretic model of traits [15]. The goals
of this model were to define the trait composition operators, to give an operational
account of method lookup (particularly self- and super-sends), and to develop
a notion of equivalence for traits. The model further makes precise the notion
of method conflicts arising during trait composition, and the notion that a class
constructed using traits can always be flattened into one that does not use traits.

The trait model defines method dictionaries as mappings from method names to
method bodies. A trait is just a method dictionary in which some method names
may be bound instead to >, representing a conflict. Traits may be constructed using
the operators + (composition), − (exclusion), B (overriding) and [→] (aliasing).
The key point is that traits are always composed using the composition operator
+, which is associative and commutative [6], hence insensitive to the order in which
traits are composed. Conflicts are resolved by the composing class by overriding or
excluding the conflicts [17]. We shall use this framework for flattening FTJ.

The flattening property simply states that we can always evaluate the trait com-
position operators occurring within a class definition to obtain an equivalent class
whose method dictionary does not refer to traits — that is, the traits can be com-
piled away. In order to flatten FTJ programs, then, we must interpret the parts of
the FTJ syntax that represent method dictionaries and traits, and we must define
the trait composition operators for those syntactic entities. The translation from
FTJ to FJ will simply evaluate the composition operators.

Figure 3 presents the trait composition operators interpreted in the context of
FTJ. These operators are used to define the flattening function [[·]] which translates
an FTJ class to an FJ class in Figure 4.

We interpret a sequence of methods M as representing a method dictionary, and
sequence of trait expressions TA as representing a trait composition

∑
i TAi

In order to define the composition operators, we first need a couple of auxiliary
functions. lookup(m, M) (1) returns the declaration of method m in M, if present. ⊥
represents an undefined method. extract(X, M) (2) returns the subsequence of M

containing the definitions of the methods named in X (where
∧

builds a sequence
from its operands — if X is empty, then extract returns •, the empty sequence).
mNames(M) (3) returns the set of method names of methods declared in M. We
will also make use of local(T) and subtraits(T) (4), which return, respectively, the
methods and the subtraits of a named trait T.

The exclusion operator (5) simply removes1 the definition of m from the method

1Note that we also adopt the convention initiated by Igarashi et al. [9] of using set-based
notation for operators over sequences: M = C m(C x) ... ∈ M means that the method declaration
M occurs in M, whereas M\M stands for the sequence M with M removed. M1, M2 is the concatenation
of the sequences M1 and M2. This abuse of notation is justified since the order in which the elements
occur in M is irrelevant.

134 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 4

3 FLATTENING TRAITS

lookup(m, M) def=
{

M if M = C m(C x) {↑e;} ∈ M
⊥ otherwise

(1)

extract(X, M) def=
∧
m∈X

lookup(m, M) (2)

mNames(M) def= {m | lookup(m, M) 6= ⊥} (3)

trait T is {M; TA}

local(T) = M

trait T is {M; TA}

subtraits(T) = TA
(4)

M− m
def= M\lookup(m, M) (5)

M1 B M2
def= M1, (M2\extract(mNames(M1), M2)) (6)

M[n→m] def=


(M\lookup(n, M)), conflict(n) if lookup(n, M) 6= ⊥
M, C n(C x){↑e;} else if C m(C x){↑e;} ∈ M
M otherwise

(7)

mBodies(M1, M2)
def= extract(mNames(M1)\mNames(M2), M1) (8)

broken(M1, M2)
def= (mNames(M1) ∩mNames(M2))\mNames(M1 ∩ M2) (9)

M1 + M2
def= mBodies(M1, M2),mBodies(M2, M1), (M1 ∩ M2),∧

{conflict(m) | m ∈ broken(M1, M2)} (10)

where conflict(m) = Object m() {↑⊥; }

Figure 3: Composition operators for FTJ

[[class C C D {C f;K M TA}]] def= class C C D {C f;K M B [[TA]]} (11)

[[TA]] def=
∑

TAi∈TA

[[TAi]] (12)

[[T]] def= local(T) B [[subtraits(T)]] (13)

[[TA with m@n]] def= [[TA]][n→m] (14)

[[TA minus m]] def= [[TA]]− m (15)

Figure 4: Flattening FTJ to FJ

VOL 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 135

FLATTENING TRAITS

dictionary M. Overriding (6) removes from M2 those methods already defined in
M1, and concatenates what remains to M1. Aliasing (7) simply concatenates an
existing method definition for m under the new name n. If, however, the “new”
name n is already bound in M, then a conflict is generated instead. (If m is absent,
then we can just ignore the alias, so that any references to n will generate errors.)
Note that we have chosen here to represent a conflict by the method body {↑⊥;}.
The flattening function will therefore yield a valid FJ program if and only if all
conflicts are resolved. (An alternative approach could be to generate FJ code that
is syntactically valid, but contains a type error, such as a call to a non-existent
method.)

Trait composition is slightly more complicated to define. We first define the
auxiliary functions mBodies and broken. mBodies(M1, M2) (8) represents the method
declarations in M1 that do not conflict with any methods declared in M2. M1 ∩ M2

represents the method declarations that are (syntactically) identical in M1 and M2

(once again abusing set notation to represent intersection of the method dictionar-
ies). These methods also do not pose any conflicts. broken(M1, M2) (9) represents the
set of names of methods with non-identical declarations in both M1 and M2. These
represent actual conflicts. Finally, the composition of M1 and M2 (10) concatenates
the non-conflicting and conflicting method declarations.

Now we are ready to define the translation function [[·]] (Figure 4). A flattened
class is one in which its locally defined methods override the (flattened) methods
of the used traits (11). Flattening a sequence of FTJ traits or a trait expression
always yields a (possibly empty) sequence of FJ methods. A sequence of traits (12)
translates to the composition of the translation of its parts. The local methods
of a named trait (13) override the composition of its subtraits. Aliasing (14) and
exclusion (15) are directly interpreted by the aliasing and exclusion operators.

Equivalence of trait-based and flattened programs

Now we can attempt to answer the question, does FTJ provide a reasonable inter-
pretation of traits?

Ideally, we expect the following result to hold:

If e is an expression in an FTJ program P , then e is well-typed in FTJ
if and only if [[e]] is well-typed in FJ.

As it turns out, we can obtain a very similar result, but due to some minor
differences in the interpretation of traits in the two approaches (i.e., the FTJ type
system and our flattening approach), we must state a slightly weaker result.

FTJ follows the formal trait model [15] fairly closely, but there are a number of
small discrepancies.

1. First, the aliasing mechanism of FTJ is more ambitious, automatically con-

136 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 4

3 FLATTENING TRAITS

verting recursive calls to the new aliased name. So, if method m contains the
expression this.m(e), and m is aliased to m1, then the body of m1 will be
rewritten to contain this.m1(e). This innovation is not part of the original
definition of the trait model, and is not reflected in the flattening.

2. Next, in the case where one attempts to define an alias m1 when m1 is already
declared, the trait model specifies that a conflict be generated (which is what
the flattening function does). FTJ, on the other hand, deals with this not
operationally, but prohibits this kind of aliasing at the level of the type system.
This means the FTJ is more restrictive, since such conflicts cannot be repaired
by means of glue code. One can debate which interpretation is preferable.

3. Finally, FTJ adopts the principle that two methods with the same name
don’t conflict only if they originate from the same subtrait. This is perfectly
consistent with the implementation of traits in Squeak [17]. The formal trait
model leaves this point open, however, allowing different interpretations of
when two methods are “the same”. In the concrete case of our flattening
function, the definitions of broken (9) and + (10) make use of the construct
M1 ∩ M2 to assess which methods are the same. Since methods in FJ are
just syntactic entities, this means conflicts only arise in flattening when two
methods are syntactically different. So flattening is more liberal than the FTJ
type system.

The first point interferes with our ideal result, so we must exclude such pro-
grams. The second point poses no problems, since FTJ’s type system will reject
programs with invalid aliasing. The third point breaks the two-way implication: if
we have traits TA and TB that both provide a method m with syntactically identical
implementations, and a class C uses both TA and TB without overriding m, then the
FTJ type system will flag this as a conflict, whereas our flattening function will
simply unify the two methods.

As a consequence, the best we can hope for is the following:

If e is well-typed within an FTJ program P , in which recursive methods
are not aliased, then e is also well-typed in the FJ program [[P]].

In order to obtain the stronger result, we should adapt either FTJ or our flatten-
ing function to deal consistently with “not nice” programs. For example, we could
modify our flattening function to accommodate the FTJ interpretation of aliasing
(7) by generating {↑e[this.n/this.m]} as the body of the new method n.

We should also adapt the flattening function to be consistent with the more
restrictive interpretation of when methods conflict. A trivial solution would be to
decorate methods originating from traits with the name of the defining trait. We
would then compare sets of tuples {(Ti, Mi)} rather than simply sets of methods M in
the definitions of broken and +.

VOL 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 137

FLATTENING TRAITS

Given our partial result, we can conclude that FTJ indeed offers a reasonable
interpretation of traits that is consistent with the flattening property.

4 TRAITS, TYPES AND INTERFACES

As should be evident from the syntax of FTJ alone, traits in FTJ do not define
types. And because FJ and FTJ do not model interfaces, this means that only class
names may be used to specify the signature of a method. While this simplifies the
theoretical foundation of these models, it poses serious practical problems because it
makes it hard or impossible to write traits that can be used across multiple classes.

As an example, suppose that we would like to have a trait TRectangle that is used
to build two classes Rectangle and VisualRectangle, which have Object as their only
common superclass. This trait should provide, amongst others, a method includes,
which takes another rectangle as an argument and returns a boolean indicating
whether the argument rectangle is fully included in the receiver. While the method
includes can conceptually take as its argument an object of any class that uses the
trait TRectangle (e.g., Rectangle and VisualRectangle), FTJ does not allow us to
express this since trait names are not valid types.

One way to avoid this problem would be to extend FTJ so that traits, like classes,
also define types. In the above example, this means that the trait TRectangle will
also define a corresponding type with the same name that can then be used to define
the type of the argument in the signature of the method includes. However, in order
for this to work, we also need to extend the definition of subtyping in FTJ so that
each class that uses the trait TRectangle is a subtype of the type that is implicitly
defined by this trait. And since we want to flatten FTJ programs to FJ, this means
that we need to add this form of multiple subtyping also to FJ.

Since we need to extend FJ with a form of multiple subtyping anyway, an al-
ternative approach would be to introduce the notion of interfaces into the calculus.
This means that as in regular Java, each interface defines an FJ type, and classes
as well as traits can be declared to be subtypes of numerous interface types. Even
though traits themselves cannot be used as types, this allows us to solve the iden-
tified problem because we can declare a corresponding interface for each trait that
should be used as a type. In our example, this means that we declare an interface
IRectangle containing the same method signatures as the trait TRectangle, and that
we then declare all “rectangle-like” classes (in particular all classes that use the trait
TRectangle) as subtypes of IRectangle by implementing this interface.

While both approaches, introducing interfaces or using traits as types, require
adding multiple subtyping to the calculi, there are important conceptual differences
between these two approaches. While the approach of treating each trait as a type
may be more convenient in practice, the presence of exclusions and aliases add a cer-
tain complexity to the subtype relation. Furthermore, making each trait be a type
blurs the important conceptual distinction between implementation and interfaces,

138 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 4

4 TRAITS, TYPES AND INTERFACES

CL ::= class C C C implements I {S f;K M} Classes
ID ::= interface I C I {SG} Interfaces
S ::= C | I Types
SG ::= S m(S) Method signatures
K ::= C(S f) {super(f);this.f=f;} Constructors
M ::= S m(S x) {↑e;} Methods
ID ::= interface I C I {SG} Interfaces
e ::= x | e.f | e.m(e) | new C(e) | (S)e Expressions

Figure 5: FJI Syntax.

which leads to two kind of problems. First, it does not address the fact that in the
same way as subclassing does not necessarily imply subtyping [4], a trait may be
composed form another trait without conceptually being a subtype of it. Second,
if there are multiple traits providing different implementations of the same concep-
tual interface (e.g., TRectangle and TOptimizedRectangle), we end up with multiple
identical types.

All these problems are avoided if we do not consider traits as types and use inter-
faces instead. However, this comes at the cost that whenever traits are composed,
the necessary interfaces and subtype relationships have to be explicitly declared.
Note that this is this approach that has been followed by Denier and Cointe in their
implementation of traits with AspectJ [5].

FJI and FTJI

We now explore an approach in which traits generate interfaces rather than types.
We will first extend FJ with interfaces, obtaining Featherweight Java with
Interfaces (FJI). Then we define Featherweight-Trait Java with Inter-
faces (FTJI) as an extension of FTJ.

In fact, FJI is rather trivial to define. Figure 5 shows the syntax of FJI. The se-
mantics of FJI is almost identical to that of FJ. The rules for Small-step operational
semantics and Congruence are unchanged. The rules for Field lookup, Method body
lookup, Expression typing and Class typing require only trivial changes to reflect
the new syntax for classes and types. Finally, the rules for Subtyping, Method type
lookup and Method typing require straightforward extensions to accommodate the
fact that interface definitions introduce new types. As an example, we show the new
subtyping rules for FJI in Figure 6.

We show a possible syntax for FTJI in Figure 7. Traits are as before in FTJ,
with one important difference: method signatures may now refer to trait names,
since types may be class names, interface names or trait names.

What does this imply for flattening? Clearly the only sensible approach is to

VOL 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 139

FLATTENING TRAITS

S<:S

class C C D implements I {S f;K M}

C<:D ∀i.C<:Ii

S<:S′ S′<:S′′

S<:S′′

interface I C I {SG}

∀i.I<:Ii

Figure 6: FJI Subtyping.

CL ::= class C C C implements I {S f;K M TA} Classes
S ::= C | I | T Types

TL and TA are as in Figure 2 and ID, SG, K, M, ID, and e are as in Figure 5.

Figure 7: FTJI Syntax.

[[class C C D
implements I {S f;K M TA}]]

def=
class C C D
implements I subtraitNames(TA)
{S f;K M B [[TA]]}

(16)

[[trait T is {M; TA}]] def=
interface T C subtraitNames(TA)
{interface(M)aliases(TA)}

(17)

subtraitNames(TA) def=
∧
i

subtraitNames(TAi) (18)

subtraitNames(T) def= T

subtraitNames(TA with {m@n}) def= subtraitNames(TA)

subtraitNames(TA minus {m}) def= subtraitNames(TA)

interface(M) def=
∧
i

interface(Mi) (19)

interface(S m(S x) {↑e;}) def= S m(S)

aliases(TA) def=
∧
i

aliases(TAi) (20)

aliases(T) def= •

aliases(TA with {m@n}) def= S n(S), if S m(S) {...} ∈ lookup(m, [[TA]])

aliases(TA minus {m}) def= •

The translation of TA is the same as in Figure 4.

Figure 8: A possible flattening of FTJI to FJI

140 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 4

5 GENERIC TRAITS

translate traits to interfaces — every trait declaration will generate an interface
declaration in the flattened system. We present a possible way of flattening FTJI
to FJI in Figure 8.

We flatten classes as before, expanding the methods of all used traits. However
we additionally generate an interface for every declared trait name, so that trait
names may be used as types. The only wrinkle in this translation is what to do
about exclusion. If a trait TA uses a trait TB, but excludes a method m from TB, then
it is clear that the interface TA no longer properly extends TB. However, exclusion is
mainly intended as a mechanism to resolve conflicts, not for “editing” traits. With
this principle in mind, we should assume that TA will in fact be a proper extension of
TB since the method m that is excluded is implemented in TA by some other path. The
flattening function we present in Figure 8 takes this approach, since subtraitNames
extracts all used trait names, including those for which some methods have been
excluding. We rely on the fact that the type system of FJI will complain if the
resulting interface declarations lead to an inconsistency.

In FTJI, we can now declare the trait TRectangle to contain a method expecting
an argument of type TRectangle. Flattening to FJI tells us that this trait should be
treated as if it were an interface. Any class that uses this trait will then automatically
implement the interface TRectangle.

5 GENERIC TRAITS

While multiple subtyping allows us to define the signature of the method includes so
that it is not specific to a single class, FTJ still suffers from a lack of expressiveness
when it comes to defining reusable trait methods. As an illustration, assume that
the trait TRectangle also provides a binary method intersect:, which takes another
rectangle as an argument and returns a new rectangle that is the intersection between
the receiver and the argument. If we want to implement this method in a statically
typed language, we need to answer the question what type should be used for the
argument and the return value of this method so that this trait can be used for
both Rectangle and VisusalRectangle as well as any other class that has a rectangle
characteristics.

Regarding the argument type, the answer is the same as for the method includes:
once the language supports a form of multiple subtyping such as interfaces, we
declare the argument type to be IRectangle and make sure that all classes supporting
the rectangle protocol implement this interface. However, when it comes to the type
of the return value, things get more problematic. This is because we would like the
method intersect: to return an instance of whatever class it is called on. In particular,
this means that an instance of VisualRectangle (Rectangle) must be returned when
the method intersect: is called on a RectangleMorph (Rectangle).

What makes this situation difficult is that the return type of the method intersect:
is in fact parametric; i.e., it depends on the class to which the trait TRectangle is

VOL 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 141

FLATTENING TRAITS

CL ::= class C<X C N> C N {S f;K M TA} Classes
TL ::= trait T<X C N> is {M;TA} Traits
TA ::= T<S> | TA with {m@m} | TA minus {m} Trait expressions
K ::= C(S f) {super(f);this.f=f;} Constructors
M ::= <X C N> S m(S x) {↑e;} Methods
e ::= x | e.f | e.m<S>(e) | new N(e) | (N)e Expressions
S ::= X | N Types
N ::= C<S> Nonvariable types

Figure 9: FTGJ Syntax.

finally applied. Therefore, using an interface such as IRectangle as the return type
does not solve our problem because it would only allow a common subset of all the
methods in Rectangle and VisualRectangle to be called on the return value. This
problem can be addressed by extending FTJ with a generics mechanism such as
that of Generic Java (GJ) [3], recently introduced in Java 1.5. Using generics,
we can write the trait TRectangle with a type parameter that is then used as the
return type of the method intersect:. And whenever the trait TRectangle is applied
to a class such as Rectangle and VisualRectangle, we can then use the corresponding
type as the concrete parameter.

FGJ and FTGJ

In their paper about FJ, Igarashi et al. also present the calculus Featherweight
Generic Java (FGJ) [8], an extension of FJ that models Java with generics.
Following the augmentation from FJ to FGJ, we now define the new calculus FTGJ,
which is an extension of FTJ with generics. We then show how FTGJ can be
mapped to FGJ by defining an extended version of the flattening function from
FTJ to FJ shown in Figure 4.

The syntax of FTGJ is shown in Figure 9. The metavariable X ranges over type
variables, S ranges over types, and N ranges over nonvariable types (types other than
type variables). As in FGJ, we write X as a shorthand for X1, . . . Xn (and similarly
for S and N), and assume sequences of type variables contain no duplicate names.
We also allow C<>, T<>, and m<> to be abbreviated as C, T, and m, respectively.

The syntactic extension from FTJ to FTGJ is now analogous to the syntactic
extension from FJ to FGJ. In particular, class definitions, trait definitions, and
method definitions include generic type parameters.

Once the FTGJ syntax is defined, we can now define the flattening-based trans-
lation from FTGJ to FGJ. This translation is shown in Figure 10. Before we go
through the details of the definitions, it is important to note that this translation
does not perform any type checks. Consequently, this translation produces an FGJ

142 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 4

6 IMPLEMENTING TRAITS

[[class C<X C N> C N {S f;K M TA}]] def= class C<X C N> C N {S f;K M B [[TA]]}(21)

[[TA]] def=
∑

TAi∈TA

[[TAi]] (22)

[[T<S>]] def= local(T, S) B [[subtraits(T, S)]] (23)

[[TA with m@n]] def= [[TA]][n→m] (24)

[[TA minus m]] def= [[TA]]− m (25)

Figure 10: Flattening FTGJ to FGJ

program for any FTGJ program; the generated FGJ program may however be
invalid due to inconsistent use of types2. Because traits are compiled away in the
translation, this means in particular that the bounds of the type parameters of traits
are not taken into account. This has the effect that all type parameters in trait def-
initions are actually unbound; a native type system for FTGJ, however, would use
these bounds to perform type-checking of generic traits.

A comparison to the translation from FTJ to FJ (see Figure 4) shows that only
the cases (21) and (23) are changed. While (21) reflects the extended class definition
syntax of FTGJ, the change in (23) was necessary because a trait T that occurs
in TA now takes a sequence S of concrete type parameters. This sequence is then
passed as a second argument to an extended form of composition operators local
and subtraits.

Figure 11 defines these two operators together with all the other composition
operators from Figure 3 that needed to be adapted. The most interesting case
is (27), where we extend the rule defining local and subtraits so that they take two
arguments T and S, and then replace the formal parameters in T and its subtraits with
S before they return, respectively, the methods and the subtraits of T. As in FGJ,
replacing the formal type parameters is done using a simultaneous substitution. The
other two definitions (26) and (28) are the same as in Figure 3, except that we use
the method syntax of FTGJ instead of FTJ.

6 IMPLEMENTING TRAITS

Although the flattening property is a critical aspect for the semantics of traits, it
is not an especially effective way to implement traits, since it quickly leads to code

2This means that our translation has a character similar to that of C++ templates, which are
only typechecked after being instantiated.

VOL 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 143

FLATTENING TRAITS

lookup(m, M) def=
{

M if M = <X C N> S m(S x) {↑e;} ∈ M
⊥ otherwise

(26)

trait T<X C N> is {M;TA}

local(T, S) = [S/X]M subtraits(T, S) = [S/X]TA
(27)

M[n→m] def=


(M\lookup(n, M)), conflict(n) if lookup(n, M) 6= ⊥
M, <X C N> S n(S x) {↑e;} if <X C N> S m(S x) {↑e;} ∈ M
M otherwise

(28)

where conflict(m) = Object m() {↑⊥;}

Figure 11: Adapted composition operators for FTGJ

bloat. In this section we provide a brief overview of the strategy used to implement
traits in Squeak Smalltalk. We conjecture that this strategy could easily be adapted
for statically-typed languages as well.

To add traits to Squeak Smalltalk, we first extended the implementation of
classes to include an additional instance variable to represent the composition clause.
This variable defines the traits used by the class, as well as any exclusions and
aliases. We then introduced a first-class representation for traits, which are es-
sentially stripped-down classes that can define neither state nor a superclass. In
particular, this means that each trait is separately compiled and keeps track of its
own method dictionary containing the method objects (byte-code) of all the meth-
ods implemented by the trait. Note that in this method dictionary, each trait keeps
track of both the provided and required methods.

When a class C uses a trait T, the method dictionary of C is extended with an
entry for all the methods in T that are not overridden by C. For an alias, we add to
the method dictionary a second entry that associates the new name with the aliased
method. Since compiled methods in traits do not usually depend on the location
where they are used, the bytecode for the method can be shared between the trait
that defines the method and all the classes and traits that use it. The only exception
are methods that use the keyword super because they store an explicit reference to
the superclass in their literal frame. When a trait with such methods is applied to a
class, these methods are therefore copied with the entry for the superclass changed
appropriately. Note that copying of methods containing sends to super could be
avoided by modifying the virtual machine to compute super when needed.

Our implementation never duplicates source code, and duplicates byte code only

144 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 4

7 RELATED WORK

if it includes sends to super, which is relatively rare in trait methods. Because traits
are actually represented in the compiled code, they can also be reflected upon.
For example, it is possible to check at runtime whether an object is an instance
of a class that uses a certain trait T. A program with traits therefore exhibits
the same performance as the corresponding single inheritance program in which all
the methods provided by traits are implemented directly in the classes that use
those traits. There may be a small performance penalty resulting from the use
of accessor methods, but such methods are in any case widely used because they
improve maintainability. JIT compilers routinely inline accessors, so we feel that
requiring their use is entirely justifiable.

7 RELATED WORK

Fischer and Reppy have previously presented a type system for traits, but they did
not use the framework of FJ [7]. Instead, they introduced an imperative calculus
for statically typed traits in Moby (of the ML family). Another important difference
to FTJ is that their type system deals with conflicts and excluded methods only in
a simplified and limited way.

Traits are a built-in language mechanism of the language Scala [12], a modern
multi-paradigm programming language designed to express common programming
patterns in a concise, elegant, and type-safe way. The traits adaptation of Scala
is particularly relevant as Scala is a statically typed language with a type system
similar to those of Java and C#. Therefore, the Scala designers had to tackle many
of the problems and trade-offs that we have addressed in this paper. In Scala, traits
are modeled as abstract classes that do not encapsulate state, neither in form of
variable definitions nor by providing a constructor with parameters. Consequently,
each trait, like each class, also defines a type. This is important because it means
that in Scala, traits without any concrete methods play the roles of interfaces, and
Scala therefore does not have a separate notion of interfaces. Because Scala does
not feature the exclusion and alias operators on traits, the subtype relation on traits
is defined in a clean and consistent way: a class (or a trait) is always a subtype
of all the types corresponding to the used traits. In summary, we can say that
the integration of traits in Scala nicely corresponds to the flattening-based principle
proposed in this paper.

Traits-mini-java (TMJ) [13] is an implementation of traits based on a subset of
Java. While TMJ does not feature generics (it is based on Java prior to version 1.5),
it addresses the problem of typing trait methods by reifying the class that actually
uses a trait. This means that TMJ features a new keyword ThisType, which can be
used in traits to refer to the class where the trait will eventually be used. Although
this is not as expressive as a more general notion of generics (e.g., the one featured
in Java 1.5 and Scala), but it has the advantage that often leads to simpler and
more concise programs because it does not require an explicit parameter for the
class type. Furthermore, the keyword ThisType is, unlike generic type parameters,

VOL 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 145

FLATTENING TRAITS

fully equivalent to the (name of the) class it refers to, and it can therefore be used
to create new instance of this class.

Denier and Cointe have introduced traits in Java using AspectJ [5]. Their ap-
proach is based on AspectJ introductions and interfaces: the interface declares the
method signatures of traits while the introduction defines the behavior (i.e. meth-
ods) of traits. They also discuss how state can be introduced into the model. Their
work is an interesting illustration of the flattening property approach when the run-
time of the language cannot be changed to support traits as first class entities as in
Squeak or Scala.

In the programming language literature, the term “trait” has been used for a
variety of concepts that are related but not identical to the trait construct that is
the subject of this paper.

In their theory of objects [1], Abadi and Cardelli use the term trait to denote
a collection of methods that is intended as a modular fragment of object behavior.
While multiple of those traits may be combined to generate individual objects, this
kind of trait combination is significantly different from our notion of trait compo-
sition. For example, there is no handling of conflicts, no exclusion, and no alias
operation.

8 CONCLUDING REMARKS

We have shown how the trait flattening property can serve as guideline for a first
approach to introduce traits to an existing programming language. We are currently
applying this approach to introduce traits to C# in the context of the Rotor Shared
Source Common Language Infrastructure. We obtain a rapid prototype of traits
for C# by defining traits as a syntactic extension to C#, and then compiling away
traits by flattening [14], essentially as described in this paper. Nevertheless C#
poses a few additional wrinkles. In particular, in C# only virtual methods may
be overridden, and one must explicitly declare when one is overriding an inherited
method as opposed to defining a new one. Trait composition (and flattening) must
take this into account in order to yield correct results.

Although semantically traits can be flattened, a proper integration of traits in
a given language cannot be achieved by mere syntactic transformation. In our
Squeak implementation of traits [10, 15] traits are first-class entities from which
classes can be composed. First-class traits enable code reuse. In addition we reuse
methods at the level of method dictionaries, by physically sharing common methods
among traits and classes, without introducing run-time penalties [17]. Similarly,
an extension of a statically typed language with traits should be consistent with
flattening, but a robust implementation would require a deeper integration of traits
with the host language.

146 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 4

8 CONCLUDING REMARKS

Acknowledgments

We gratefully acknowledge the financial support of Microsoft Research for the project
“Traits in C#”. We warmly thank Luigi Liquori for his helpful comments and
insights. We also thank Arnaud Spiwack and Marcus Denker for reviewing the draft
submission.

REFERENCES

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[2] A. P. Black, N. Schärli, and S. Ducasse. Applying traits to the Smalltalk
collection hierarchy. In Proceedings OOPSLA’03 (International Conference
on Object-Oriented Programming Systems, Languages and Applications), vol-
ume 38, pages 47–64, Oct. 2003.

[3] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe
for the past: adding genericity to the Java programming language. In Pro-
ceedings OOPSLA ’98, ACM SIGPLAN Notices, pages 183–200. ACM Press,
1998.

[4] W. Cook, W. Hill, and P. Canning. Inheritance is not subtyping. In Proceedings
POPL ’90, San Francisco, Jan. 1990.

[5] S. Denier. Traits programming with AspectJ. In P. Cointe, editor, Actes
de la Première Journée Francophone sur le Développement du Logiciel par
Aspects (JFDLPA’04), pages 62–78, Paris, France, Sept. 2004. Available at
http://www.emn.fr/x-info/obasco/events/jfdlpa04/.

[6] S. Ducasse, N. Schärli, O. Nierstrasz, R. Wuyts, and A. Black. Traits: A
mechanism for fine-grained reuse. Transactions on Programming Languages
and Systems, 2005. under revision.

[7] K. Fisher and J. Reppy. Statically typed traits. Technical Report TR-2003-13,
University of Chicago, Department of Computer Science, Dec. 2003.

[8] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal
core calculus for Java and GJ. In Proceedings OOPSLA ’99, ACM SIGPLAN
Notices, pages 132–146, Nov. 1999.

[9] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a minimal core
calculus for Java and GJ. ACM TOPLAS, 23(3):396–450, May 2001.

[10] A. Lienhard. Bootstrapping Traits. Master’s thesis, University of Bern, Nov.
2004.

VOL 5, NO. 4 JOURNAL OF OBJECT TECHNOLOGY 147

FLATTENING TRAITS

[11] L. Liquori and A. Spiwack. Adding multiple inheritance to Feather-
weight Java. INRIA Sophia Antipolis & ENS Cachan, available at www-
sop.inria.fr/mirho/Luigi.Liquori/PAPERS/ftj.pdf, 2004.

[12] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud, N. Mi-
haylov, M. Schinz, E. Stenman, and M. Zenger. An overview of the Scala
programming language. Technical Report 64, École Polytechnique Fédérale de
Lausanne, 1015 Lausanne, Switzerland, 2004.

[13] P. J. Quitslund. Java traits — improving opportunities for reuse. Technical
Report CSE-04-005, OGI School of Science & Engineering, Beaverton, Oregon,
USA, Sept. 2004.

[14] S. Reichhart. A protype of traits for C#. Informatikprojekt, University of
Bern, 2005. In preparation.

[15] N. Schärli. Traits — Composing Classes from Behavioral Building Blocks. PhD
thesis, University of Berne, Feb. 2005.

[16] N. Schärli, S. Ducasse, and O. Nierstrasz. Classes = traits + states + glue
(beyond mixins and multiple inheritance). In Proceedings of the International
Workshop on Inheritance, 2002.

[17] N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black. Traits: Composable units
of behavior. In Proceedings ECOOP 2003 (European Conference on Object-
Oriented Programming), volume 2743 of LNCS, pages 248–274. Springer Verlag,
July 2003.

ABOUT THE AUTHORS

Oscar Nierstrasz is a Full Professor of Computer Science at the University
of Bern, Switzerland, where he has led the Software Composition Group
since its founding in 1994. See also http://www.iam.unibe.ch/∼scg.

Stéphane Ducasse is a Swiss National Science Foundation Professor at the
University of Bern since 2002, and a Full Professor of Computer Science
at the University of Savoie in Annecy since 2005.

Nathanael Schärli was a PhD student in the Software Composition Group
from 2001 to 2005, when he completed his dissertation entitled “Traits –
Composing Classes from Behavioral Building Blocks”.

148 JOURNAL OF OBJECT TECHNOLOGY VOL 5, NO. 4

http://www-sop.inria.fr/mirho/Luigi.Liquori/PAPERS/ftj.pdf
http://www-sop.inria.fr/mirho/Luigi.Liquori/PAPERS/ftj.pdf
http://www.iam.unibe.ch/~scg

