
JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE
J. Softw. Maint. Evol.: Res. Pract. 0000; 00:1–19
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/smr

Software Quality Metrics Aggregation in Industry

Karine Mordal1, Nicolas Anquetil2∗, Jannik Laval4,

Alexander Serebrenik3, Bogdan Vasilescu3†, and Stéphane Ducasse2

1LIASD, University of Paris 8, France
2RMoD Team, INRIA, Lille, France

3Technische Universiteit Eindhoven, The Netherlands
4LaBRI - Université de Bordeaux - France

SUMMARY

With the growing need for quality assessment of entire software systems in industry, new issues are
emerging. First, since most software quality metrics are defined at the level of individual software
components, there is a need for aggregation methods to summarize the results at the system level. Second,
since a software evaluation requires the use of different metrics, with possibly widely varying output
ranges, there is a need to combine these results into a unified quality assessment. In this paper we derive,
from our experience on real industrial cases as well as from the scientific litterature, requirements for an
aggregation method. We then present a solution through the Squale model for metric aggregation, a model
specifically designed to address the needs of practitioners. We empirically validate the adequacy of Squale
through experiments on Eclipse. Additionally, we compare the Squale model to both traditional aggregation
techniques (e.g., the arithmetic mean), as well as to econometric inequality indices (e.g., the Gini or the
Theil indices), recently applied to aggregation of software metrics. Copyright c© 0000 John Wiley & Sons,
Ltd.

Received . . .

KEY WORDS: software metrics; software quality; aggregation; inequality indices

1. INTRODUCTION

Software metrics are becoming part of the software development fabric, essential to understanding
whether the quality of the software we are building corresponds to our expectations [Pfl08]. As
a consequence, many different metrics have been proposed, as well as a plethora of tools to
compute them and perform quality assessments. Considering the different stakeholders participating
in software projects (e.g., developers, managers, users), quality needs to be evaluated at different
levels of detail. Practical application of software metrics is, however, challenged by (i) the need
to combine different metrics as recommended by quality-model design methods such as Factor-
Criteria-Metric (FCM) [MRW76], or Goal-Question-Metric (GQM) [Bas92]; and, (ii) the need to
obtain insights in the quality of the entire system based on the metric values obtained for low-level
system elements such as classes and methods. We detail each challenge separately.

First, a meaningful quality assessment needs to combine the results of various methods to
answer specific questions as suggested by quality-model design methods. For example, cyclomatic

†Supported by the Dutch Science Foundation project “Multi-Language Systems: Analysis and Visualization of
Evolution—Analysis” (612.001.020).
∗Correspondence to: INRIA Team RMod, Parc Scientifique de la Haute Borne, 40, avenue Halley. Bat.A, Park Plaza,
59650 Villeneuve d’Ascq, France. E-mail: Nicolas.Anquetil@inria.fr

Copyright c© 0000 John Wiley & Sons, Ltd.
Prepared using smrauth.cls [Version: 2010/05/10 v2.00]

2 K. MORDAL, ET AL.

complexity might be combined with test coverage metrics to stress the importance to cover complex
methods rather than accessors. However, integration of different metrics might be hindered by the
different result ranges: e.g., Martin’s instability [Mar94] ranges over [0, 1], while the inheritance
depth should be inferior to 10 in practice, the number of methods could go up to 100, and the
number of lines of code can be expected not to exceed 1000.

Second, most of existing metrics are defined at the level of individual software components
(classes, methods). However, for understanding larger software artifacts, such as components and
systems, insights must be derived from these low-level results. A typical solution consists in
averaging the results of a metric for all software components. This approach has an undesirable
smoothing effect, potentially diluting bad results in the overall acceptable quality [VSvdB10,
VSvdB11a]. Recently, there is a trend in applying econometric inequality indices to aggregation
of software metrics [SvdB10, VLBN09, GM11]. Even though their applicability has been
discussed [VSvdB10, VSvdB11a], their use for quality assessments under industrial considerations
has not been evaluated yet.

In [MMLD+11] we have proposed Squale, an empirical model for continuous and weighted
metric aggregation, to address the aforementioned two challenges. In this paper we furthermore
discuss the various issues arising when trying to assess the quality of software projects in an
industrial setting. Based on these challenges, as well as current research trends in aggregation of
software metrics, we distill requirements for software quality models. Additionally, we perform
both a theoretical, as well as an empirical comparative evaluation of Squale with some of the existing
techniques, and highlight their relative strengths and shortcomings.

The main contributions of this paper are threefold: (i) we identify requirements for software
quality assessments in practice; (ii) through the Squale model, a quality aggregation solution defined
empirically on industrial projects and evaluated more formally in this research, we present solutions
to meet these requirements; and, (iii) we compare this model theoretically and empirically to
econometric inequality indices, the most recent trend in software metrics aggregation [VLBN09,
SvdB10, VSvdB10, VSvdB11a, GM11, VSvdB11b] and determine if they both fulfill requirements
identified.

The remainder of this paper is organized as follows: In Section 2 we review existing techniques for
software quality assessment, including a recent trend that involves econometric inequality indices,
and we explain problems that may arise with such techniques in a real industrial context. In Section 3
we identify requirements for a meaningful quality assessment method. These requirements are
derived from experience with quality evaluation in industry using the Squale model, as well as
scientific literature on aggregation techniques for software metrics. In Section 4, we present the
Squale model, a quality assessment method that was defined empirically on real-world projects
to attend to the expectations of developers and managers. We consider how well Squale satisfies
the requirements identified previously. In Section 5, we compare theoretically and empirically the
Squale model to the econometric inequality indices. Finally, Section 6 discusses related work before
concluding.

2. SOFTWARE QUALITY ASSESSMENT

Software project quality assessment raises two problems. First, software quality metrics, for
example as proposed in the ISO 9126 standard [ISO03], are often defined for individual software
components (i.e., methods, classes, etc.) and cannot be easily transposed to higher abstraction levels
(i.e., packages or entire systems). To evaluate a project, one needs to aggregate these metrics’ results.
Second, quality characteristics should be computed as a combination of several metrics. For example
Changeability in part I of ISO 9126 is defined as “the capability of the software product to enable a
specified modification to be implemented” [ISO03]. This sub-characteristic may be associated with
several metrics, such as number of Source Lines Of Code (SLOC), cyclomatic complexity, number
of methods per class, and inheritance depth (DIT).

Thus, combining the low-level metric values of all the individual components of a project can be
understood in two ways. First, for a given component, one needs to compose the results of all the

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

SOFTWARE QUALITY METRICS AGGREGATION IN INDUSTRY 3

individual quality metrics considered, e.g., SLOC and cyclomatic complexity. Second, for a given
quality characteristic, be it an individual metric or a composed characteristic as Changeability, one
needs to aggregate the results of all components into one high level value. Both operations result in
information loss to gain a more abstract understanding: either individual metrics values are lost in
the composed results, or the quality evaluation of individual components is lost in the evaluation of
the aggregation.

Although there is no predefined ordering of the two combination steps, in practice it is more
meaningful to compose metrics before aggregating the results at a higher level. Metric composition
is a semantic operation that may depend on the meaning and interplay of the metrics composed.
For example, a quality evaluation of the comment rate of a component could be based on the
composition of cyclomatic complexity and CLOC (Commented Lines Of Code) to allow assessing
the fact that a complex method must be more commented than a simple one. On the other hand,
aggregating results of different components is more statistical. If one were to compose already
aggregated metrics results, one could loose this specific meaning. For example, the comment rate
quality evaluation would already be less meaningful at the level of a class than at the level of
individual methods: a class could have a very complex, poorly commented method and a very
simple, overdocumented one, resulting in globally normal cyclomatic complexity and CLOC.
Moreover, composing metrics at low levels and aggregating the results of this composition at higher
level may provide a quality assessment of the evaluated characteristic for both the overall project,
as well as each of its components. Such an approach allows one to compare individual components
and determine more easily which component should be addressed in order to improve the quality
characteristic measured.

Another issue with quality evaluation in industry is linked to Wiegers’ warning that using metrics
to motivate rather than understand is a common trap: “Metrics data is intrinsically neither virtuous
nor evil, simply informative. Using metrics to motivate rather than to learn has the potential of
leading to dysfunctional behaviour, in which the results obtained are not consistent with the goals
intended by the motivator” [Wie96]. However, in practice, and in any human activity, it is difficult to
conceive any quality model that will not tend to become a goal of its own. To be accepted in practice,
a quality model should not be solely an assessment model but also be usable as a guideline to
increase quality. A manager should know if the project has quality problems, but a developer should
know what component must be corrected. This implies that the composition and/or aggregation
techniques also allow for a fine-grained analysis of the results.

In the remainder of this section we further discuss issues with composition and aggregation of
metrics when applied in real industrial settings.

2.1. Composition of software metrics

Metrics composition involves taking into account the ranges of the metrics and raises two
difficulties. First, the ranges may be very different, for example in the case of the changeability
characteristic and its associated metrics (SLOC, cyclomatic complexity, number of methods per
class, inheritance depth – DIT), one sees that DIT can take its values in a different interval than
SLOC. In this case, one must ensure not to dilute the results of one metric into the other. Second,
metrics may have very different meanings, which imposes dealing with them in very different ways,
e.g., by using specific composition methods for each characteristic based on any given two (or more)
metrics.

To be able to compose these metrics in a unified result, one can normalize them into a given
interval of values. It is important that the interval be continuous (see below) as opposed to discrete
values, e.g., as in a Likert scale [Lik32], and it is preferable that the interval have a finite bound on
both sides to ease comparison.

Considering the normalization for SLOC measured per method (illustrated in Table I‡), a discrete
mapping would have the following drawbacks:

‡Here, as well as throughout the rest of this paper, we use “reversed brackets” interval notation [ISO92], i.e.,]a, b] is the
the set of all numbers x satisfying a < x ≤ b.

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

4 K. MORDAL, ET AL.

Table I. A discrete mapping example of the SLOC metric to the [0, 3] interval.

SLOC ≤ 35]35, 70]]70, 160] > 160
Normalized value 3 2 1 0

Interpretation Good Acceptable Problems Bad

• Hide modifications. Discrete mapping of metric results introduces staircase and threshold
effects, that may hide detailed information and trigger wrong interpretation. Slight
fluctuations—progression or regression—of individual elements might not appear if they
remain in the same interval. For example, following the mapping proposed in Table I, a
method with SLOC=150 would be mapped to a normalized value of 1. If developers reduce
the size of this method by half (SLOC=75), the quality evaluation of the project does not
reflect this change because the method is still mapped to the same normalized value.

• Badly influence reengineering decisions. A corollary of modifications within the same interval
being hidden is that working on components close to a quality threshold value would exhibit
more benefit on the overall quality than working on components whose values are far from
a threshold. Therefore, engineers can use this mapping behaviour to improve the perceived
quality at the cost of not fixing more serious problems. We saw this practice in one company,
where developers selected their tasks to maximize their impact on the quality assessment.

2.2. Aggregation of software metrics

We now present the most common techniques employed in industrial settings for aggregation of
software metrics and we highlight some of their drawbacks. We also discuss the state of the art of
aggregation techniques in scientific literature.

2.2.1. Aggregation by Simple Averaging. Computing the arithmetic mean of individual metric
results might not be representative enough since it does not convey the standard deviation of the
population and may dilute unwanted values in the generally acceptable results, as illustrated in
Table II (note that this is an already well known characteristic of the arithmetic mean). Table II
presents the SLOC of four methods (denoted A to D) in two different projects. Assuming that lower
SLOC values are more desirable for methods, Project 2 scores better than Project 1 when looking at
the average SLOC values. However, this hides the fact that method A is an outlier hence, while the
mark is better, the quality of the project might actually be lower. The average, because it smooths
results, does not always represent reality [VSvdB10].

Table II. Number of Source Lines of Code for four methods in two projects.

Method Project 1 Project 2
A 24 71
B 25 9
C 27 10
D 24 8

Average 25.0 24.5

For example, in one of our customers a method of 300 lines of code cannot be accepted. The
simple average could easily fail to highlight this kind of problems, and even worse, it may hide
the presence of very low-quality components. To have a quality model that highlights low-quality
components, one could use a weighted average instead. This solution is discussed next.

2.2.2. Aggregation by Weighted Averaging. To highlight a low quality component or a critical
component in the aggregation method, a possible solution is to increase the weight of the metric
or the component in the average. However, this solution introduces problems of its own.

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

SOFTWARE QUALITY METRICS AGGREGATION IN INDUSTRY 5

Table III. Two versions of a project’s methods with weighted average (wa) of SLOC.
The weights are: [0, 35]→ ×1;]35, 70]→ ×3;]70, 160]→ ×9;]160,+∞[→ ×27

Methods Version 1 Version 2
SLOC weight w.SLOC SLOC weight w.SLOC

A 30 1 30 25 1 25
B 50 3 150 30 1 30
C 70 9 630 50 3 150
D 300 27 8100 300 27 8100

Σ=40 wa=222.75 Σ=32 wa=259.53

Table III shows an example of two versions of a project with weighted average of SLOC. The
weights used in Table III were used in an initial version of the Squale quality model. In this
example, the weighted average of Version 1 is 222.75. In Version 2, despite the reduction of the
sizes of methods A, B and C, the weighted average increases to 259.53. Hence, the aggregated value
increased, suggesting a decrease of the software quality, while the code actually improved. A quality
model should reflect all improvements as closely as possible.

2.2.3. Other statistical aggregation techniques. In addition to the simple and weighted averages
discussed above, in scientific literature aggregation of software metrics is realized using such
functions as median or standard deviation [PRFT07, LM06a, BLL09]. However, the interpretation
of central tendency measures (mean, median), becomes unreliable in presence of highly-skewed
distributions, common in software engineering [TCM+11]. In turn, this also compromises the
interpretation reliability of aggregation functions based on the central tendency measures, such as
the standard deviation, which is based on the mean.

An alternative is offered by distribution fitting [CMPS07, SRvdB09, TCM+11], which consists
of manually selecting a known family of distributions (e.g., log-normal or exponential) and fitting
its parameters to approximate the metric values observed. The fitted parameters can then be seen
as aggregating these values. However, the fitting process should be repeated with each new metric
considered, and, moreover, it is still a matter of controversy whether, e.g., software size is distributed
log-normally [CMPS07] or double Pareto [Her09].

2.3. New trend in software metrics aggregation

As a response to these challenges (i.e., reliability under highly-skewed distributions, and simple
application procedures), there is an emerging trend in using more advanced aggregation techniques
borrowed from econometrics (inequality indices), where they are used to study inequality of income
or welfare distributions [CJ95, CK81, Cow00]. Because data distribution in econometric is similar
to data distribution in software engineering (highly-skewed distributions), and because these indices
summarize a large quantity of data, their use has been recently proposed as aggregation techniques
for software engineering quality metrics. This use does present some difficulties, an important one
being that they are indicators of inequality and as such will give good grade to a population of all
equally bad quality evaluations. We will come back to this issue in the experimental evaluation of
these indices.

In this paper we consider the Gini [Gin21], Theil and mean logarithmic deviation (MLD) [The67],
Atkinson [Atk70], Hoover [Hoo36] (also known as the Ricci-Schutz coefficient, or the Robin Hood
index), and Kolm [Kol76] income inequality indices. Table IV lists the definitions of the inequality
indices considered when applied to values x1, . . . , xn. We further use x̄ to denote the mean of
x1, . . . , xn and |x| to denote the absolute value of x.

2.3.1. Mathematical properties of the inequality indices. Econometric inequality indices are based
on a number of assumptions valid for economic values such as income or welfare, but not necessarily
so for software metrics. For example, inequality indices cannot discriminate between all values

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

6 K. MORDAL, ET AL.

Table IV. Definitions of the inequality indices

Index Definition Index Definition

IGini
1

2n2x̄

∑n
i=1

∑n
j=1 |xi − xj | IαAtkinson 1− 1

x̄

(
1
n

∑n
i=1 x

1−α
i

) 1
1−α

ITheil
1
n

∑n
i=1

(
xi
x̄ log xi

x̄

)
IHoover

1
2nx̄

∑n
i=1 |xi − x̄|

IMLD
1
n

∑n
i=1

(
log x̄

xi

)
IβKolm

1
β log

[
1
n

∑n
i=1 e

β(x̄−xi)
]

being equally low and all values being equally high [Cow00]. Such a fact is damageable for software
metrics, because a system with all files being equally complex should be considered more alarming
than one in which all files are equally simple.

A number of properties of inequality indices are relevant for their application to aggregation of
software metrics [VSvdB11a], including:

• Domain and range. Different inequality indices have different domains and ranges, not
necessarily compatible with the ranges of the metrics aggregated, or among themselves.
Recall, that the domain of a binary relation R ⊆ X × Y is the set of all x ∈ X such that
(x, y) ∈ R for some y ∈ Y . Similarly, the range ofR is the set of all y ∈ Y such that (x, y) ∈ R
for some x ∈ X [Joh01]. To simplify the notation of domains and ranges in Table IV, we
write ϕ(x1, . . . , xn) to indicate that xi ≥ 0 for all i, 1 ≤ i ≤ n, and that there exists j,
1 ≤ j ≤ n, such that xj > 0. Similarly, we write Rnϕ to denote {(x1, . . . , xn)|(x1, . . . , xn) ∈
Rn ∧ ϕ(x1, . . . , xn)}. For example, the domain of ITheil, IMLD, and IαAtkinson is Rnϕ, i.e.,
these inequality indices cannot be applied to metrics with negative values such as the
Maintainability Index [OH94]. Moreover, the range of ITheil is [0, log n], i.e., the maximal
possible value depends on the number of values being aggregated. Hence, if ITheil is used to
compare software systems of very different sizes, one should consider normalization of the
aggregated values, e.g., by dividing them by log n [SvdB10].

• Invariance. Invariance with respect to addition means that if one adds a constant to all
individual values, this does not change the aggregated result; similarly, invariance with respect
to multiplication means that if one multiplies all individual values by a constant factor, this
does not change the aggregated result [Cow00]. Both are mutually exclusive, of course.

• Translatability. As opposed to invariance with respect to addition, translatability means that
adding a constant to all individual results increases the aggregated result by the same value.
Translatability and invariance w.r.t. addition are mutually exclusive.

• Symmetry [Fos83] or impartiality [Kol76]. The property ensures that the aggregated result
does not depend on the order of the elements being aggregated.

• Decomposability [Sho80]. Decomposability enables measuring the extent to which the
aggregated result can be attributed to differences between system subcomponents, a
task often required when interpreting system-level results [VLBN09]. We further discuss
decomposability in the next section.

Table V summarizes information about domain, range, invariance (w.r.t addition or
multiplication), symmetry and decomposability for the inequality indices considered.

2.3.2. Decomposability of inequality indices. One of the use cases for decomposability in an
industrial software engineering setting is, e.g., measuring the inequality of size (SLOC) between
the classes in a software system which is organized into packages. In this sense, an important
question in interpreting the inequality value aggregated on a system level pertains to the extent
to which the result can be attributed to differences between system subcomponents. This allows to
compare different partitioning of the population and see which one better explains the inequality
in the measure, e.g. is it the programming languages, the subsystems, the outsourced developers?
As an example, using R (the ratio of the inequality between the groups and the total amount of
inequality), and ITheil, expenditure in Indonesian households [ALY99] has been shown to be better

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

SOFTWARE QUALITY METRICS AGGREGATION IN INDUSTRY 7

Table V. Mathematical properties of the inequality indices

Index Domain Range Inv. Symm. Decomp.
IGini Rnx̄6=0 R ∗ Y N

[0, 1− 1
n], if ϕ(x1, . . . , xn)

ITheil Rnϕ [0, logn] ∗ Y Y
IMLD Rnϕ R≥0 ∗ Y Y
IαAtkinson Rnϕ [0, 1− 1

n] ∗ Y N
IHoover Rnx̄6=0 R ∗ Y N

[0, 1], if ϕ(x1, . . . , xn)

IβKolm Rn R≥0 + Y Y

explained by the education level of the head of the household than by the province of residence
or by the gender of the household’s head. Similarly, it has been observed that inequality in file
sizes (SLOC) of the Linux Debian Lenny distribution can be better explained by the distribution
package these files belong to, rather than the implementation language, or the distribution package
maintainer [SvdB10]. This suggests that if one would like to reduce this inequality, i.e., distribute
functionality across the units in a more egalitarian way, one should focus on establishing cross-
package size guidelines first.

Different approaches to decomposability [Par99, BDA81, Sho80, Bou79, CJ95] can be found in
the scientific literature. Decomposability is typically accomplished by expressing the aggregation
result computed at a system level as the sum of a non-negative “within-group” term and a non-
negative “between-group” term, i.e., I = Ibetween + Iwithin given a decomposable inequality index
I and a mutually exclusive and completely exhaustive (MECE) partitioning G = {G1, . . . , Gm}. The
“within-group” contribution Iwithin is itself a weighted sum of applying I at the subcomponent level,
such that the sum of the weighting coefficients is 1, i.e., Iwithin =

∑m
i=1 wiI(Gi),

∑m
i=1 wi = 1.

The “between-group” term can be used to measure to what extent the aggregated value at the
system level can be explained by a specific partitioning of the system into subsystems [Cow00,
SvdB10], using the R index [CJ95]. For I and G as above, the R index is defined as the ratio of the

inequality between the groups and the total amount of inequality, i.e., R(G) = Ibetween(G)
I(x1,x2,...,xn) .

R indicates what share of the inequality can be explained by the partitioning into {G1, . . . , Gm},
and it ranges between 0 and 1. R = 0 in case of a trivial partition of the population into one group,
i.e., inequality is completely attributed to inequality within the group.R = 1 corresponds to the case
when the partition is “complete”, i.e., every element of the population is considered a group in itself.

It should be noted that although decompositions of IGini and IαAtkinson have been proposed in the
literature [LA93], these do not adhere to the definitions above, hence are not recorded in Table V.

3. REQUIREMENTS FOR SOFTWARE QUALITY ASSESSMENT

As noticed by Rosenberg [Ros98], when metrics are used to evaluate projects, there is no guideline
to interpret their results. Often qualifying the result is based on common sense and experience.
Determining what is an acceptable value depends on enterprise requirements and developer
experience. For example, some companies require that depth of inheritance does not exceed a given
threshold, while others focus on the general architecture or on the use of naming standards.

Therefore, we stress that a quality model must take into account organization-specific practices
and requirements. Moreover, it should try to give a useful measure of quality that managers as well
as developers can use to take corrective actions.

We now identify requirements for a successful aggregation technique, based on the Squale
experience in industry and the issues raised in the previous sections. These requirements will be
categorized as “must”, “should” and “could” to illustrate their varying importance (cf. [Sta97]).

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

8 K. MORDAL, ET AL.

“Must” requirements are imposed by our perception of low-level metric values’ combination as
a sequence of two steps, composition and aggregation; “should” and “could” requirements were
based on properties of aggregation techniques found in the literature and our experience with using
the Squale model in industry.

Must:

• Aggregation: Must aggregate low level quality results (from the level of individual
software components like classes or methods) at a higher level (e.g., a subsystem or
an entire project) to evaluate the quality of an entire project, as discussed in §2.2;

• Composition: Must compose different metric values with different ranges to a single
quality interval, as explained in §2.1;

• Composition/Aggregation Range and Domain: Whether composition occurs before
aggregation (as recommended in §2), or the opposite, the range (output) of the first must
be compatible with the domain (input) of the second. For example, if the aggregation
formula contains a logarithm, the composition method must have strictly positive range;

Should:

• Highlight problems: Should be more sensitive to problematic values in order to pinpoint
them, and also to provide a stronger positive feedback when problems are corrected, as
discussed in §2;

• Do not hide progress: Improvement in quality should never result in a worsening of the
evaluation (e.g., §2.2.1, §2.2.2). As a counter example, it is known that econometric
inequality indices will worsen when going from an “all equally-bad” situation to a
situation where all are equally bad except one;

• Decomposability: Should be decomposable (as discussed in §2.3.1) in order to measure
to what extent the aggregated value at the system level can be explained by a specific
partitioning of the system into subsystems [Cow00, SvdB10];

• Composition before Aggregation: Composition should be performed at the level of
individual components to retain the intended semantic of the composition (see discussion
in the beginning of §2);

• Aggregation range: Should be in a continuous scale, preferably bounded (i.e., left and
right-bounded) (see §2.1);

• Symmetry: The final result should not be dependent on the order of the elements being
aggregated (see §2.3.1). This requirement is typically not applicable for composition,
since, for example, one can hardly expect a composition function f defined on size s
and cyclomatic complexity v to satisfy f(s, v) = f(v, s);

Could:

• Evaluation normalization: Could normalize all results (metrics, combination,
aggregation) to allow unified interpretation at all levels (see §2.1);

• Invariance and translatability: Both invariance and translatability are interesting, e.g.,
for SLOC, if the same header (containing licensing information) is added to all classes
(invariance w.r.t addition and translatability), or if percentages of the total SLOC are
considered rather than the number itself (invariance w.r.t multiplication).

4. THE SQUALE MODEL

We now introduce the Squale model, a software quality model developed empirically with the
collaboration of large companies in order to answer the requirements set in §3. Squale is a quality
model targeting both developers and managers. To give a coherent answer to the different needs and
audience, the Squale model is inspired from the Factors-Criteria-Metrics model (FCM) [MRW76].

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

SOFTWARE QUALITY METRICS AGGREGATION IN INDUSTRY 9

One hundred projects are currently being monitored by Squale at Air France-KLM, twenty of
which are actively using Squale to improve the quality of their source code. Overall, Squale monitors
about seven MLOC. Squale has also been used at PSA Peugeot-Citroen for the last two years. In
the first year, it monitored about 0.9 MLOC distributed over ten Java applications. Currently, it
realizes around 640 audits and monitors about 10 MLOC dispatched in 90 Java applications with 350
modules. Each team sets its own quality requirements that are translated into composition formulas
for the practices it chooses.

4.1. Definitions

The Squale Model considers two groups of marks: (i) low-level (i.e., measures) and (ii) high-level
(i.e., practices, criteria and factors) [MMBD+09]. Each computed low-level mark gives a result in its
own range, while high-level marks are all normalized to [0, 3]. To ease interpretation, it is generally
assumed that in Squale, [0, 1[maps to “goal not achieved”; [1, 2[maps to “goal mostly achieved”;
and [2, 3] maps to “goal achieved”. As opposed to FCM (or GQM), transforming individual results
into global marks involves a new level between criteria and metrics introduced by the Squale
model and called practices. Practices are the level in the model where low-level metric results are
transformed into normalized marks (composition), and aggregated over multiple components.

• Low-level marks:
– A measure is a raw piece of information extracted from the project data. It comes

from human expertise (manual measures) or from different tools (raw metrics, e.g.,
code metrics, rule checking metrics, or test metrics). Currently, the Squale model uses
a number of raw metrics (ranging from 50 to 100), depending on the project being
analyzed, the development stage, and the manual audits performed.

• High-level marks:
– A practice assesses whether a technical principle in the project is respected§.

Composition and aggregation of low-level marks occurs at this level. It is addressed
to developers, in terms of good or bad properties with respect to the project quality.
Practices are primarily computed at the level of the entire system (aggregation), but one
can also look at them at a lower abstraction level (e.g., class) to dig out the causes of an
unsatisfying quality assessment. There are around 50 practices already defined based on
Air France-KLM quality standards, but the list of practices remains open [BBD+10].

– A criterion assesses one main component of software quality (e.g., the criterion
Simplicity assesses the source code readability and the ease to diagnostic regardless
documentation). A criterion is addressed to managers, at a more fine-grained detail level
than factors. The criteria used in the Squale model are adapted to face the special needs
of Air France-KLM and PSA Peugeot-Citroen. In particular, they are tailored for the
assessment of quality in information systems.

– A factor represents the highest-level quality assessment, used to provide an overview of
a project’s health. It is addressed to non-technical persons. Factors correspond roughly
to the characteristics of the ISO 9126.

Note that factor and criterion are not further detailed in this paper. The current implementation
(i.e., in the companies using Squale) is based on a simple average of practices for criterion and a
simple average of criteria for factor. This is not a carved in stone, only Squale’s clients did not
express the need for more elaborate composition techniques¶ at these levels of abstraction. Since
composition and aggregation of metrics occur at the practices level, the remainder of this section is
dedicated to it.

§Practices as combinations of metrics are similar to detection strategies [Mar04]. Detection strategies aim, however,
at identification of problematic code fragments, i.e., values of detection strategies are binary: either the code fragment
is problematic or it is not. Practices generalize detection strategies by extending the range of possible values to [0, 1].
Moreover, practices are not limited to filtering and composition as defined for detection strategies.
¶Factors and Criteria are composed from, respectively, criteria and practices.

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

10 K. MORDAL, ET AL.

4.2. Composition/Aggregation of metrics

The Squale model uses low-level marks to compute high-level marks at the practice level. This
process is done in two steps (composition + aggregation). We distinguish between Individual
Marks (IM) computed from raw metrics (at the level of components), and Global Marks computed
from individual marks (for the entire project) [MMBD+09]. Manual measures, whenever used, are
directly expressed as global marks.

• Composition: Metrics used to assess a practice can be composed, e.g., by:

– Simple or weighted averaging of the different values of the metrics. This is only possible
when the different metrics have similar range and semantic;

– Thresholding on one metric such as cyclomatic complexity to consider or not the other
metrics, for example, when cyclomatic complexity is more than 50, one could decide to
divide the number of lines of comment by some value to highlight the fact that overly
complex methods need to be overly commented;

– Interpolating, given examples components by the developers and their perceived
evaluation of quality (e.g., one method with 50 LOC would be perceived of quality 2.5
—on an interval of [0, 3]— and another example with 100 LOC would be perceived of
quality 1.5), one can interpolate a function to convert other values;

– A combination of these methods. For instance, the “Number of methods”
practice [BBD+10] relates complexity of the class CC(C), defined as the sum of the
cyclomatic complexities of the class methods, to the number of class methods NOM(C):

IM(C) =


2

30−NOM(C)
10 if CC(C) ≥ 80

2 + 20−NOM(C)
30 if 50 ≤ CC(C) < 80 and NOM ≥ 15

3 + 15−NOM(C)
15 if 30 ≤ CC(C) < 50 and NOM ≥ 15

3 otherwise

The result of the composition of metrics values for a practice is called Individual Mark (IM).
Individual marks for a practice are computed from raw metrics with multiple ranges, and
constitute single marks in the range [0, 3]. The raw metrics composed may have multiple
ranges.

• Aggregation: Aggregation of IMs for a practice requires several steps (illustrated with an
example in Figure 1; the dark dots on the x-axis are the IMs to be aggregated–0.5, 1.5, and 3):

1. A weighting function is applied to each IM: g(IM) = λ−IM where IM is the individual
mark and λ the constant defining the “hard”, “medium”, or “soft” weighting. Hard
weighting gives more weight to bad results than soft weighting. λ is greater for a hard
weighting and smaller for a soft one‖. This formula translates individual marks into a
new space where low marks may have significantly more weight than others. In Figure 1,
weighted IMs are the dark dots on the Y axis, assuming a medium weighting (λ = 9);

2. Second, we average the weighted marks. The result thus reflects the greater weight of
the low marks (lighter dot on the Y axis, slightly above 0.1);

3. Third, we compute the inverse function g−1(Wavg(IMs)) = −logλ(Wavg(IMs)) on
the average, to return to the range [0, 3] (lighter dot on the X axis, at 0.93). The
Wavg(IMs) is the weighted average of the IMs. For comparison, the arithmetic average
of the initial values is given in very light grey (at 1.67).

Therefore, the global mark of a practice (for n components) is computed as
GMλ = −logλ

(
1
n

∑n
i=1 λ

−IMi
)
, where λ varies between hard (λ = 30), medium (λ = 9),

and soft (λ = 3) weights.

‖We typically use the values: hard λ = 30, medium λ = 9, and soft λ = 3.

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

SOFTWARE QUALITY METRICS AGGREGATION IN INDUSTRY 11

g(IM)

mark
average

weighted
average

weighted
mark

Figure 1. Computing the weighted average in Squale (here λ = 9): First, points 0.5, 1.5, and 3 (darker dots
on X axis) are weighted (darker dots on Y axis), then these are averaged (lighter dot on Y axis), and this
average is converted back to the [0, 3] interval (lighter dot on X axis, close to 1). The very light grey dot on

X axis, past 1.5, shows the arithmetic mean of the 3 initial values

For comparison, the global mark for the three IMs considered here (0.5, 1.5, 3) computed with
arithmetic mean, soft, medium and hard weights are 1.67, 1.19, 0.93, and 0.81, respectively. The
figure suggests that the aggregated values can never be lower than the smallest of the IMs (0.5) and
can never exceed the arithmetic mean (1.67). The following theorem proves that this is indeed the
case, i.e., the global mark is never less sensitive to the undesirable low values than the arithmetic
mean. For consistency with the inequality indices discussed in §2.3, we will denote the Squale
aggregation function (GMλ) as IλSquale.

Theorem 1
Let x1, . . . , xn be real numbers and let x̄ = 1

n

∑n
i=1 xi.

Then for λ > 1

min(x1, . . . , xn) ≤ IλSquale(x1, . . . , xn) ≤ x̄.

Proof
Since min(x1, . . . , xn) ≤ xi for all 1 ≤ i ≤ n, then it also holds that −xi ≤ −min(x1, . . . , xn).
Since λ > 1 it holds that λ−xi ≤ λ−min(x1,...,xn) for all i.
Therefore,

∑n
i=1 λ

−xi ≤ nλ−min(x1,...,xn) ≡ 1
n

∑n
i=1 λ

−xi ≤ λ−min(x1,...,xn) ≡
logλ

(
1
n

∑n
i=1 λ

−xi
)
≤ −min(x1, . . . , xn) ≡ min(x1, . . . , xn) ≤ IλSquale(x1, . . . , xn)

Now, the geometric mean never exceeds the arithmetic mean, i.e., n
√∏n

i=1 λ
−xi ≤ 1

n

∑n
i=1 λ

−xi .
However, n

√∏n
i=1 λ

−xi = λ−
1
n

∑n
i=1 xi = λ−x̄. Hence, λ−x̄ ≤ 1

n

∑n
i=1 λ

−xi

Since λ > 1, −x̄ ≤ logλ
(

1
n

∑n
i=1 λ

−xi
)
≡ − logλ

(
1
n

∑n
i=1 λ

−xi
)
≤ x̄ ≡ IλSquale(x1, . . . , xn) ≤ x̄

4.3. Properties of the Squale model

Next we discuss properties of the Squale model, given the requirements in §3.

• Aggregation: This requirement is satisfied by the computation of the global marks;
• Composition: This requirement is satisfied by the computation of the individual marks;
• Highlight problems: For calculation of the individual marks, satisfaction of this requirement

depends on the function used to determine the IMs. For calculation of the global mark we
refer back to Theorem 1, showing that IλSquale gives more weight to low individual marks than
the arithmetic mean for all three weighting coefficients above. In Section 5 we reconsider this
requirement by means of an experiment;

• Do not hide progress: We prove in Section 5.1 (Theorem 4) that Squale satisfies this
requirement.

• Composition before Aggregation: Squale applies aggregation on the result of the composition;

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

12 K. MORDAL, ET AL.

• Composition range: The IMs’ range is [0, 3], which is compatible with the definition of the
aggregation function IλSquale;

• Aggregation range: The aggregation range is defined in Squale to be [0, 3];
• Symmetry: IλSquale satisfies this requirement;
• Evaluation normalization: The set of all possible individual marks (IMs) and global marks

(GM) is defined to be [0, 3].
• Invariance and translatability: Theorem 2 shows that IλSquale is translatable for any λ ∈ R, λ ≥

0, λ 6= 1. Therefore IλSquale is neither additively nor multiplicatively invariant.

Theorem 2
Let x1, . . . , xn be real numbers. Then for any λ ∈ R, λ ≥ 0, λ 6= 1 we have

IλSquale(x1 + c, . . . , xn + c) = IλSquale(x1, . . . , xn) + c.

Proof
To see that the theorem holds, observe that
IλSquale(x1 + c, . . . , xn + c) = − logλ

(
1
n

∑n
i=1 λ

−(xi+c)
)

= − logλ
(

1
n

∑n
i=1 (λ−xiλ−c)

)
=

− logλ

(
λ−c

n

∑n
i=1 λ

−xi
)

= −
(
logλ

(
1
n

∑n
i=1 λ

−xi
)

+ logλ λ
−c) =

−
(
logλ

(
1
n

∑n
i=1 λ

−xi
)

+ (−c)
)

= − logλ
(

1
n

∑n
i=1 λ

−xi
)

+ c = IλSquale(x1, . . . , xn) + c

• Decomposability: Theorem 3 shows that IλSquale is not decomposable.

Theorem 3
IλSquale is not decomposable according to §2.3.2.

Proof
Recall that for an aggregation to technique I to be decomposable according to §2.3.2 for any
collection of real numbers x1, x2, . . . , xn and any MECE partitioning = {G1, G2, . . . , Gm} it
should satisfy:

1. I = Ibetween,G + Iwithin,G 3. Iwithin,G =
∑m

i=1 wiI(Gi)

2. Ibetween,G ≥ 0 4.
∑m

i=1 wi = 1

Assume for the sake of contradiction that ISquale is decomposable. Then, ISquale is
decomposable for a collection X consisting of n equal numbers x, with x > 0, and the MECE
partitioning G that places each number in in its own group. Recall from §2.3.2 that R = 1 for
partitions that consider every element of the population as a group in itself. Hence, RX ,G = 1.

By definition of R, R =
Ibetween
Squale (G

ISquale(X) and R = 1−
Iwithin
Squale(G)

ISquale(X) because I = Ibetween + Iwithin.

Thus
Iwithin
Squale(G)

ISquale(X) = 0 and, since ISquale(X) ≥ x > 0 (from Theorem 1), Iwithin
Squale(G) = 0.

However, Iwithin
Squale =

∑n
i=1 wiISquale({x}) =

∑n
i=1 wix (by (3)). Since x > 0 it follows that

wi = 0 for all 1 ≤ i ≤ n, and hence,
∑m

i=1 wi = 0, contradicting (4).
Therefore, our assumption was incorrect and ISquale is not decomposable according to
§2.3.2.

5. EVALUATION

In this section we compare Squale theoretically and empirically to a popular aggregation technique,
the arithmetic mean [LM06b], as well as to econometric inequality indices, most recent trend in
aggregation of software metrics [VLBN09, SvdB10, VSvdB10, VSvdB11a, GM11, VSvdB11b]. We
perform our evaluation along two lines. First, we exploit a close theoretical relation between Squale
and IKolm in §5.1, and infer an additional mathematical property of Squale. Later, we empirically

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

SOFTWARE QUALITY METRICS AGGREGATION IN INDUSTRY 13

compare the sensitivities of Squale, the arithmetic mean and the inequality indices to bad values,
in §5.2.

5.1. Theoretical comparison

The relation between IλSquale and the arithmetic mean has been established in Theorem 1. Next we
show that Squale is closely related to IKolm [Kol76] in Lemma 1.

Lemma 1
I log λ

Kolm(x1, . . . , xn) + IλSquale(x1, . . . , xn) = x̄

Proof
To see that the theorem holds, observe that
I log λ

Kolm(x1, . . . , xn) + IλSquale(x1, . . . , xn) = 1
log λ log

(
1
n

∑n
i=1 e

log λ(x̄−xi)
)
−

logλ
(

1
n

∑n
i=1 λ

−xi
)

= 1
log λ log

(
1
n

∑n
i=1 λ

x̄−xi
)
− 1

log λ log
(

1
n

∑n
i=1 λ

−xi
)

=

1
log λ

(
log
(

1
nλ

x̄
∑n

i=1 λ
−xi
)
− log

(
1
n

∑n
i=1 λ

−xi
))

= 1
log λ

(
log

1
nλ

x̄∑n
i=1 λ

−xi
1
n

∑n
i=1 λ

−xi

)
= 1

log λ (log λx̄) = x̄

In addition to establishing a relation between IKolm and ISquale, Lemma 1 allows us to
prove the following important property of Squale. Based on Lemma 1, Theorem 4 proves that
Squale guarantees that subsequent improvements in quality are reflected in the aggregated quality
assessment result. For instance, if source lines of code values measured per method are considered
undesirable when greater than 36 [MMLD+11], then a decrease in SLOC of 20 for one method with
SLOC 60 at the cost of an equivalent increase in SLOC for another method with SLOC 20 would
result in an increase of quality as measured by ISquale. We denote this property of ISquale the “anti-
transfers principle”, in analogy to the “transfers principle” [Kol76] satisfied by various inequality
indices [Cow00] including IKolm.

Theorem 4
Let xi < xj and let δ > 0 be such that xi + δ ≤ xj − δ. Then, IλSquale satisfies the “anti-transfers
principle”, i.e., IλSquale(x1, . . . , xi, . . . , xj , . . . , xn) < IλSquale(x1, . . . , xi + δ, . . . , xj − δ, . . . , xn).

Proof
IKolm is known to satisfy the transfers principle [Kol76], i.e., for any β it holds that
IβKolm(x1, . . . , xi, . . . , xj , xn) > IβKolm(x1, . . . , xi + δ, . . . , xj − δ, . . . , xn), for xi, xj , δ as above.

From Lemma 1 we have I log λ

Kolm(x1, . . . , xn) = mean(x1, . . . , xn)− IλSquale(x1, . . . , xn),

and I log λ

Kolm(x1, . . . , xi + δ, . . . , xj − δ, . . . , xn) = mean(x1, . . . , xi + δ, . . . , xj − δ, . . . , xn)−
IλSquale(x1, . . . , xi + δ, . . . , xj − δ, . . . , xn) = mean(x1, . . . , xi, . . . , xj , . . . , xn)−
IλSquale(x1, . . . , xi + δ, . . . , xj − δ, . . . , xn). The claim follows.

Proving Theorem 4 allows us to summarize the requirements that the econometric inequality
indices attend or not. First, one must remember that inequality indices do not constitute full quality
models, as opposed to Squale, and as such were not designed with these requirements in mind. Thus,
if they have already been used as aggregation technique; they are not intended to be composition
techniques although they clearly can be applied both to individual metrics and to practices obtained
after the composition step. They may also hide progress but only in extreme situations. Indeed they
may decrease when switching from an “all equally-bad” situation to an “one good, all others equally-
bad”. We will consider in more detail how well they can highlight problems in the experimental
evaluation. Some of them (see Section 2.3) do satisfy the decomposability requirement, which is
not the case for Squale. Other requirements such as Symmetry, Invariance or Translatability were
already discussed (see Table V).

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

14 K. MORDAL, ET AL.

5.2. Experimental evaluation

As mentioned in Section 3, a successful software quality model must aggregate metrics in a
normalized range and highlight bad components to warn the software engineers in case of potential
problems. We already explained in section 4.3 that Squale does attend to this requirement, but
we wish to understand better its sensitivity to problems and how it compares to other aggregation
techniques.

5.2.1. Experimental setup. To better evaluate how sensitive Squale and other aggregation
techniques are to problems, we compare their reactions in the presence of an increasingly larger
amount of problems. We use a controlled experiment where the amount of problem may be
quantitative or qualitative, and we consider two independent variables:

• quantity of problems in a known quantity of good results;
• quality of the problems (badness degree) in a known quantity of perfect results.

The dependent variable is the final result of the aggregation technique. The treatments are the
different aggregation techniques: IλSquale with λ = 3, 9, and 30, ITheil, IMLD, IGini, IαAtkinson, IβKolm,

IHoover. We assume standard instantiations [Zei09] for IαAtkinson and IβKolm for α = 0.5 and β = 1,
respectively.

One problem with such experiment is to find a suitable case study. Another issue is to find a
system that can provide the needed variation in quantity and degree of bad results. For convenience,
we chose to use Eclipse 2.0 as the test bed for the experiment. We will aggregate the individual
marks of the method size practice which is based on the sole SLOC metric (Source Lines Of Code).
We chose a practice based on only one metric to enable comparison with econometric aggregation
techniques that do not offer composition mechanisms by default. Finally, we normalize the raw
results of the metric to the [0, 3] interval as defined in Squale, even though the econometric indices
do not require this step. The normalization function will be the one defined for Air France-KLM
(given in Table I).

The exact set-up of the experiment is the following: The system has a total of 8612 methods, from
which 8093 have a mark of 3. The base, “perfect”, case consists of these 8093 methods.Actually for
this perfect case, the number of components is irrelevant as they all have the same evaluation. For
the “quantity of problems” independent variable, we work with 8612 methods containing a given
proportion of imperfect methods. This proportion will vary from 10% to 100% in steps of 10%.
For example, for the test with 10% imperfect methods, we have a random selection of 7751 perfect
methods and 861 imperfect ones. When we need more imperfect methods than the system actually
contains, we allow selecting the same ones several times. For the “quality of problems” independent
variable, we choose components with IMs in the intervals: [2, 3[; [1, 2[; [0.5, 1[; [0.1, 0.5[; and
[0, 0.1[. These intervals were chosen to have a fine-grained understanding of what happens with bad
results. For each treatment, the experiment will consist in the Cartesian product of all values for the
two independent variables. Furthermore, because each experiment involves randomly selecting the
imperfect components, we repeat it 10 times and present the mean of the 10 results.

5.2.2. Results. Figure 2 presents the results for all the aggregation methods. The first graph (top
left), gives the results for the arithmetic mean. It shows that even with 30% very bad marks
(imperfect methods in [0, 0.1[), the aggregated result is still ≥ 2 which would still indicate a good
quality.

The results of this first graph are repeated in all other graphs in the form of a grey triangle in
the background, to ease comparing all other aggregation techniques to the upper bound and lower
bound of the results for arithmetic mean.

The results for ISquale show that it behaves as expected, with the gradation of the different weights
(from soft λ = 3 to hard λ = 30). In particular, hard weighting does give a low aggregated result
even for a small quantity (10%) of bad marks. For medium and hard weighting, after a sudden drop
(10% bad marks) the curves show a milder slope, suggesting that Squale is less sensitive to 20% or
more bad marks than to the first 10%. This could be a problem since one cannot know before hand

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

SOFTWARE QUALITY METRICS AGGREGATION IN INDUSTRY 15

Arithmetic mean

Percentage of imperfect marks

A
ve

ra
ge

 A
rit

hm
et

ic
 m

ea
n

0 10 20 30 40 50 60 70 80 90

0.0

0.5

1.0

1.5

2.0

2.5

3.0

●

range [2,3]
range [1,2[
range [0.5,1[
range [0.1,0.5[
range [0,0.1[

●

●

●

●

●

●

●

●

●

●

●

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Squale (weight = 3)

A
ve

ra
ge

 S
qu

al
e

(w
ei

gh
t =

 3
)

m
ar

k

0 10 20 30 40 50 60 70 80 90 100

0.0

0.5

1.0

1.5

2.0

2.5

3.0 ●

●

●

●

●

●
●

●
●

●
●

A
ve

ra
ge

 m
ea

n
ra

ng
e

Percentage of imperfect marks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Squale (weight = 9)

A
ve

ra
ge

 S
qu

al
e

(w
ei

gh
t =

 9
)

m
ar

k

0 10 20 30 40 50 60 70 80 90 100

0.0

0.5

1.0

1.5

2.0

2.5

3.0 ●

●

●

●
●

●
● ● ● ● ●

A
ve

ra
ge

 m
ea

n
ra

ng
e

Percentage of imperfect marks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Squale (weight = 30)

A
ve

ra
ge

 S
qu

al
e

(w
ei

gh
t =

 3
0)

 m
ar

k

0 10 20 30 40 50 60 70 80 90 100

0.0

0.5

1.0

1.5

2.0

2.5

3.0 ●

●

●
●

● ● ● ● ● ● ●

A
ve

ra
ge

 m
ea

n
ra

ng
e

Percentage of imperfect marks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Theil

A
ve

ra
ge

 T
he

il
ag

gr
eg

at
e

0 10 20 30 40 50 60 70 80 90 100

2.0

1.5

1.0

0.5

0.0 ●
●

●
●

●

●

●

●

●

●

●

A
ve

ra
ge

 m
ea

n
ra

ng
e

Percentage of imperfect marks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

MLD
A

ve
ra

ge
 M

LD
 a

gg
re

ga
te

0 10 20 30 40 50 60 70 80 90 100

5

4

3

2

1

0 ●
●

●
●

●
●

●
● ●

●

●

A
ve

ra
ge

 m
ea

n
ra

ng
e

Percentage of imperfect marks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Gini

A
ve

ra
ge

 G
in

i a
gg

re
ga

te

0 10 20 30 40 50 60 70 80 90 100

0.8

0.6

0.4

0.2

0.0 ●

●

●

●

●

●

●

●

●
●

●

A
ve

ra
ge

 m
ea

n
ra

ng
e

Percentage of imperfect marks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Kolm

A
ve

ra
ge

 K
ol

m
 a

gg
re

ga
te

0 10 20 30 40 50 60 70 80 90 100

1.0

0.8

0.6

0.4

0.2

0.0 ●

●

●
●

●

●

●

●

●

●

●

A
ve

ra
ge

 m
ea

n
ra

ng
e

Percentage of imperfect marks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Atkinson

A
ve

ra
ge

 A
tk

in
so

n
ag

gr
eg

at
e

0 10 20 30 40 50 60 70 80 90 100

0.8

0.6

0.4

0.2

0.0 ●

●

●

●

●

●

●

●
● ●

●

A
ve

ra
ge

 m
ea

n
ra

ng
e

Percentage of imperfect marks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Hoover

A
ve

ra
ge

 H
oo

ve
r

ag
gr

eg
at

e

0 10 20 30 40 50 60 70 80 90 100

0.8

0.6

0.4

0.2

0.0 ●

●

●

●

●

●

●

●
●

●

●

A
ve

ra
ge

 m
ea

n
ra

ng
e

Percentage of imperfect marks

Figure 2. Results of experiments for all aggregation indexes (see text for explanation). The topmost left
figure displays the common legend.

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

16 K. MORDAL, ET AL.

whether there are only a few or many problems. Moreover, although it does not break the “Do not
hide progresses” requirement, going from 90% to 30% bad marks shows very little improvement
in the final mark. In this sense, a more linear aggregation technique like a softer weighting or the
simple arithmetic mean might be preferable in extreme situations when the quality of the system
is completely unknown (first run), or when the system has very low quality. One must, therefore,
strike a balance between the requirements “Highlight problems” and “Do not hide progress”.

For the econometric indices, one must remember that they are inequality measures, and therefore
would normally give low results for aggregated values all equal (e.g., base case). This characteristic
is the opposite of what we are looking for. Therefore, to ease comparison with Squale, we inverted
the Y axis of their results (on the left of the graphs; the right Y-axis is for the grey triangle referring
to arithmetic means).
ITheil was described as being biased toward “rich people” (higher values) [Cow00], i.e., ITheil

should be more sensitive going from, e.g., 90% to 80% perfect marks than from 30% to 20%
perfect marks. However, our experiments suggest that ITheil is the aggregation technique that least
highlights bad results (“poor people”), even less than the arithmetic mean.

In contrast, IKolm is the inequality index that best behaves as required with respect to highlighting
bad results, as long as there are not too many of them (up to 30% or 40%). It can be observed that
when the proportion of bad result increases, there is less inequality and therefore IKolm decreases
(curve going up on our inverted axis). However it not a disadvantageous characteristic, especially
as software assessed in an industrial context have almost never components exceed 40 % imperfect
marks for the same measure. However, more worrying for IKolm is the fact that an improvement
of the quality (for example from 60% to 50% imperfect marks) will also result in an augmentation
of inequality (from a majority of imperfect methods to less) and, therefore, a worsening of the
aggregated value. Some work would be needed to improve this aspect, but one must not forget
that we are considering here artificial data with only a limited range of imperfect marks (e.g.,
[0.5, 1[), whereas on real projects they would be more spread out. One must also remember that
the aggregation is performed here on normalized SLOC results into [0, 3], which limits the possible
inequalities therefore confining the possible values for the inequality indexes.

5.2.3. Threats to validity. We identified the following threats to validity:

• The experiment was conducted on a single software system with a single metric. However,
since the aggregation results are based only on the numerical values of the metrics for this
system’s components, this fact as little bearing and can be ignored. Our experimentation
validates only aggregation method, not composition equations.

• The data are artificial and do not represent a real case where different quantities of problems
with varying quality would be found. However, this setup was necessary to finely analyze
the response of each aggregation technique to a varying amount of problems. This issue is
inherent to controlled experiments.

• We used only one metric (SLOC), and its results were normalized to the [0, 3] interval. These
two restriction were required to be able to compare on the same ground the Squale model
and the different econometric inequality indices. With real values, having a larger range,
econometric inequality indices could have performed better because they would have reacted
more strongly to larger differences. However, we already argued that in a real evaluation
context it would usually make more sense to compose metrics before aggregating them, and
composition will often result in some normalization of the metrics’ values to smoothen the
differences in ranges. It is therefore not an unrealistic setting.

6. RELATED WORK

Software metrics are essential to understanding whether the quality of the software we are building
corresponds to our expectations [Pfl08]. Not surprisingly, the scientific community has amassed a

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

SOFTWARE QUALITY METRICS AGGREGATION IN INDUSTRY 17

huge literature on software metrics, including such works as [BB04, BFNP98, Kit10, Pfl08]. In the
following we focus solely on the studies of metrics aggregation and/or composition.

Composition of different metrics has been used to assess software maintainability in metrics such
as the maintainability index [OH94] or modularization quality [MMCG99]. Moreover, composition
of different metrics is common in applications of software quality models such as [HKV07, SK03,
YSM02]. Both [SK03] and [YSM02] aim at predicting software defects with regression formulas
based on Chidamber and Kemerer’s metrics [CK94]. One of the problems with the approaches based
on linear regression is related to the linear character of the dependency between the dependent
and independent variables, i.e., increasing of DIT with 3 always has according to the formula
of [YSM02] the same effect on the number of defects irrespectively of the original value of the
metrics. This contradicts an intuitive expectation that DIT of a given class increasing from 4 to 7
should have a more adverse effect on the number of defects than increasing it from 1 to 3. Software
quality models such as [HKV07] are frequently threshold based, and, hence, frequently suffer from
the staircase effect discussed in Section 2.1. Squale addresses both shortcomings by introducing
non-linear relations between independent (metrics) and dependent (marks) variables.

Aggregation of metrics values obtained for the same metric and different artifacts constitutes
the second step in application of Squale. The need to aggregate information from smaller elements
(functions or methods) to larger elements (packages) has been recognized early on. Traditional
approaches [LM06a] use the arithmetic mean. Another popular approach [CMPS07,TN06] consists
in selecting a known family of distributions and fitting its parameters to approximate the metric
values observed. They were both discussed in Section 2.

7. DISCUSSION AND CONCLUSION

Measuring the quality of their software projects is important for organization that want to keep
control on their systems. If there are numerous software quality metrics available to measure varying
aspect of the quality of software, these metrics are defined at a low level of individual components:
functions, methods, classes, whereas developers need a global view at the level of an entire system.
In this paper we identified practical issues with the existing aggregation methods when used on
real projects, including: the need for composing metrics with different ranges (e.g., DIT ∈ [0, 10]
and SLOC ∈ [0, 1000]); the need to aggregate quality assessment of many components; or, the need
to highlight bad results that need be corrected. We then presented Squale, a quality model defined
empirically on concrete projects in large companies (Air France-KLM, PSA Peugeot-Citroen) to
answer these requirements. We also discuss the possible use of econometric indexes to aggregate
individual quality results as proposed in recent literature [SvdB10, VLBN09]. After discussing the
theoretic properties of the different aggregation methods proposed, we experimented their ability to
highlight bad results on Eclipse.

The results are that Squale satisfies most of the requirements identified with decomposability
being the notable exception. For example, the experiments show that it does answer the requirement
of highlighting bad results even if there is a small proportion of them.

The econometric indexes also answer most of the requirements. IKolm gives the most interesting
results in the experiment, even if we identified some issues with the fact that it is an inequality
measure, wich means it can give good results when all low level quality assessments are bad
because there is no inequality between them. However this should not be an issue in practice since
it is unlikely to occur. Because their is an important literature on econometric indexes, it might
be interesting to continue studying them and see how they can be adapted to the needs of quality
assessment. We suggest one area of research, noticing that the experiment we performed are artificial
in the sense that the distribution of quality results for individual components is limited to two small
intervals whereas in real life they could be much more spread out.

REFERENCES

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

18 K. MORDAL, ET AL.

[ALY99] . T. Akita, R. A. Lukman, and Y. Yamada. Inequality in the distribution of household expenditures in
Indonesia: A Theil decomposition analysis. Developing Economies, XXXVII(2):197–221, June 1999.

[Atk70] . A. B. Atkinson. On the measurement of inequality. Journal of Economic Theory, 2(3):244–263, 1970.
[Bas92] . V. R. Basili. Software modeling and measurement: the goal/question/metric paradigm. Technical report,

College Park, MD, USA, 1992.
[BB04] . B. Boehm and W. Brown. Value-based software metrics. IEE Seminar Digests, 2004(909):4–6, 2004.
[BBD+10] . F. Balmas, F. Bellingard, S. Denier, S. Ducasse, B. Franchet, J. Laval, K. Mordal-Manet, and

P. Vaillergues. The squale quality model. modèle enrichi dagrégation des pratiques pour java et c++
(squale deliverable 1.3). Technical report, INRIA, 2010.

[BDA81] . C. Blackorby, D. Donaldson, and M. Auersperg. A new procedure for the measurement of inequality
within and among population subgroups. The Canadian Journal of Economics/Revue canadienne
d’Economique, 14(4):665–685, 1981.

[BFNP98] . G. Bucci, F. Fioravanti, P. Nesi, and S. Perlini. Metrics and tool for system assessment. In Proceedings
of IEEE Conference on Complex Computer Systems. USA: IEEE Publ, pages 36–46, 1998.

[BLL09] . H. Barkmann, R. Lincke, and W. Löwe. Quantitative evaluation of software quality metrics in open-
source projects. In Advanced Information Networking and Applications (WAINA’09). International
Conference on, pages 1067–1072. IEEE, 2009.

[Bou79] . F. Bourguignon. Decomposable income inequality measures. Econometrica, 47(4):901–20, July 1979.
[CJ95] . F. A. Cowell and S. P. Jenkins. How much inequality can we explain? a methodology and an application

to the United States. Economic Journal, 105(429):421–30, March 1995.
[CK81] . F. A. Cowell and K. Kuga. Inequality measurement: An axiomatic approach. Eur. Econ. Review,

15(3):287–305, March 1981.
[CK94] . S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design. Software Engineering,

IEEE Transactions on, 20(6):476–493, jun 1994.
[CMPS07] . G. Concas, M. Marchesi, S. Pinna, and N. Serra. Power-laws in a large object-oriented software system.

IEEE Trans. Software Eng., 33(10):687–708, 2007.
[Cow00] . F. A. Cowell. Measurement of inequality. In A. B. Atkinson and F. Bourguignon, editors, Handbook of

Income Distribution, volume 1, pages 87–166. Elsevier, 2000.
[Fos83] . J. E. Foster. An axiomatic characterization of the theil measure of income inequality. Journal of

Economic Theory, 31(1):105–121, October 1983.
[Gin21] . C. Gini. Measurement of inequality of incomes. The Economic Journal, 31:124–126, 1921.
[GM11] . M. Goeminne and T. Mens. Evidence for the Pareto principle in Open Source Software Activity. In Proc.

Int’l Workshop SQM 2011. CEUR-WS workshop proceedings, 2011.
[Her09] . I. Herraiz. A statistical examination of the evolution and properties of libre software. In Proceedings

of the 25th IEEE International Conference on Software Maintenance (ICSM), pages 439–442. IEEE
Computer Society, 2009.

[HKV07] . I. Heitlager, T. Kuipers, and J. Visser. A practical model for measuring maintainability. In Proceedings
of the 6th International Conference on Quality of Information and Communications Technology, pages
30–39, Washington, DC, USA, 2007. IEEE Computer Society.

[Hoo36] . E. M. Hoover. The measurement of industrial localization. The Review of Economic Statistics, 18(4):162–
171, 1936.

[ISO92] . ISO. ISO 31-11 mathematical signs and symbols for use in physical sciences and technology, 1992.
[ISO03] . ISO/IEC. ISO/IEC 9126 software engineering –product quality–, 2003.
[Joh01] . Richard Johnsonbaugh. Discrete mathematics. Prentice Hall, 2001.
[Kit10] . B. A. Kitchenham. What’s up with software metrics? - a preliminary mapping study. Journal of Systems

and Software, 83(1):37–51, 2010.
[Kol76] . S.-C. Kolm. Unequal inequalities I. Journal of Economic Theory, 12(3):416–442, 1976.
[LA93] . P. J. Lambert and J. R. Aronson. Inequality decomposition analysis and the Gini coefficient revisited.

Economic Journal, 103(420):1221–27, September 1993.
[Lik32] . R. Likert. A technique for measurement of attitudes. Archives of Psychology, 140:5–53, 1932.
[LM06a] . M. Lanza and R. Marinescu. Object-Oriented Metrics in Practice: Using Software Metrics to

Characterize, Evaluate, and Improve the Design of Object-Oriented Systems. Springer Verlag, 2006.
[LM06b] . M. Lanza and R. Marinescu. Object-oriented metrics in practice: using software metrics to characterize,

evaluate, and improve the design of object-oriented systems. Springer, 2006.
[Mar94] . R. C. Martin. OO design quality metrics: An analysis of dependencies, October 1994. Available at

http://condor.depaul.edu/˜dmumaugh/OOT/ Design-Principles/oodmetrc.pdf
Consulted on January 11, 2009.

[Mar04] . Radu Marinescu. Detection strategies: Metrics-based rules for detecting design flaws. In ICSM, pages
350–359. IEEE Computer Society, 2004.

[MMBD+09]. K. Mordal-Manet, F. Balmas, S. Denier, S. Ducasse, H. Wertz, J. Laval, F. Bellingard, and P. Vaillergues.
The squale model—a practice-based industrial quality model. In ICSM ’09, pages 94–103, 2009.

[MMCG99] . S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner. Bunch: A clustering tool for the recovery
and maintenance of software system structures. In Proceedings of the IEEE International Conference on
Software Maintenance, ICSM’99, pages 50–62, Washington, DC, USA, 1999. IEEE Computer Society.

[MMLD+11]. K. Mordal-Manet, J. Laval, S. Ducasse, N. Anquetil, F. Balmas, F. Bellingard, L. Bouhier, P. Vaillergues,
and T. McCabe. An empirical model for continuous and weighted metric aggregation. In 15th Eur. Conf.
Soft. Maintenance and Reeng., pages 141–150. IEEE, 2011.

[MRW76] . J. McCall, P. Richards, and G. Walters. Factors in Software Quality. NTIS Springfield, 1976.
[OH94] . P. Oman and J. Hagemeister. Construction and testing of polynomials predicting software maintainability.

Journal of Systems and Software, 24(3):251–266, 1994.

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

SOFTWARE QUALITY METRICS AGGREGATION IN INDUSTRY 19

[Par99] . S. C. Parker. The inequality of employment and self-employment incomes: a decomposition analysis for
the U.K. Review of Income and Wealth, 45(2):263–274, 1999.

[Pfl08] . S. L. Pfleeger. Software metrics: Progress after 25 years? Software, IEEE, 25(6):32–34, 2008.
[PRFT07] . M. Perepletchikov, C. Ryan, K. Frampton, and Z. Tari. Coupling metrics for predicting maintainability

in service-oriented designs. In Software Engineering Conference, 2007. ASWEC 2007. 18th Australian,
pages 329–340. IEEE, 2007.

[Ros98] . L. H. Rosenberg. Applying and interpreting object oriented metrics, Software Technology Conference
(Utah - April 1998).

[Sho80] . A. F. Shorrocks. The class of additively decomposable inequality measures. Econometrica, 48(3):613–
625, April 1980.

[SK03] . R. Subramanyam and M.S. Krishnan. Empirical analysis of ck metrics for object-oriented design
complexity: implications for software defects. Software Engineering, IEEE Transactions on, 29(4):297–
310, april 2003.

[SRvdB09] . A. Serebrenik, S. Roubtsov, and M. G. J. van den Brand. Dn-based architecture assessment of Java open
source software systems. In ICPC ’09: Proc. 17th Int. Conf. on Program Comprehension, 2009, pages
198–207. IEEE, 2009.

[Sta97] . J. Stapleton. DSDM Dynamic Systems Development Method : The Method in Practice. Addison-Wesley,
1997.

[SvdB10] . A. Serebrenik and M. G. J. van den Brand. Theil index for aggregation of software metrics values. In
Int. Conf. on Software Maintenance, pages 1–9. IEEE, 2010.

[TCM+11] . I. Turnu, G. Concas, M. Marchesi, S. Pinna, and R. Tonelli. A modified Yule process to model the
evolution of some object-oriented system properties. Inf. Sci., 181:883–902, February 2011.

[The67] . H. Theil. Economics and Information Theory. North-Holland, 1967.
[TN06] . T. Tamai and T. Nakatani. Statistical modelling of software evolution processes. In N. H. Madhavji, J. C.

Fernández-Ramil, and D. E. Perry, editors, Software Evolution and Feedback. Theory and Practice, pages
143–160. John Wiley & Sons Ltd, 2006.

[VLBN09] . R. Vasa, M. Lumpe, P. Branch, and O. M. Nierstrasz. Comparative analysis of evolving software systems
using the Gini coefficient. In Int. Conf. on Software Maintenance, pages 179–188. IEEE, 2009.

[VSvdB10] . B. Vasilescu, A. Serebrenik, and M. G. J. van den Brand. Comparative study of software metrics’
aggregation techniques. In S. Ducasse, L. Duchien, and L. Seinturier, editors, 9th Belgian-Netherlands
Softw. Evolution Seminar, pages 1–5, Lille, 2010.

[VSvdB11a] . B. Vasilescu, A. Serebrenik, and M. G. J. van den Brand. By no means: A study on aggregating software
metrics. In Giulio Concas, Massimiliano Di Penta, Ewan Tempero, and Hongyu Zhang, editors, 2nd
International Workshop on Emerging Trends in Software Metrics, Honolulu, Hawaii, USA, 2011.

[VSvdB11b] . B. Vasilescu, A. Serebrenik, and M. G. J. van den Brand. You can’t control the unfamiliar: A study on the
relations between aggregation techniques for software metrics. In Int. Conf. on Software Maintenance.
IEEE, 2011.

[Wie96] . K. E. Wiegers. Software process improvement: Ten traps to avoid. Software Development, 4:51–58,
1996.

[YSM02] . P. Yu, T. Systa, and H. Muller. Predicting fault-proneness using oo metrics. an industrial case study.
In Software Maintenance and Reengineering, 2002. Proceedings. Sixth European Conference on, pages
99–107, 2002.

[Zei09] . A. Zeileis. Package ‘ineq’ for R. Technical report, CRAN, 2009.

Copyright c© 0000 John Wiley & Sons, Ltd. J. Softw. Maint. Evol.: Res. Pract. (0000)
Prepared using smrauth.cls DOI: 10.1002/smr

