
Inferring Types by Mining Class Usage
Frequency from Inline Caches

Nevena Milojković
SCG, University of Bern

nevena@inf.unibe.ch

Clément Béra
RMOD - INRIA Lille Nord Europe

clement.bera@inria.fr

Mohammad Ghafari
SCG, University of Bern

ghafari@inf.unibe.ch

Oscar Nierstrasz
SCG, University of Bern

scg.unibe.ch

Abstract
Dynamically typed languages allow developers to write
more expressive source code, but their lack of static infor-
mation about types of variables increases the complexity of
a program. Static type information about types of variables
facilitates program comprehension and maintenance.

Simple type inference algorithms suffer from the problem
of false positives or negatives, thus complex approaches are
required to avoid this problem.

We propose a simple heuristic that uses easily accessible
run-time information about the usage of each class as a
receiver type for a message send. This frequency serves as
a proxy for the likelihood that a run-time type of the variable
is that class and it is used to promote the correct type towards
the top of the list of possible types for a variable.

Our evaluation of a proof-of-concept prototype imple-
mented in Pharo Smalltalk shows that our heuristic is rea-
sonably precise to detect correct types on average in 65.92%
to 82.83% of cases.

1. Introduction
The lack of static type information in dynamically typed lan-
guages hampers program comprehension process [22], [2].
This is very important since 70% of development time is
devoted to program maintenance [7]. Even though dynam-
ically typed languages increase developer’s productivity in
writing source code [22, 26], having type information avail-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
ESUG ’16 August 23th, 2016, Prague, Czech Republic
Copyright © 2016 ACM [to be supplied]. . . $15.00

able facilitates program comprehension [17, 19, 21], e.g., it
decreases software maintenance time.

The problem of inferring types of variables in dynami-
cally typed languages has been long known [1, 3, 4, 10, 23,
25, 27–29, 31, 33]. The usual approach is to statically track
variable assignments and the set of messages sent to a vari-
able, i.e., to track down all messages sent to the variable of
interest and then to deduce which classes understand them,
either because they implement those methods, or inherit
them from a superclass [27]. Other approaches produce their
results by exploiting dynamic information [4, 10, 25, 28].
However, in order to acquire that information, a complete,
running program must be available, usually instrumented to
log the types of variable [4, 25]. In a majority of the algo-
rithms, this kind of analysis introduces an overhead to pro-
gram execution.

Nowadays many virtual machines for dynamic languages
include Just-in-Time compilers that use inline caches [11,
20] to achieve high performance. That is, while the program
runs, instead of interpreting the bytecode, the virtual ma-
chine translates it to machine code, and executes the machine
code version. Each message send in the machine code ver-
sion has its own look-up cache, called an inline cache. Such
caches contain type information about the receiver of a mes-
sage send, which could be easily exploited in order to im-
prove current tools for program comprehension. We believe
that this information collected during execution of any pro-
gram written in the same language would add productively
to the statically collected knowledge used for inferring vari-
able’s type. As dynamic information has been read from the
virtual machine, no instrumentation is required, and minimal
overhead is introduced.

We present an approach for collecting run-time informa-
tion about the receiver’s type from inline caches with mini-
mal execution overhead, and we use this information to sort
classes that represent a possible variable type based on the

frequency of their usage. We propose that the frequency of
class usage as the type of a receiver can serve as a reliable
proxy to identify the type of a variable at run time.

We have implemented a proof-of-concept for Pharo
Smalltalk, a highly reflective dynamically typed language
[16]. We have used this implementation to evaluate our
claim. The results show that the implemented heuristic is
reasonably precise for more than two thirds of the variables.
The results of our approach were compared to the EATI
(Eco-aware type inference) technique [30]. EATI collects
information on how many times each selector has been sent
to an instance of a certain class. Based on this frequency,
it orders possible types for a variable. With fewer require-
ments, we have obtained better results, i.e., our heuristic
correctly infers types for 48% more variables than EATI.

Structure of the Paper. We discuss related work in sec-
tion 2. Section 3 explains the virtual machine used for dy-
namic data collection. Next we define the used terminology
and the implemented heuristic in section 4. Section 5 shows
results of the evaluation of the prototype. We then describe
potential threats to validity in section 6 before concluding in
section 7.

2. Related work
Type inference has been a heavily researched topic for the
last couple of decades [1, 3, 4, 23, 25, 27–31, 33].

2.1 Static analysis
Most type inference techniques rely only on static informa-
tion. The first work this field was done by Milner, who de-
scribed a type inference algorithm named “Algorithm W”
[23] that supports polymorphic functions, but not subtyping.

The Cartesian Product Algorithm, known as CPA [1], was
developed for dynamically typed language Self [33]. This
algorithm infers the return type of a method by analyzing
the cartesian product of the actual types of the method argu-
ments. CPA is used in the Starkiller [29], a type inferencer
and compiler for Python.

RoelTyper is a fast and relatively accurate type inference
technique, developed by Pluquet [27]. The algorithm tra-
verses the set of messages sent to a variable together with
the assignments to the same variable and infers types for it.
This approach was used as a basis for our prototype imple-
mentation, as well as for the prototype implementation of
the EATI algorithm, which uses the information available in
the language ecosystem to increase the available information
about types [30]. Since this approach showed a significant
improvement when compared to type inference technique
that use only static information from the available source
code, we used it as a benchmark.

Spoon et al., developed one of the most precise type infer-
ence algorithms [31, 32], a demand-driven algorithm using
subgoal pruning. The information used for type inferencing
is analyzed on demand, and the precision of the algorithm

decreases if some of the subgoals required for type inference
need to be discarded, due to complexity reasons.

One of the implemented heuristics to order possible types
for a variable is by using information about static class usage
[24]. The authors have used statically available information
about class name occurrences and object creation to order
possible types for variables.

2.2 Dynamic analysis
Some approaches rely on dynamic information for type in-
ference [4, 10, 25]. Such approaches require runnable source
code with valid input, either through test cases or symbolic
execution [14].

A recent example is dynamic type inference for JavaScript
[25], to enable possible type annotations. The authors ran
tests to collect dynamic type information used for type in-
ference. The system of interest was instrumented to log types
of the variables, which introduced an overhead in the execu-
tion.

The other approach for type inference based on dynamic
analysis collected by code instrumentation is implemented
for Ruby [4]. Even though it is completely based on infor-
mation collected from program runs, the analysis is sound
if program runs used for collecting constraints cover every
possible path in the control-flow graph. Thus, in order to
have useful type information, the analysis requires running
the program with tests. During program runs, variables of
interest are wrapped, and monitored when used as receivers
or passed as arguments to type-annotated methods. Based
on these logs, subtyping constraints are generated for each
variable. As the authors state, “the overhead of running the
algorithm is currently very high”. Our approach collects dy-
namic type information from the VM, so it does not impose
an overhead on the program execution. Dynamic type infor-
mation has been collected through any program run until the
present moment, i.e., any system executed within the IDE,
and not (only) the system in which types have been inferred.
Thus, the approach does not require the system for which
types are being inferred to be in a running state.

Static type inference which relies on dynamic collection
of data has been developed for Smalltalk [28]. The algorithm
infers types of variables based on the values stored in the
variables during run-time, and incrementally updates static
type information. The main assumption needed for this work
is that test coverage is “complete” and that the program of
interest is in runnable state. Obviously, the frequently the
variable has been encountered during program run, the more
precise will be the type information.

3. Gathering of dynamic type information
with minimal overhead

3.1 Dynamic type information gathering
We have implemented a dynamic type data gatherer, which
collects type information from the virtual machine. The

Megamorphic send
obj foo

checked
entry

method machine code

obj class == R1 ifFalse: [
 rewrite send as polymorphic]

checked
entry

method machine code

obj class == R1 ifFalse: [
 rewrite send as polymorphic]

method 3

checked
entry

method machine code

obj class == R1 ifFalse: [
 rewrite send as polymorphic]

obj class == Class1
obj class == Class2
obj class == Class3

Expected class not in cache:
numberOfCases <= 6

ifTrue: [add new case]
ifFalse: [rewrite send as megamorphic]

rewrite send as
monomorphic

method 2

method 1

Unlinked send routine

Polymorphic inline cache

Monomorphic send
Load expected

class in register R1
obj foo

Polymorphic send
obj foo

Unlinked send
obj foo

May be
rewritten

as

May be
rewritten

as

May be
rewritten

as

Similar to the polymorphic
inline cache with a fixed-

sized HashMap instead of a
jump table.

Megamorphic send cache

Figure 1. States of the machine code send site for the message send obj foo

gatherer queries the virtual machine for all the message
sends that have recently been executed and for each class
which has lately been used as a type of a receiver, it calcu-
lates the frequency of its usage as a receiver for a message
send, and updates the existing information. It is scheduled
to run regularly (every 10 seconds) in the Pharo image1, in
order to ensure that collected data is up-to-date. We have
chosen the time interval of ten seconds, to ensure that the
data is up-to-date, without introducing a major overhead.
The final product is the rate of occurrence of each class as a
type of the receiver within the used image.

We describe firstly the execution of message sends in the
Pharo virtual machine, especially how the inline caches are
managed to explain in which circumstances which types are
available or not. Then we detail how we extract the cache
information and provide it to the Smalltalk runtime.

3.2 Execution of message sends
Bytecode interpretation. Conceptually, the Smalltalk VM
executes compiled methods by interpreting the method’s
bytecodes. Each message send in the bytecode interpreter
attempts to fetch the method to execute from the receiver
class and the message selector in a global look-up cache,
and on cache miss, performs the look-up routine. As the

1 The term “Pharo image” is used to denote snapshot of the running Pharo
system, frozen in time.

interpreter’s cache is global, it is not possible to provide any
types from interpreted code.

JIT compilation. In the Pharo VM, when a method is fre-
quently used, if it is eligible for machine code compilation,
the JIT translates it to machine code and the VM subse-
quently uses that version. A method is eligible for machine
code compilation if it has a small number of literals specified
by the VM (currently 64). A method is detected as frequently
used according to two main heuristics:

• The look-up result was already in the global look-up
cache for an interpreted send.

• A loop in the method has iterated more than a fixed
number of times specified in the VM (currently 20).

In practice, in most cases, frequently used methods are
compiled to machine code on the second execution.

Machine code method entries. The Machine code version
of methods provides an inline cache for each message send
within the method, resulting in better performance. For this
optimization, the JIT generates two machine code entries for
a method:

• a checked entry: the checked entry ensures that the re-
ceiver has a specific class. If this is the case, execution
falls through to the unchecked entry, else it calls a relink-
ing routine detailed later.

• an unchecked entry: this entry executes the method code.

Inline caches. The JIT compiles all method sends as un-
linked sends. On the first execution, an unlinked send falls
back to a routine. This routine finds the method to activate
in similar way to the interpreter (global look-up cache search
or look-up). If the method is eligible for machine code com-
pilation, and has not already been compiled, it is compiled
now. The message send is rewritten to call the checked en-
try of the method, as shown on the upper side of Figure 1.
Roughly 70% of unlinked message sends are rewritten dur-
ing their lifetime.

A message send calling the checked entry of a method is
called a monomorphic send. In 90% of the cases, the send
site is called on the same receiver type, hence the send site
remains monomorphic. However, in 10% of the cases, the
send is used on multiple receiver types, and the checked
entry of the method called fails. When a method call fails,
the send site is rewritten as a call to a jump table. In the jump
table, multiple classes are tested in sequence for the receiver
type, and when a match is found the unchecked entries of the
target methods are called, as shown in the middle of Figure 1.

A send using a jump table is called a polymorphic send.
The jump table can grow up to a fixed number of cases spec-
ified by the VM setting, in our case, six2. In 90% of cases,
polymorphic sends will keep their jump table representation
during their lifetime. However, in the remaining cases, the
polymorphic inline cache needs to be rewritten to a hash map
search as shown in the bottom of Figure 1.

A send using a local hash map is called a megamorphic
send. In this case (1% of the used sends), a local hash map
with a fixed number of entries is available. The number of
entries is specified by the VM setting which is currently
eight3. Upon execution, the method to activate is searched
for in the hash map. On success, the method is activated,
else execution falls back to the standard interpreter way of
looking up a method (global look-up cache or look-up), and
patches the entry in the hash map for the found method,
potentially overriding a previous entry.

3.3 Special cases
Code loading. Each time a method is installed or changed,
the Smalltalk runtime identifies the method’s selector and
requests the VM to flush all the inline caches for the given
selectors. The VM always completely flush the caches (no
partial flushing). Hence type-feedback information during
code loading is correct but may be incomplete.

Primitives. For specific primitives such as perform: or
withArgs:executeMethod:, the VM does not provide enough
runtime type information to infer what method is called.

2 The cache size was computed from benchmarks to balance performance
and memory overhead.
3 See footnote 2.

The type-information available is only about the receiver’s
type, not about the argument values.

Exotic Smalltalk primitives such as become: or adoptInstance
: are however fully supported: for the inline cache, only the
type of the receiver when the send site is reached during
execution matters. If the object’s type changes between two
sends, each sends will provide type-feedback with different
types for the object.

Blocks. As blocks are objects in Pharo, the support for
type-feedback on sends with blocks as receiver is complete.
Sends inside blocks also provide type-information the same
way sends inside methods do.

3.4 Extracting types from inline caches
Information available. If a method is present in the ma-
chine code zone, each message send can be in one of four
different states:

• unused: 30% of message sends
• monomorphic: 90% of used message sends
• polymorphic: 9% of used message sends
• megamorphic: 1% of used message sends

Due to the cache structure, it is possible to reliably extract
a single type from each monomorphic inline cache and from
two to six types from each polymorphic inline cache.

Reading the caches. To be able to convert each method ac-
tivation to a Smalltalk Context instance, to rewrite message
sends, and to perform machine code zone garbage collec-
tion etc., the JIT annotates each machine code method with
a small map describing specific machine instructions. It is
possible to walk over the map to access all the message sends
present in the machine code zone. This map provides infor-
mation such as the mapping between the machine code in-
struction pointer and the bytecode program counter. To read
the message send caches of a given method, we iterate over
the method’s map. For each message send, we analyse ma-
chine instructions present to figure out which kind of cache
is present, and whether the caches are monomorphic or poly-
morphic. We read types in the caches, write them into an ar-
ray, as it is the easiest object to mutate from the VM, and
map them to the bytecode program counter. The details of
these operations are beyond the scope of this paper.

Providing usable type information. We introduced two
new essential primitive methods4 to obtain type information
from the VM as shown on Figure 2. The first primitive,
allMachineCodeMethods, answers an array of all methods
present in the machine code zone, i.e., all methods with type

4 Some messages in the system are responded to primitively. A primitive
response is performed directly by the interpreter rather than by evaluating
expressions in the method. Essential primitives, in contrast to optional
primitives available for performance only, cannot be performed in any other
way. For example, Smalltalk without primitives can move values from one
variable to another, but cannot add two SmallIntegers together.

information. The second primitive, sendAndBranchData, an-
swers for a given method all the type information available
in the inline caches

5. For each send site, the type information provided by the
primitive consists of an array of types and methods, and the
bytecode program counter of the send site. As types are in-
ferred at the AST level, we need to leverage that information.
The Opal compiler [6] provides a tool to map the bytecode
program counter to AST nodes, which is normally used by
the debugger [9] to highlight the code being executed. We
used this tool to map the type information from the bytecode
program counter to the AST nodes.

VirtualMachine>>allMachineCodeMethods
<primitive: ’primitiveAllMethodsCompiledToMachineCode’ module:’’>
^#()

CompiledMethod>>sendAndBranchData
<primitive: ’primitiveSistaMethodPICAndCounterData’ module:’’>

^#()

Figure 2. New essential primitives

4. Type Inference
To explain the heuristic, we introduce a simple set-theoretic
model in Figure 3 that captures key properties for the entities
shown in the UML diagram in the Figure 4.

msg : V ! P(S) (1)

sel : M ! S (2)

def : M ! C (3)

sup : C ! C [{null} (4)

assign_types : V ! P(C) (5)

under : C [{null}⇥ S ! {true, false} (6)

Figure 3. The core model.

Given a target programming language, C is the domain of
all classes, M is the domain of all methods, S is the domain
of all selectors. V is the domain of all variables, including
instance variables, method arguments and local variables.

Each variable v has a (possibly empty) set of messages
msg(v) sent to it in its lexical scope (1). 6

5 With specific Just-In-Time compiler settings, in addition to type-feedback,
the primitive can provide the values of profiling counters. Counters are
installed on some branches in machine code in order to detect frequently
executed portions of code and infer basic block usage. That is why the
primitive is called sendAndBranchData and not just sendData. In this paper
only type-feedback is used so the branch data is not discussed any further.
6 Note that in this paper we consider the scope for instance variables only
to be the methods of the class in which it is defined, but not its subclasses.
Considering also the methods of the subclasses to be part of the lexical
scope of a variable can only improve the results.

Selector

Method

1

1…*

Class

0…*

1

Variable

0…1

superclass 0…*

has selector

defined in

0…*1

receives
0…*

0…*

0..*
is assigned

Figure 4. The core model in UML

We call this set of messages the interface of the variable
v. Each method m has a unique selector s = sel(m) (2), and
is defined in a unique class c = def(m) (3). Each class c has
a unique superclass c0 = sup(c)(4). We define the superclass
of Object to be null, i.e., sup(Object) = null.

RTGlobalBuilder

- properties
+ addProperty:

+ execute
+ initialize

addProperty: aOneOrTwoArgBlock
properties add: aOneOrTwoArgBlock

execute
 properties do: #value

initialize
…
properties := OrderedCollection new

Collection
+ add:
+ do:
+ asBag
+ asOrderedCollection

Bag
SequencableCollection

OrderedCollection

+ do:

+ add:
+ do:
+collector

+ add:
+ do:

+ add:

Object

Collection>>asBag
^ Bag withAll: self

Collection>>asOrderedCollection
^ self as: OrderedCollection

AbstractAdapter

Figure 5. Sample class hierarchy

Consider the example class hierarchy in Figure 5. In this
example we see a class RTGlobalBuilder with an instance
variable named properties and methods addProperty:, execute
and initialize. Within these three methods messages sent to
the instance variable properties are

msg(properties) = {add:, do:}

Also, each variable v may have one or more assigned types
c 2 assign_types(v) if the variable v is the left side of an
assignment where the right side of the same assignment is
a message send to a class which results in creating a new
object, i.e., is a call to a constructor (5). Returning to the
example, in the method RTGlobalBuilder>>initialize there is an
assignment to the instance variable properties of the newly
created object of type OrderedCollection, which means that

assign_types(properties) = {OrderedCollection}

Multiple assignments to the same variable are possible, but
this is beyond the scope of our small example.

under(c, s) = s 2 sel(def�1(c)) _ under(sup(c), s) (7)

intr(c) = {s 2 S|under(c, s) = true} (8)

sel_types(v) = {c 2 C|msg(v) ✓ intr(c)} (9)

Figure 6. Computing possible types for a variable.

We can now query the model to ascertain the set of pos-
sible types for every variable. Each class c can either un-
derstand the selector s or not (6). The class c understands
selector s if it defines a method m 2 def�1(c) such that
sel(m) = s or its superclass sup(c) understands it (7), as
presented in Figure 6. We also define that under(null, s) =
false. The interface of the class c is a set intr(c) of all the se-
lectors s that class c understands (8). The class c is a possible
type for the variable v if class c understands the interface of
the variable v. (9).

It is important to emphasise that our aim is not to provide
receiver type information directly from the inline caches,
if available, to a developer. This information, available or
not in the moment of inferring variable’s type, may not be
comprehensive. During the lifetime of the image, we collect
the information about the frequency of usage of each class as
a type of the receiver in the current image. Possible classes
for a receiver type, which are inferred due to the message
sends and assignments to the variable, are then sorted based
on this frequency.

In the example in Figure 5 we see that the class Collection
understands the selector add:, as do all of its subclasses, and
the class AbstractAdapter, while under(RTGlobalBuilder, add:)
= false.

We can now calculate the interfaces of the classes

intr(Collection) = intr(Bag) = intr(SequenceableCollection) =
{add:, do:, asBag, asOrderedCollection}

intr(OrderedCollection) = {add:, do:, collector, asBag,
asOrderedCollection}

intr(AbstractAdapter) = {add:}

Hence, possible types for the variable properties are

sel_types(properties) = {Collection, Bag,
SequenceableCollection, OrderedCollection}

4.1 Dynamic information
Let MS be the set of all message sends in the target pro-
gramming language. Each message send has a receiver and
a selector sent to the receiver.

dynamic_type : MS ! C (10)

class_value(c) = |{ms|dynamic_type(ms) = c}| (11)

Figure 7. Calculating class weight.

Each class occurs as the type of a receiver for a mes-
sage send zero or more times (10). Based on the frequency
of the class usage as a receiver type for previously exe-
cuted message sends during the image lifetime, we calcu-
late the class_value (11), as the number of message sends
for which this class occurred as a receiver type during run
time. class_value is a global variable calculated per each
class. This information is used to sort the classes that repre-
sent possible types for a variable. We extract this information
from the virtual machine, with the help of the implemented
dynamic type data gatherer.

Dynamically collected information is used to order sepa-
rately two sets of classes: assign_types(v) and sel_types(v).
In our example in Figure 5, we encounter the following oc-
currences of the class OrderedCollection, Bag Collection and
SequenceableCollection:

class_value(OrderedCollection) = 1487
class_value(Bag) = 34

class_value(Collection) = 1
class_value(SequenceableCollection) = 0

Based on the obtained information, we can now sort
the possible types for the variable properties. The list as-
sign_types(properties) has only one element, so there is no
need for sorting. But the list sel_types(properties) has four
elements which will be sorted as follows:

1. OrderedCollection

2. Bag

3. Collection

4. SequenceableCollection

4.2 Hierarchy-Based approach
While it is important for the developers to know the precise
type of a variable, it is also important to have a notion of
the hierarchy of classes to which the run-time type of the
variable can belong, since many of the analyzed variables
have an interface understood by many independent hierar-
chies, i.e., hierarchies whose roots do not have a common
superclass understanding the same interface. Accordingly,
we present two types of information to the developer: the

one obtained by a hierarchy-based approach, the other by a
class-based one.

The class-based approach has already been explained
throughout section 4.

A variable can have an interface understood by tens, hun-
dreds, or even thousands of classes. Obviously, such infor-
mation presented to a developer as such is not helpful. We
propose to identify the root class in a hierarchy of classes
that understand the interface of the variable as a represen-
tative for that hierarchy. In the example in Figure 5 the in-
terface of the instance variable properties is understood by
four classes belonging to the same hierarchy of classes with
root class Collection. We therefore also infer the type of the
variable properties as

sel_types(properties) = {Collection}

Sets of messages sent to a variable can be understood by
multiple hierarchies, but this is beyond our small example.

Let us emphasise here that we do not apply this change
to the set assign_types(v), but only to the set sel_types(v).
We consider the set of explicitly assigned types to a variable
to be truthful, as it is. The implications of this decision are
discussed in section 6.

5. Evaluation
For the purpose of initializing the gatherer, we have run all
the tests available in the Pharo image. We have used this
information to initialize the gatherer with as much dynamic
type information as possible. The collected data has been
used to calculate the class value, class_value(c) of each class
c. For this purpose, we have measured both the time spent to
run tests without collecting class_value information, and the
time spent to run tests during the collection of class_value
information. The introduced overhead measured around 0.6
milliseconds per method.

For the evaluation purpose, we have used four open-
source Pharo projects for which we were able to collect
run-time information that closely depicts their real usage:
Glamour7 [8], Roassal28 [5], Morphic[15] and Moose9 [12,
13, 18]. Glamour is a framework for specifying the navi-
gation flow of browsers. Roassal is an agile visualisation
engine that graphically renders objects. Morphic is a User
Interface construction kit and Moose is a platform for soft-
ware analysis. These projects provide “example methods”
which reflect their real usage: Glamour has 68 of these meth-
ods, Morphic 29 and Roassal 948. For Moose we have col-
lected run-time data by performing software analysis on a
project. We have loaded an mse file which is similar to xml
file and represents the model of a package. After loading the
model, we performed a few queries on it. During the execu-
tion of these projects, the information about types of vari-

7 http://www.smalltalkhub.com/#!/~Moose/Glamour
8 http://smalltalkhub.com/#!/~ObjectProfile/Roassal2
9 http://www.smalltalkhub.com/#!/~Moose/Moose

ables was recorded, and this information was declared to be
the “ground truth”, to which the type information provided
by our heuristic was compared. In order to recover these run-
time types of the variables, the source code of the projects
was instrumented to log the types of the variables as the pro-
vided examples were executed. For recovering dynamic type
information we have used a tool to track the types of vari-
ables at run time, built on top of Reflectivity10, a reflection
API for annotating AST nodes with metalinks.

Dynamic information collected via test runs is used just
to initialize the gatherer needed to calculate class_value(c),
i.e., to order the inferred types of variable. We chose to
run all the available tests in the image, in order to initialize
the gatherer with as much information as we can. Dynamic
type information collected via examples is used just for the
evaluation part, as truthful types of variables, to which we
compared the statically inferred types.

Types of these variables are then inferred using our
heuristic. Examples that we used to collect the run-time in-
formation about types covered 114 variables in Glamour,
147 variables in Moose, 563 variables in Morphic and 3935
variables in Roassal2.

We investigated the following research question:

RQ How well does the proposed heuristic infer type infor-
mation?

A summary of the evaluation results is given in Table 1.

5.1 Guessed and “near-guessed” types
If the actual run-time type of a variable has been on the top of
the list of sorted types, we label such a variable “guessed”. If
the variable has n run-time types, where n > 1, we consider
it to be “guessed” if the set of first n types of the statically
inferred list of types is the same as the set of run-time types.

In 59.1% of cases (for 2520 out of 4264 variables in the
four projects), the inferred type of the variable is correct, and
these variables are considered as “guessed”. In these results
we omit the variables in the last column, i.e., variables for
which we were not able to conclude any other type except
Object. We argue that these results could be discarded as they
are easily identifiable. This number may seem high, but it
is justified by the fast that there are 441 methods already
defined in the Object class in Pharo, and it is also possible to
add a user-defined method to library classes. These messages
can be sent to any Smalltalk object. The heuristic is working
slightly better for the types from the standard library, since
1154 of the correctly inferred types are project-related, and
1366 are library types.

If the heuristic failed to promote the correct type to the
top of the list, but the correct type is present in the top three,
we call these variables “near-guessed”. If the variable has
n run-time types, where n > 1, we consider it as “near-
guessed” if the set of first n+2 types of the statically inferred

10 http://www.smalltalkhub.com/#!/~RMoD/Reflectivity

http://www.smalltalkhub.com/#!/~Moose/Glamour
http://smalltalkhub.com/#!/~ObjectProfile/Roassal2
http://www.smalltalkhub.com/#!/~Moose/Moose
http://www.smalltalkhub.com/#!/~RMoD/Reflectivity

Class-based approach

Project name
#of

analyzed
variables

#of
guessed
variables

#of
guessed

variables -
library type

#of
guessed

variables -
package type

#of
near-guessed

variables

#of
incorrectly-

guessed
variables

#of
Object type

Roassal 3935 2165
(60.44%)

1107 1058 222 (6.2%) 1195 353
(33.36%)

Glamour 114 57
(60.04%)

29 28 6 (6.74%) 26
(29.21%)

25

Morphic 563 242
(50.95%)

183 59 44 (9.26%) 189
(39.79%)

88

Moose 147 56
(47.46%)

47 9 19 (16.1%) 43
(36.44%)

29

Hierarchy-based approach

Project name
#of

analyzed
variables

#of
guessed
variables

#of
guessed

variables -
library type

#of
guessed

variables -
package type

#of
near-guessed

variables

#of
incorrectly-

guessed
variables

#of
Object type

Roassal 3935 2566
(71.63%)

1419 1147 466
(13.01%)

550
(15.35%)

353

Glamour 114 79
(88.76%)

35 44 6 (6.74%) 4 (4.49%) 25

Morphic 563 368
(77.47%)

194 174 59
(12.42%)

48
(10.10%)

88

Moose 147 77
(65.25%)

63 14 11 (9.32%) 30
(25.42%)

29

Table 1. Inline caches heuristic

list of types is the superset of the set of run-time types. For
example, if the variable has three different run-time types,
we consider it to be “near-guessed” if all three types are
present in the top five types in the statically inferred list.
Our heuristic promoted the correct type to the top three in
the list for 291 variables, i.e., 6.82% of variables are “near-
guessed”.

5.1.1 Incorrectly-guessed types
For 1453 variables the correct type was not in the top three
types in the list.

Among these variables, 1190 have an interface not only
understood by multiple classes, but also by multiple hierar-
chies, i.e., classes which do not have a common superclass
understanding the required set of messages. The number of
these hierarchies ranges from 2 to 204 per variable, with a
median of 10 . That is why we deem it is also important to in-
fer the hierarchy to which it may belong, beside the specific
type of a variable.

5.1.2 Hierarchy-Based Approach
Figure 8 shows the distribution of the number of possible
hierarchies for statically analysed variables. At least half of
the variables (50%) have an interface understood by more

Table 2-1

1 1 Num Items 5571

1 1 Even FALSE

1 1 Median 5

1 1 Half Size 2785

1 1 First Half Median 1

1 1 Second Half Median 18

1 1 Min 1

1 1 Max 199

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

Graph Source

X1 Y1 X2 Y2 X3 Y3 X4 Y4 X5 Y5

1 0.25 1 0.25 5 18 0.25 199 0.25

1 0.75 1 0.75 18 0.75 199 0.75

5 0.75 5 0.75

5 0.25 5 0.25

1 0.25 18 0.25

1 0.5 18 0.5

1 0.5 199 0.5

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200

X1 X2 X3 X4 X5

Enter data series here

�1

Figure 8. Distribution of the number of possible hierarchies
for each statically analysed variable

than four independent hierarchies, and at least 25% of the
variables have a possible run-time type which may belong to
more than 16 hierarchies.

For 3090, i.e., 72.47% of the variables, the approach
correctly inferred the hierarchy of possible types for the
variable. The results, labeled hierarchy-based approach, are
also presented in Table 1. We have again discarded 495
variables for which we were not able to conclude any other
type except Object. For 542 variables, i.e., 12.71%, the
correct hierarchy was present in the top three in the list.

5.2 Comparison with EATI
We compare our proposed heuristic with EATI, a type in-
ference algorithm that uses information available in the lan-

Type inference
#of

analyzed
variables

#of
guessed
variables

#of
near-

guessed
variables

Inline caches heuristic
— hierarchy-based 4759 3090 542

EATI 4759 2080 748

Table 2. Comparison with EATI

guage ecosystem [30]. EATI gatheres data from the ecosys-
tem and stores it in a central repository, to be queried when
required. EATI shows 95% improvement when compared to
a single system type inference techniques, i.e., RoelTyper
[27], used as its basis. The results of our comparison based
on “guessed” and “near-guessed” variables are shown in Ta-
ble 2.

We have compared the numbers of variables “guessed" by
EATI, i.e., variables for which EATI succeeded to promote
the correct type to the top of the list, with the number of
variables whose type is “guessed" by our technique and the
numbers of “near-guessed" variables. Our heuristic infers the
correct types of 48.56% more variables. When summed up
all the variables for which we have a reasonable precision
when inferring types, our heuristic presents an improvement
of precision 28.43% of cases. We deem these findings im-
portant, since our heuristic yields better results, and they are
obtained with considerably less effort and resources.

6. Threats to validity
Even though the proposed should work on every dynami-
cally typed language, we cannot state this without explara-
tory study.

The main threat to validity comes from collected dy-
namic information: both data collected through the virtual
machine, and used to calculate the class value for each class,
and dynamic information declared as “ground truth”. For
the purpose of evaluation we have tried to collect dynamic
information from a wide range of projects, by running tests.
The actual dynamic information depends heavily on the
ways projects are executed in Pharo image. We have chosen
projects Roassal2, Glamour, Morphic and Moose to evalu-
ate the heuristics on them, since these projects benefit from
the sets of example methods which closely depict their real
usage, or we know how to imitate their real usage. It is an
open question whether the collected dynamic type informa-
tion represents true types of variables in these projects. We
chose these examples over unit tests, since we feel that they
provide more precise information about the usage of the
variables than unit tests.

Our choice to treat the assignment types of a variable to
be truthful as they are, without considering the subtypes,
may have influenced the results. If subtypes would be con-

sidered as potential, the results can be influenced in two
ways: the number of correctly inferred variables may de-
crease, due to the increased number of possible types for a
variable, or they may increase if the run-time type of a vari-
able is a subtype of the assigned type.

During our evaluation, we have encountered 40 variables
whose interface not understood by any single class in the im-
age. We suppose that these 40 variables are so-called “duck-
typed” variables. We intend to explore the actual usage of
duck-typed variables. These variables can be considered as
pollution to any type-inference algorithm.

We have used only intra-procedural analysis in our algo-
rithm. Application of more complex inter-procedural analy-
sis would certainly improve the results.

We take into account neither the usage of dynamic fea-
tures nor type predicates in Smalltalk. This means that mes-
sage sends like perform:, become:, isNil are not treated in any
special way.

Although our approach imposes minimal overhead, there
are a couple drawbacks when it comes to the virtual ma-
chine.

We are not able to access all the types that were met at
runtime. In practice, frequently used methods and types are
always present in the machine code zone with filled caches.
However, uncommon types may not be present. Indeed, if
a method was executed a single time, it may have been
interpreted and hence not provide any type. In addition, the
machine code zone has a fixed size. Hence, when the zone is
full, the garbage collector frees one quarter of the machine
code zone, starting from the least used to the most used
methods, losing all the type information present. To solve
partially that garbage collection problem, we doubled the
size of the machine code zone for our experiments.

Another problem is that the runtime type information
provides only a subset of the concrete types. For instance,
if a method is present in Collection, and the current code uses
it only in OrderedCollection and Set, the type feedback will
provide an array with OrderedCollection and Set as types and
will not provide the abstract type (Collection) nor the other
concrete types, such as Array or Dictionary.

7. Conclusion and future work
Having a type information at compile time can be useful
when performing program maintenance tasks. In order to
provide accurate information, type inference algorithms are
often very complex, and still they suffer from the problem of
false positives.

In this paper we have presented a simple heuristic that
aims to produce precise type information by using easily ac-
cessible information from inline caches. The approach needs
no instrumentation, thus imposes minimal execution over-
head. The proposed heuristic was assessed by implemented
prototype for Pharo Smalltalk. We have focused our atten-
tion not only on inferring the correct type of the variable,

but also the correct hierarchy, since more than half of the
variables have an interface understood by more than five in-
dependent hierarchies.

The proposed heuristic tends to work quite well both for
library and project-related types, and produces reasonably
correct results. Also, it produces better results than a similar
approach, which has more requirements.

We intend to explore possible directions for improving
proposed heuristic, i.e., exploring lexical similarities be-
tween the variable name and class names.

Acknowledgements
We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the project “Agile
Software Analysis” (SNSF project No. 200020-162352, Jan
1, 2016 - Dec. 30, 2018).

This work was supported by Ministry of Higher Educa-
tion and Research, Nord-Pas de Calais Regional Council,
CPER Nord-Pas de Calais/FEDER DATA Advanced data
science and technologies 2015-2020.

We thank Eliot Miranda for helping us to implement the
primitives we added in the Pharo VM and reviewing all our
related commits.

References
[1] O. Agesen. The Cartesian product algorithm. In W. Olthoff,

editor, Proceedings ECOOP ’95, volume 952 of LNCS, pages
2–26, Aarhus, Denmark, Aug. 1995. Springer-Verlag.

[2] O. Agesen, J. Palsberg, and M. I. Schwartzbach. Type infer-
ence of SELF: Analysis of objects with dynamic and multiple
inheritance. In O. Nierstrasz, editor, Proceedings ECOOP ’93,
volume 707 of LNCS, pages 247–267, Kaiserslautern, Ger-
many, July 1993. Springer-Verlag.

[3] E. Allende, O. Callaú, J. Fabry, É. Tanter, and M. Denker.
Gradual typing for Smalltalk. Science of Computer Program-
ming, Aug. 2013.

[4] D. An, A. Chaudhuri, J. Foster, and M. Hicks. Dynamic
inference of static types for Ruby. In Proceedings of the 38th
ACM Symposium on Principles of Programming Languages
(POPL’11), pages 459–472. ACM, 2011.

[5] V. P. Araya, A. Bergel, D. Cassou, S. Ducasse, and J. Laval.
Agile visualization with Roassal. In Deep Into Pharo, pages
209–239. Square Bracket Associates, Sept. 2013.

[6] C. Bera, S. Ducasse, A. Bergel, D. Cassou, and J. Laval.
Handling exceptions. In Deep Into Pharo, page 38. Square
Bracket Associates, Sept. 2013.

[7] B. Boehm and V. R. Basili. Software defect reduction top 10
list. Computer, 34(1):135–137, Jan. 2001.

[8] P. Bunge. Scripting browsers with Glamour. Master’s thesis,
University of Bern, Apr. 2009.

[9] A. Chiş, T. Gîrba, and O. Nierstrasz. The Moldable Debug-
ger: A framework for developing domain-specific debuggers.
In B. Combemale, D. Pearce, O. Barais, and J. J. Vinju, edi-
tors, Software Language Engineering, volume 8706 of Lecture

Notes in Computer Science, pages 102–121. Springer Interna-
tional Publishing, 2014.

[10] J. Davies, D. M. Germán, M. W. Godfrey, and A. Hindle.
Software bertillonage: Finding the provenance of an entity.
In MSR’11: Proceedings of the 8th International Working
Conference on Mining Software Repositories, pages 183–192,
2011.

[11] L. P. Deutsch and A. M. Schiffman. Efficient implementation
of the Smalltalk-80 system. In Proceedings POPL ’84, Salt
Lake City, Utah, Jan. 1984.

[12] S. Ducasse, T. Gîrba, M. Lanza, and S. Demeyer. Moose: a
collaborative and extensible reengineering environment. In
Tools for Software Maintenance and Reengineering, RCOST
/ Software Technology Series, pages 55–71. Franco Angeli,
Milano, 2005.

[13] S. Ducasse, M. Lanza, and S. Tichelaar. Moose: an Exten-
sible Language-Independent Environment for Reengineering
Object-Oriented Systems. In Proceedings of CoSET ’00 (2nd
International Symposium on Constructing Software Engineer-
ing Tools), June 2000.

[14] H. Eertink and D. Wolz. Symbolic execution of LOTOS
specifications. Memoranda Informatica 91-47, TIOS 91/016,
University of Twente, May 1991.

[15] H. Fernandes and S. Stinckwich. Morphic, les interfaces
utilisateurs selon squeak, Jan. 2007.

[16] B. Foote and R. E. Johnson. Reflective facilities in Smalltalk-
80. In Proceedings OOPSLA ’89, ACM SIGPLAN Notices,
volume 24, pages 327–336, Oct. 1989.

[17] J. D. Gannon. An experimental evaluation of data type con-
ventions. Commun. ACM, 20(8):584–595, Aug. 1977.

[18] T. Gîrba. The Moose book, 2010.

[19] S. Hanenberg. An experiment about static and dynamic type
systems: Doubts about the positive impact of static type sys-
tems on development time. SIGPLAN Not., 45(10):22–35,
Oct. 2010.

[20] U. Hölzle, C. Chambers, and D. Ungar. ECOOP’91 Euro-
pean Conference on Object-Oriented Programming: Geneva,
Switzerland, July 15–19, 1991 Proceedings, chapter Optimiz-
ing dynamically-typed object-oriented languages with poly-
morphic inline caches, pages 21–38. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 1991.

[21] P. Lutz and T. W. F. A controlled experiment to assess the
benefits of procedure argument type checking. IEEE Trans.
Softw. Eng., 24(4):302–312, Apr. 1998.

[22] C. Mayer, S. Hanenberg, R. Robbes, E. Tanter, and A. Stefik.
An empirical study of the influence of static type systems
on the usability of undocumented software. SIGPLAN Not.,
47(10):683–702, Oct. 2012.

[23] R. Milner. A theory of type polymorphism in programming.
Journal of Computer and System Sciences, 17:348–375, 1978.

[24] N. Milojković and O. Nierstrasz. Exploring cheap type in-
ference heuristics in dynamically typed languages. In Pro-
ceedings of the 2016 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and
Software, 2016. To Appear.

[25] M. P. Odgaard. Javascript type inference using dynamic anal-
ysis. Master’s thesis, Aarhus University, 2014.

[26] J. K. Ousterhout. Scripting: Higher level programming for the
21st century. IEEE Computer, 31(3):23–30, Mar. 1998.

[27] F. Pluquet, A. Marot, and R. Wuyts. Fast type reconstruction
for dynamically typed programming languages. In DLS ’09:
Proceedings of the 5th symposium on Dynamic languages,
pages 69–78, New York, NY, USA, 2009. ACM.

[28] P. Rapicault, M. Blay-Fornarino, S. Ducasse, and A.-M.
Dery. Dynamic type inference to support object-oriented
reengineering in Smalltalk, 1998. Proceedings of the
ECOOP ’98 International Workshop Experiences in Object-
Oriented Reengineering, abstract in Object-Oriented Technol-
ogy (ECOOP ’98 Workshop Reader forthcoming LNCS).

[29] M. Salib. Faster than C: Static type inference with Starkiller.
In in PyCon Proceedings, Washington DC, pages 2–26.
SpringerVerlag, 2004.

[30] B. Spasojević, M. Lungu, and O. Nierstrasz. Mining the
ecosystem to improve type inference for dynamically typed
languages. In Proceedings of the 2014 ACM International
Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software, Onward! ’14, pages 133–142,
New York, NY, USA, 2014. ACM.

[31] S. A. Spoon and O. Shivers. Demand-driven type inference
with subgoal pruning: Trading precision for scalability. In
Proceedings of ECOOP’04, pages 51–74, 2004.

[32] S. A. Spoon and O. Shivers. Dynamic data polyvariance using
source-tagged classes. In R. Wuyts, editor, Proceedings of
the Dynamic Languages Symposium’05, pages 35–48. ACM
Digital Library, 2005.

[33] D. Ungar and R. B. Smith. Self: The power of simplicity.
In Proceedings OOPSLA ’87, ACM SIGPLAN Notices, vol-
ume 22, pages 227–242, Dec. 1987.

	Introduction
	Related work
	Static analysis
	Dynamic analysis

	Gathering of dynamic type information with minimal overhead
	Dynamic type information gathering
	Execution of message sends
	Special cases
	Extracting types from inline caches

	Type Inference
	Dynamic information
	Hierarchy-Based approach

	Evaluation
	Guessed and ``near-guessed'' types
	Incorrectly-guessed types
	Hierarchy-Based Approach

	Comparison with EATI

	Threats to validity
	Conclusion and future work

