
Framework-Aware Debugging with Stack Tailoring
Matteo Marra
mmarra@vub.be

Vrije Universiteit Brussel

Guillermo Polito
guillermo.polito@univ-lille.fr

Univ. Lille, CNRS, Centrale Lille, Inria,
UMR 9189 , CRIStAL, Lille, France

Elisa Gonzalez Boix
egonzale@vub.be

Vrije Universiteit Brussel

Abstract
Debugging applications that execute within a framework is
not always easy: the call-stack offered to developers is often
a mix-up of stack frames that belong to different frameworks,
introducing an unnecessary noise that prevents developers
from focusing on the debugging task. Moreover, relevant
application code is not always available in the call-stack be-
cause it may have already returned, or is available in another
thread. In such cases, manually gathering all relevant infor-
mation from these different sources is not only cumbersome
but also costly.

In this paper we introduce Sarto, a call-stack instrumenta-
tion layer that allows developers to tailor the stack to make
debugging framework-aware. The goal is to improve the
quality and amount information present in the call-stack to
reduce debugging timewithout impacting the execution time.
Sarto proposes a set of six stack operations that combined
hide irrelevant information, introduce missing information,
and relate dispersed debugging sources before this is fed to
the debugger.

We validate Sarto by applying it to four application cases
using inherently different frameworks: unit testing, web
server, remote promises and big data processing. We show-
case our experiences in using Sarto in the different frame-
works, and perform some performance benchmarks to demon-
strate that Sarto does not generate noticeable overhead when
instrumenting a call-stack. We also show that our solution
reduces by half the amount of data stored to debug similar
exceptions happening in a parallel setup.

CCS Concepts: • Software and its engineering → Ap-
plication specific development environments; Integrated and
visual development environments; Error handling and recov-
ery; Software testing and debugging.

Keywords: stack manipulation, domain specific debugging,
debugging support

ACM Reference Format:
Matteo Marra, Guillermo Polito, and Elisa Gonzalez Boix. 2021.
Framework-Aware Debugging with Stack Tailoring. In Proceedings
of Proceedings of the 16th ACM SIGPLAN International Symposium on
Dynamic Languages (DLS ’20). ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

DLS ’20, November 17, 2020, Virtual, USA
2021. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Applications often use libraries and frameworks to solve
common tasks and focus on the application’s concern. Li-
braries and frameworks solve problems in a wide range of
domains: from unit testing (e.g., the xUnit family of frame-
works) to scalable parallel execution (e.g., Apache Spark and
Hadoop Map/Reduce), passing through concurrency (e.g.,
Akka actors) or persistence (e.g., Hibernate).

Using an online debugger to debug applications that exe-
cute within a framework is not always easy: an online debug-
ger presents the developer with a call-stack representing a
chain of method activations, also known as contexts or stack
frames, containing runtime information (e.g., the values of
variables, and the exact methods/classes/functions found
during execution). Although for many programs inspecting
the call-stack is enough to find the cause of a bug, applica-
tions using frameworks find their call-stacks polluted with
framework-specific code: application frames and framework
frames are interleaved on the stack. Developers then need
to understand how to read and navigate such call-stacks, a
problem that is worsened by the mix and match of many
frameworks in a single application, or the parallel and dis-
tributed nature of such frameworks.
Much work in literature proposes debugging solutions

tailored to single frameworks. For instance, there are differ-
ent approaches for debugging actor execution [2, 11, 17], or
for debugging distributed parallel execution [9, 13]. Other
solutions, such as the moldable debugger [4], provide a more
general approach to enable domain-specific debugging by
offering different views on the call-stack, that are customiz-
able by developers. This is also a common approach taken by
Integrated development environments (IDEs) to offer debug-
ging support to a variety of languages (e.g., Eclipse1, Chrome
DevTools2). Modern IDEs typically communicate with a de-
bugging instrumentation layer on top of the runtime system
via a debugger protocol. In this way, if a different debug-
ger needs to be attached, the runtime does not have to be
changed. This allows IDEs like Eclipse to offer different views
to a call-stack and even to filter stack frames based on pre-
defined properties like packages. However, these solutions
are either not applicable to different domains, or they are
specific to a tool.

1http://www.eclipse.org/eclipse/debug
2https://developers.google.com/web/tools/chrome-devtools

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
http://www.eclipse.org/eclipse/debug
https://developers.google.com/web/tools/chrome-devtools

DLS ’20, November 17, 2020, Virtual, USA Marra et al.

In this paper we revisit the concept of a call-stack to enable
a framework-aware debugging experience. Application de-
velopers debug a call-stack that is previously tailored to the
framework(s) they are using, and has the possibility to dive in
the original call-stack in case they are interested in the frame-
work’s code. To perform such tailoring we propose Sarto, a
call-stack instrumentation layer that framework developers
use to hide, show or relate debugging information within the
context of a framework execution. More concretely, Sarto
proposes a set of six call-stack operations to (1) cut and (2)
concatenate call-stacks, (3) insert framework-specific stack
frames, and, when given more than a call-stack, (4) compare
two call-stacks to check if they are similar, (5) calculate a
delta (similar to a diff between two call-stacks), and (6) apply
such delta to other similar call-stacks.

We implemented Sarto in Pharo Smalltalk, and we applied
it to four different frameworks: HTTP, unit testing, promises,
and Big Data parallel execution.
We present a two-fold evaluation of our approach. First,

we show our experience in adapting a complex framework
to Sarto, and in debugging a tailored application. Second,
we conduct performance benchmarks to show that our ap-
proach is still practical and efficient. Our benchmarks show
that Sarto is also a practical approach, since it does not in-
troduce noticeable overhead during normal debugging, and
that using delta stacks instead of full call-stacks improves de-
bugger performance in parallel and distributed applications.

2 Motivation
Despite the fact that stack traces are key in understanding
the execution of a program, finding the root cause of bugs
remains difficult. Raw call-stacks are difficult to read: appli-
cation frames and framework frames are interleaved in the
stack, although most developers are often (if not only) con-
cerned about their own code. Moreover, certain important
information may be absent from such a call-stack because it
may be contained in methods that already returned or that
were executed in another thread. Finally, when debugging
parallel or distributed applications, important debugging in-
formation is scattered in different call-stacks that users need
to manually relate. This section details such issues by means
of four different use cases.

2.1 Case 1: Debugging Web Servers
Web servers are frameworks that listen for network HTTP
requests, and dispatch the handling of such requests to the
corresponding application code. If an error occurs in the
application, the call-stack presents the Web server’s stack
frames below the application’s frames. Figure 1 shows an
example of such a call-stack when debugging a failing exe-
cution in the context of the Zinc HTTP framework of Pharo.
The top two frames of the stack are application frames while
the rest, under the dashed red line, are framework frames.

When stepping in this execution, the developer easily ends
up in framework-related frames.

Figure 1. Call stack when debugging a failing HTTP server
in Pharo

We say in this case that the debugger offers irrelevant
information to the developer. The information about frame-
work frames is not needed to understand the failing user code,
and just adds noise to the debugging experience. Debuggers
in mainstream IDEs (e.g., Eclipse’s debugger) offer filtering
operations to hide such framework frames in the stack. Such
filters are either based on a number of predefined charac-
teristics such as type and location (i.e., whether the class of
the called method is in one of the project’s dependencies, or
it is part of given packages) or delegated to the application
developer, who may not have enough knowledge to do it
correctly.
It is the framework developer who has the knowledge

about the framework internals, but she has no control on
how the stack should be shaped when debugged.

2.2 Case 2: Debugging Unit Tests
Consider a unit test being explicitly called by the developer
for debugging purposes. The test fails and the debugger
stops on the failing assertion. When debugging this unit
test execution, developers are exposed to a call-stack that
interleaves application frames and framework frames: the
bottom of the stack has application code calling the testing
framework, followed by frames of the testing framework,
and finally at the top of the stack there is the failing test
frame. While the framework frames are not interesting to
the application developer, there is one particular method

Framework-Aware Debugging with Stack Tailoring DLS ’20, November 17, 2020, Virtual, USA

that could increase the amount of information for debugging:
the setup method. This method activation is usually either
hidden in between the framework stack frames, or is not even
present in the stack anymore. However, the setup method
is important for the developer to reason about the execution
of the unit test as it contains information on how the test
fixture was initialized.

In this case, the debugger misses information: the stack
frames with relevant information are hidden or absent in the
stack (e.g., the setup and teardown methods).

2.3 Case 3: Debugging Promise Executions
Promises are a recurrent programming abstraction in concur-
rent languages to reconcile asynchronous communication
with return values [3]. Many mainstream languages have
adopted support for promises, e.g., Java, .NET, Scala andmore
recently JavaScript. A promise represents the result of an
asynchronous operation that may, or may not, execute on a
different thread. When such execution succeeds, the promise
is resolved with a value; if it fails, the promise is marked as
failed. Developers add callbacks to handle both succeeding
and failing resolutions.

Consider a promise created as in Listing 1. The developer
creates a promise from a closure. The promise is executed
on a different thread and is resolved later, possibly with a
failure. In the example, the promise does a division by the
argument n, and a callback is added to intercept failures and
open a debugger.

PromiseRunner>>promiseDivision: n
promise := [1 / n] promise.
promise onFailure: [:err | err debug].

PromiseRunner new promiseDivision: 0.
Listing 1. A failing promise

Let us consider that a promise is created capturing the
value n = 0. When debugging this failed promise, developers
find themselves with a stack that includes only the promise
execution, and not the frames that lead to the creation of
the promise, so they cannot trace back the origin of the
value zero. This happens because the promise execution
and the promise creation happen in different threads with
different call-stacks. Moreover, the stack frame that created
the promise is not available anymore because it returned
right after creating the promise.
In this case, the debugger is again missing information

that can be dispersed over different call-stack(s): part of
the application code, potentially related to the error, is in
another thread or has already finished executing. This ob-
servation lead to different domain-specific debugging tech-
niques whose goal is to reconstruct causal relations in asyn-
chronous communication to offer an asynchronous track
trace [7, 12, 18]. In this paper, we explore a more general
solution to relate information present on different stacks.

2.4 Case 4: Debugging Parallel Executions
Consider again an error happening multiple times when
resolving certain HTTP requests in an HTTP server. HTTP
servers are classically resilient, and will provide a 500 Internal
Server Error as response, staying available to resolve the next
request. When an internal server error happens multiple
times, debugging those problems requires understanding
how those errors are related, as their cause may be related.
Even if those call-stacks are identical or even similar, the
debugger shows no relation between them. It is up to the
developer to verify whether they are related, combine them,
debug them singularly, or to abstract information from all of
the different exceptions. The information about the bug is
again dispersed over different similar call-stacks.
A similar issue happens in the context of debugging Big

Data frameworks. In a Big Data framework, operations on
a certain data set are executed in parallel on a cluster of
machines, over different portions of the data set. Parallel
executions (e.g., for Map/Reduce frameworks) then generate
multiple call-stacks.
In both cases, the debugging information is dispersed

over many call-stacks. To solve this problem, Marra et al. [13]
propose a debugging technique tailored for Map/Reduce
that aggregates similar exceptions happening in a parallel
Map/Reduce application. In this work, we build on that solu-
tion and generalize it to other frameworks.

2.5 Problem Statement
As mentioned in the introduction, modern IDEs are built
around the concept of a common protocol to decouple the
IDE and runtime systems, facilitating the construction of new
tools. In particular, debuggers communicate via a debugger
protocol with a debugging infrastructure layer which exposes
the necessary information from the runtime, e.g., threads,
stack frames, etc. However, the current debugging solutions
do not tackle all the recurring problems identified when
debugging user code executing within a framework.
In particular, we identify three problems: developers are

exposed to (i) irrelevant, (ii) missing or (iii) dispersed in-
formation about a bug. In the first case, stack traces are
overloaded, presenting more information than needed. In
the second and third cases, useful debugging information
about framework code is not visible, or is missing from the
current call-stack. When debugging information is dispersed
over many similar call-stacks, due to an error in a parallel or
long resilient execution, developers also need to manually
relate the information present in the different call-stacks.

3 Sarto: a Call-Stack Instrumentation Layer
for Framework-Aware Debugging

In this work we revise how the debugger and the runtime
collaborate to enable a framework-aware debugging expe-
rience. We propose a call-stack instrumentation layer that

DLS ’20, November 17, 2020, Virtual, USA Marra et al.

tailors call-stacks based on framework information. Frame-
work developers hook into this instrumentation layer to hide,
show or relate debugging information within the context of
a framework execution. More concretely, we propose Sarto:
a debugging instrumentation layer with a set of six on-stack
operations. These operations transform the call-stack be-
fore it is given to the debugger. As a result, the debugger
exposes framework-specific information when debugging a
particular framework without having to adapt the underly-
ing language or runtime.

In this section, we first present a general overview of the
stack operations, and then describe how the different opera-
tions are used to tailor the call-stacks of four different frame-
works: HTTP server, unit testing, execution of promises,
and parallel execution in a big data context. In particular,
we describe how they are used to hide useless information,
display useful information, and relate dispersed debugging
information.

Terminology. Before delving into the specifics of each
operation, we provide our definition of a call-stack and of
stack frames. A call stack is a linked list of stack frames. A
stack frame represents the activation of a method or function:
it holds a reference to the method and the current program
counter. Each stack frame references the stack frame that
generated it (i.e., its sender or caller), its arguments, the
receiver (i.e., self or this), and the local variables. Figure 2
shows a stack frame, with all the references it can hold. A
stack frame also references a value stack for intermediate
results, not relevant to the scope of this paper, hence not
depicted in the figure.

Method
arguments
temporary variables
receiver

…

sender

Figure 2. Description of a stack frame.

3.1 The Stack Operations
Sarto presents six stack operations to manipulate (one or
more) call-stacks, framework-tailoring the debugging infor-
mation presented by the call-stack. Table 1 briefly summa-
rizes the proposed operations.

Stack cutting. The stack cutting operation takes a call-
stack and produces a new call-stack by removing all stack
frames in between framework exit and entry points, thus
hiding irrelevant framework stack frames. We call framework
entry point a framework stack-frame that was invoked by
application code. Inversely, we call framework exit point a
framework stack-frame that invokes application code.
Figure 3 illustrates a call-stack where user code invokes

framework code, and in turn framework code invokes user

Table 1. Overview of stack operations

Operation Description

Stack cutting Produces a new call-stack by
filtering out framework code.

Crafting a stack frame
Produces a new call-stack by
inserting a custom stack frame in
between two other frames.

Concatenating stacks
Produces a new call-stack from two
call-stacks to simulate a sequential
execution.

Stack Comparison
Compares two exception stacks to
determine if they represent two
similar exceptions.

Delta Stack Calculation
Produces a delta stack containing
only the differences between two
similar stacks.

Delta Stack Application Produces a call-stack from an
original stack and a delta stack.

...

…

Exception >> signal:

Framework >> CallBack

User >> method

Framework >> APICall

Exception Frame

User Code

Framework Exit Point

Framework Code

Framework Entry Point

User Code

...

...

Figure 3. Representation of a call stack, marking each frame
as user code, framework entry/exit point or framework code.

code in a callback. This call-stack presents a sequence of
stack frames internal to the framework. In this example, the
call to the framework API generated by the user method is
the framework entry point, and the method that performs
the callback to user code is the framework exit point.
Framework entry and exit points are explicitly marked

by framework developers in framework code with method
annotations (cf. Section 4). Cutting all framework code be-
tween exit and entry points hides all framework code, letting
developers concentrate on their application code. Still, entry
and exit points are kept in the call-stack to make it explicit
that a framework is involved.

Crafting a stack frame. The crafting a stack frame op-
eration produces a new call-stack that contains a custom
stack frame inserted in between two other stack frames, thus
introducing information that was otherwise missing. As ex-
plained in Section 2.2, this is the case of methods that already
returned or were called in a different thread.

Framework-Aware Debugging with Stack Tailoring DLS ’20, November 17, 2020, Virtual, USA

Framework developers define a method that will either
substitute or go under the framework exit point. In this way,
application developers debug call-stacks that are augmented
with relevant information.

…

Exception >> signal:

Framework >> CallBack

Framework >> AbstractedMethod

Exception Frame

User Code

Framework Exit Point

Crafted Context

Figure 4. Representation of a call stack, with a crafted con-
text inserted before the framework exit point.

Figure 4 displays the stack of Figure 3, where the exit point
was substituted with a custom context. To avoid incompati-
bility among stack frames, the stack frames under the exit
point are automatically excluded from the call-stack.

Concatenating stacks. The stack concatenation opera-
tion produces a call-stack by concatenating two different
call-stacks, thus reconciling two dispersed executions and
giving the illusion of a single sequential execution. This is
the case of, for example, the call-stack of the remote reso-
lution of a promise (cf. Section 2.3), or more in general, the
call-stack of a user code callback within the remote execution
of a framework.

Framework >> CallBack

Exception >> signal:

…

User >> method

Framework >> APIRemoteCall

...

Thread A Thread B

...

Figure 5. Representation of two call stacks during a failing
remote execution of a framework call.

Consider Figure 5, displaying two call stacks related to two
threads: thread A, in which the framework exit point calls
back user code, that then generates an exception; thread
B, that presents the call stack including the original user
call to the framework entry point. The stack concatenating
operation, links the two call stacks using the entry and exit
point, present and marked in both the call stacks. In this way,
while debugging the developers will see an unique call stack,
that includes both the exception raised by the framework
exit point, and the user code leading to the framework entry
point, implicitly hiding the framework frames that e.g., take
care of the network communication.

Stack comparison. The stack comparison operation ana-
lyzes two call-stacks and determines whether two call-stacks
are similar. This is useful in combination with the remain-
ing two operations(delta stack calculation and delta stack
application), explained in following paragraphs. Call-stack

Exception A Stack Exception B Stack

Framework >> CallBack

DivideByZero >> signal:

…

UserApp >> [:x | x/0]

DivideByZero >> signal:

UserApp >> [:x | x/0]

Framework >> CallBack

…

Figure 6. Representation of two call stacks upon two similar
exceptions.

…

MyApplication>> [divisor/dividend]

…

divisor: 1
dividend: 0
self: anApplication (#123)

…

MyApplication>> [divisor/dividend]

…

divisor: 2
dividend: 0
self: anApplication (#123)

Figure 7. Two stack frames and their variables, in the calcu-
lation of the delta stack.

comparison identifies similar call-stacks among those that
are dispersed across a parallel or distributed execution, or
across two or more different executions. This information
can then be displayed to application developers, or be used
by the debugger to e.g., optimize network transfers.

Two call-stacks are considered similar when they are struc-
turally the same, as in the case of Figure 6. More precisely:
two call-stacks are similar when, traversing their frames in
pair, they present the same sequence of method calls, and in
each pair of stack frames the program counter is the same.
Variable values such as receiver or arguments nor their types
are taken into account.

Delta stack calculation. The delta stack calculation oper-
ation takes two call-stacks and produces a shrunk call-stack
that contains only the values that differ from the two call-
stacks. Given two similar call-stacks, frames are traversed
in pair and all their associated values are compared (i.e.,
receiver, arguments and temporary variables). When they
differ, the different values are stored in the delta.
For example, consider Figure 7 showing two similar call-

stacks, where each frame has different values. In the example,
the dividend and the application are equivalent, but the two
divisors differ. Figure 8 shows the resulting delta stack calcu-
lation for the frame analyzed above. Instead of the full frame,
only the list of values that make up the delta is kept. The first
variable (divisor), that was 1 in one stack and 2 in the other,
is included in the delta. The other two variables (dividend
and self) were not different, so they are substituted with a
placeholder (marked as # in the figure).

Since only the values that differ are kept, and not the origi-
nal one, the delta calculation is not a commutative operation.

Applying a delta stack. The apply delta stack operation
produces a new call-stack from a full call-stack and a delta

DLS ’20, November 17, 2020, Virtual, USA Marra et al.

…

2 | # | #

…

Figure 8. The calculated delta stack frame.

stack. The delta stack must have been created from a similar
full call-stack or a copy of it.
In a scenario with many similar remote call-stacks, only

the first must be stored entirely. All subsequent similar call-
stacks are stored as delta stacks instead. Applying the delta
stack injects each of the values present in the delta into the
original stack. A debugger is set-up quickly and, in case of
remote debugging, without transferring the entire call-stack
many times over the network.

3.2 Debugging Framework Code with Sarto
In the remainder of this section we describe how Sarto’s stack
operations apply to the four described cases reducing useless
debugging information, augmenting with useful debugging
information, and relating similar yet dispersed debugging
information.

3.2.1 Hiding Useless Debugging Information. To hide
useless debugging information, we employ the stack cut-
ting operation, and we display its effect when debugging an
HTTP framework. Figure 9 shows the call-stack of a failing
HTTP request in a web server that has been tailored by Sarto.
In the figure, framework frames at the bottom of the stack
are displayed in gray to illustrate the fact that they have
been cut out, while the framework exit point and the user
frames are kept in the debugged stack. Application code is
isolated from framework code in the debugged execution.

MyServerLogic >> handleRequest:

DivideByZero >> signal:

HTTPServer >> authenticateAndDelegateRequest:

HTTPServerDelegate >> handleRequest:

SmallInteger >> /

HTTPServer >> serveConnectionsOn:

... [19]

Figure 9. Representation of the stack upon an exception in
the HTTP Server.

Another practical example is displayed in Figure 10: a unit
test framework scenario. The shown call-stack includes both
framework entry and exit points: the unit testing framework
is invoked by application code, and in turn the framework
code invokes application code. While the call-stack, in the
top frames, has a similar structure to the one of Figure 9, at
the bottom of this stack, after the framework code frames,
there are more application frames before the call to the frame-
work entry point. Using Sarto the call-stack presented to the

developer include only application frames, cutting off the
framework frames between the entry and exit point.

TestResult >> runCaseForDebug:

... [20]

MyTest >> testDivision

DivideByZero >> signal:

TestCase >> runCase

TestCase >> performTest

MyTestRunner >> runTests

TestCase >> debug

SmallInteger >> /

Figure 10. Representation of the stack upon an exception in
an unit test execution.

3.2.2 Displaying Useful Debugging Information. To
illustrate the usage of crafting a stack frame, we extend the
previous unit test framework scenario to augment it with
setup and teardownmethods. The framework inserts a stack
framewith amethod containing the code of the setupmethod
(otherwise not present in the call stack), and then a call to the
actual test. This method will thus show useful information
to the developer, while hiding all of the internal framework
calls. Sarto cuts the call-stack at the framework exit point,
and inserts the crafted frame with the custom setup method
under it. The developer sees the setup next to her test, and
is able to re-execute the setup and the single test without
having to go through any framework code.

3.2.3 Relating Dispersed Debugging Information.
Consider again the case of debugging a promise execution
as explained in Section 2.3. We use the stack concatenation
operation to take both call-stacks and link them at the frame-
work entry and exit points, the promise invocation, and the
callback to the promise resolution respectively. The result
is a single asynchronous stack, exposing both the local and
remote execution contexts, depicted in Figure 11.

DivideByZero >> signal:

PromiseRunner>> [1/0]

PromiseRunner>>myFailingPromise

…

BlockClosure >> promise

Figure 11. Representation of the instrumented stack of a
failing promise, tailored for debugging

Our approach takes inspiration from Leske et al. [12],
who proposed a debugging model for promises in which
the call-stack that leads to the generation of the promise is

Framework-Aware Debugging with Stack Tailoring DLS ’20, November 17, 2020, Virtual, USA

linked to the one of the execution of the promise through
proxies. However, our approach potentially applies not only
to promises but also to other asynchronous execution models
such as the actor model.

Relating similar debugging information. To illustrate
the usage of the delta stack operations (stack comparison,
delta stack calculation, and delta stack application), we ex-
tended Port, our Map/Reduce Big Data framework. Big Data
frameworks present a parallel execution, which may gen-
erate two or more call-stacks with a similar structure but
different values, as shown in Section 2.4. Chances are these
similar call-stacks are different instances of a same prob-
lem or bug, but it is usually the developer’s responsibility to
tell if two call-stacks are similar or not, and to debug them
singularly.
We extended Port to detect similar call-stacks with stack

comparison and create delta-stacks in those cases on the
server side. On the client side where the debugger is de-
ployed, we group all similar call-stacks into one, and we
show the deltas next to it. A representation of such a debug-
ger UI is shown in Figure 12. When the developer selects a
stack frame, the differences in variables are displayed in the
debugger, and the developer can select to debug one of them.
Starting a debugging session in a delta-stack applies it to the
original stack and presents the user with a call-stack that
is a copy of the original call-stack generating the problem.
This avoids the replay of the executions and minimizes the
amount of data that has to be stored (or transferred) for each
of the exceptions.

Exception Stack

Framework >> CallBack

DivideByZero >> signal:

UserApp >> [:x | x/0]

Data

x = 0
x = 1
x = 2
x = 4

Figure 12. Representation of a debugger showing an instru-
mented call-stack, with the different possible variables found
in the delta stacks.

4 Sarto in Practice
In the previous section we defined the 6 call-stack instru-
mentation operations provided by Sarto. By using these op-
erations, framework developers provide a simplified debug-
ging experience to application developers. In this section,
we elaborate on how these operations are used to enable
framework-aware debugging tools.
We implemented our approach as a framework written

for the Pharo3 programming language, a modern imple-
mentation of the classic Smalltalk programming language.
3http://pharo.org

Smalltalk offers a live programming environment, in which
the boundaries between language implementation, runtime,
applications and tools are pretty thin. When an exception
happens or a breakpoint is hit, a debugger is opened. Just be-
fore opening the debugger, the runtime reifies the call-stack
into objects in the heap. Sarto inserts itself between the de-
bugger and the runtime call-stack reification step: reifications
work on the reified call-stack, producing an instrumented
call-stack that is then fed to the debugger. In other runtimes,
instrumentations could be applied in the debugging instru-
mentation layer.

Capturing the call-stack to instrument. To include sup-
port for Sarto, framework developers need to insert instru-
mentation calls in the points where failures may happen. At
these instrumentation points Sarto will force a reification of
the call-stack and capture it for further manipulation. This is
the case of, for example, capturing the call stack of a promise
calling thread to concatenate it later with the promise reso-
lution call-stack.
Sarto supports two instrumentation points: eager stack

captures at some point in the program, and lazy stack cap-
tures at interesting debugging points like breakpoints or
errors. Eager stack capturing is done through a Sarto primi-
tive that interacts with the runtime. Lazy stack capturing is
done, by means of an exception handler. For instance, a web
server developer places an exception handler in the frame-
work exit point before calling application code. In general,
the custom exception handler should be placed anywhere
where it would handle an exception raised in the user code. In
Pharo such exception handler is introduced with the on:do:
method, equivalent to using a try/catch block.

[...] on: Error
do: [:err| StackMachinery manageAndDebug: err].

Defining framework entry and exit points. The frame-
work developer defines framework entry and exit points by
adding method annotations4. The following snippet of code
illustrates how to add such annotation to identify frame-
work exit points. Please note that the procedure to add a
framework entry point is equivalent.

HTTPServerDelegate>>handleRequest: aRequest
<frameworkExitPoint: #HTTP>
...

Defining custom stack frames. The framework developer
adds a custom stack frame by specifying a mapping between
the frame that should be replaced and the method that will
replace it in the call-stack. The replacement method can be
either an existing method or a method constructed on the
4In Smalltalk, a static method annotation is denoted between lower and
greater signs at the beginning of a method definiton

http://pharo.org

DLS ’20, November 17, 2020, Virtual, USA Marra et al.

fly, since Pharo allows to compile methods reflectively at
runtime.
The following code snippets show how to replace the

frame of performTest with an existent method (setUp)
or with one crafted by hand (contextForDebuggingSetup).
The framework developer optionally specifies the program
counter to keep the stack consistent.

TestCase>>initialize
substituteContexts
at: #performTest

put: (SubstituteMethod new methodAt: #setUp})

TestCase>>initialize
substituteContexts at: #performTest

put: (SubstituteMethod new compiledMethodAt:
#contextForDebuggingSetup ; pcAt: #performTest) }).

An optional flag gives the developer enables developers
to keep or hide the given framework entry/exit point in the
call-stack, as shown below. If such flag is set to false, the
crafted stack frame will substitute an entry/exit point.

TestCase>>initialize
substituteContexts
at: #performTest

put: (SubstituteMethod new compiledMethodAt:
#contextForDebuggingSetup ; pcAt: #performTest ;
keepMethod: false) }).

Using stack concatenation. Stack concatenation requires
framework developers to (i) identify framework entry and
exit points, and (ii) explicitly capture the call-stack at an entry
point using an eager stack capture. In the case of concurrent
promises, as shown in Listing 2 we define the framework
entry point in the method promise. We first eagerly cap-
ture the call-stack at the entry point (line 3) and then add
a callback to the promise (line 5). In case of a failure, the
callback will lazily capture the call-stack at that point and
concatenate both call-stacks (line 7). We then forward this
stack to the debugger (line 8).

1 BlockClosure>>promise
2 <frameworkEntryPoint: #Promises>
3 stack := StackMachinery captureStack.
4 promise := Promise from: self.
5 promise onFailureDo: [:err |
6 machinery := StackMachinery new.
7 combinedStack := machinery combineStackOfRemote:

err withLocal: stack.
8 machinery debugError: err withStack: combinedStack)].

Listing 2. Capturing and debugging the stacks of a promise.

Restoring the stack. Our call-stack instrumentation layer
stores the original stack before instrumentation in case a
developer wants to have access to the original framework
frames. When the developer debugs an instrumented call-
stack and requests the full call-stack, the original stack of
the exception is shown and the instrumented call-stack is
discarded.

Debugging with delta stacks. To use delta stacks, the
framework developer lazily captures the call-stacks she is in-
terested in and stores them. If a captured call-stack is similar
to an already stored call-stack, she can add the instrumen-
tation code to calculate the delta stack and store that one
instead.
To illustrate this, we show how delta stacks are used in

the case of multiple consecutive errors happening in a web
server. We also have an analogue, but slightly more complex,
implementation for a parallel execution framework. When
an exception happens, an HTTP server resiliently returns an
error as a response, and continues executing. In our approach,
we store a copy of such call-stack or a delta-stack if applicable
to debug it later.

1 MyRequestHandler>>handleRequest: req
2 [...] on: Error do: [:error |
3 similarError:= errors at: error exceptionID ifFound: [:

similar |
4 compare := stackMachinery compareStackOfException:

error with: similar.
5 compare ifTrue: [delta := errors at: error exceptionID put:

(stackMachinery calculateDeltaStackBetween: error
and: similar.

6 deltas at: error exceptionID put: delta.]]
7 ifNotFound: [errors at: error exceptionID put: error].

Listing 3. Handling errors using delta stacks in an HTTP
server.

Listing 3 shows the code of the request handler of our
web server including support for delta stacks. When an error
happens, the error handler captures the call-stack and checks
if there is already an entry for that call-stack (line 3). If there
is, then #compareStackOfException: is called to check
whether the exceptions are similar (line 4). If they are, a delta
stack is calculated and stored in a different data structure
(line 5). On the client side, the framework developer retrieves
the exceptions and uses StackMachinery»#applyDelta:
delta toException: exception to do the inverse.

5 Implementation Details
In this section, we describe some of the implementation de-
tails of our approach. Since the practical usage was already
described in Section 4, we now focus on how the stack opera-
tions are implemented, as well as how some of the operations
integrate with other debugging models.

Framework-Aware Debugging with Stack Tailoring DLS ’20, November 17, 2020, Virtual, USA

In Pharo, the runtime reifies the call-stack on demand [15],
mostly upon an exception, or when the developer explicitly
requests to debug an execution. As defined in Section 3,
the stack is reified as a linked list of Context objects, that
are linked through the sender variable. A context knows its
method and its its current program counter. It also holds a
reference to the value of the message receiver, all temporary
variables, and arguments. In our implementation, we rely
on the Smalltalk stack API, that offers primitives to cut the
stack at a certain context, as well as methods to create stack
frames and do other kinds of modifications.

5.1 Crafting Stack Frames
Besides the automatic stack frame reification from the run-
time, Pharo supports creating stack frame reifications pro-
grammatically. A Context object is created from a method,
a valid program counter (PC) within that method, and, if
any, the values of the temporary variables. In our current
implementation, we only support crafted stack frames with
methods that either do not use temporary variables, or in
which the PC is set before temporary variables are initialized.
Setting values to temporary variables will be added as future
work.

5.2 Copying Call-stacks
Our call-stack instrumentation layer makes copies of call-
stacks to store or serialize them. We implemented the copy
of the call-stack as a deep copy that avoids copying some
special or sharable objects, such as closures and method
objects.

5.3 Serializing Call-stacks
When remote debugging our parallel execution framework
or debugging a failing promise, two call-stacks need to be
serialized and transferred between processes. Since stack
reifications appear to the language as normal heap allocated
objects, they can be serialized and transferred like any other
object. To serialize, we use Fuel [6], a standard serialization
library in Pharo. For network communication between dif-
ferent threads, we use Zinc5, the same HTTP framework we
presented as use case.

5.4 Applicability in other Languages and Runtimes
Implementing a call-stack instrumentation layer as Sarto in
other runtimes requires the instrumentation layer to have
access to a reification of the call-stack, or to other instrumen-
tation to manipulate the call-stack. Most languages in the
Smalltalk family provide call-stack reifications, which makes
easy porting Sarto to them. Moreover, recent work shows
that a Smalltalk-like call-stack reification is also efficiently
implementable in the Graal VM [16].

5http://zn.stfx.eu/zn/index.html

On the other hand, Sarto could be also implementedwithin
the debugging instrumentation layers in the IDE such as
debugging API of Eclipse or Visual Studio Code: debugger
APIs already include some internal representation of call-
stacks. Instrumentation then may happen on the consumer
of such a representation.

6 Validation
We validate our solution by applying it to four frameworks
with different sets of features and requirements. We first
present an overview of our experiences using Sarto and
subsequently we discuss the performance benchmarks con-
ducted to show that our solution is practical and efficient.
In particular, we show that it does not introduce significant
overhead to the execution or debugging, and the usage of
delta-stacks improves the storage/network usage when de-
bugging Big Data parallel applications.

6.1 Experiences in using Sarto
To validate that our approach works for a variety of differ-
ent frameworks, we implemented it to debug the follow-
ing Smalltalk frameworks: Zinc, an HTTP server frame-
work; SUnit, the classic unit testing framework of Smalltalk;
TaskIt6, a framework for task scheduling (that we adapted
for remote execution); and Port [13], a Map/Reduce frame-
work for Big Data applications. Depending on the debugging
needs of each framework, a different combination of op-
erations from Sarto was used. Table 2 summarizes which
operations are applied for which framework. Three oper-
ations are applied, in different combinations, to all of the
frameworks: stack cutting, crafting a stack frame and con-
catenating stacks. The 𝛥 (delta) Stack operations row, groups
the use of the remaining three operations (stack comparison,
delta stack calculation, and delta stack application). This
is because they are used in combination, and only when
debugging multiple executions that happen either in paral-
lel, or across long computations. In this work, we applied
𝛥Stack operations to the HTTP framework and the Big Data
framework.

Table 2. Usage of basic stack operations on the four frame-
works.

Operation Zinc SUnit TaskIt Port

Stack cutting ✓ ✓ ✓ ✓
Crafting a stack frame ✓ ✓
Concatenating stacks ✓
∆Stack operations ✓ ✓

6https://github.com/sbragagnolo/taskit

http://zn.stfx.eu/zn/index.html
https://github.com/sbragagnolo/taskit

DLS ’20, November 17, 2020, Virtual, USA Marra et al.

6.1.1 Debugging Experience for Port applications. To
show the benefits of using Sarto for debugging, we describe
how it was used for Port applications. Port is a Map/Reduce
framework for Pharo Smalltalk that allows developers to
program and execute Map/Reduce applications in parallel
on different single-threaded machines, deployed locally or
on a cluster. We employ Port because it is (i) the framework
that makes use of most of Sarto’s operations and (ii) it is the
framework that the authors have a prolonged experience in
debugging. We now describe how the different operations
contribute to debugging experience in Port.

Stack cutting. Debugging Port applications happens re-
motely on a copy of the failed execution which can be con-
trolled with Pharo’s online debugger.When execution pauses
(due to a failure or breakpoint), the call-stack presents many
stack frames related to the framework called before the ac-
tual user code, as in the example described in Section 2.1.
This problem is even more evident in Port applications since
they are expressed as two simple functions (i.e., a map and
a reduced) paralellized by the framework. This means that
most stack-frames in the call-stack of a failing map or re-
duce do not correspond to the application developer’s code.
Thanks to Sarto’s stack cutting, not only the developer got a
debugging session focused in the application code, but also
the size of the exception’s stack decreased strongly. This also
reduced the time to show a debugging session to the devel-
oper as less information was transferred over the network.

Crafting a stack frame. Besides stack cutting, crafting
a stack frame helped us to simulate sequentiality between
map and reduce functions for a particular execution (i.e., the
current data partition, etc.) enabling step-by-step debugging
of failed computation. To explain the importance of crafting
while debugging Port applications, consider a simple word
count Map/Reduce application. The map function associates
a line of text from a given file to key/value pairs with the
number of times each word appeared in that line. The reduce
function adds up the values with the same keys to obtain
how many times each word happened in the whole file. If we
debug the map function, the fact that the call was parallelized
by the framework, the actual call of the developer (map
and then reduce) was never explicitly present in the stack.
Crafting a stack frame allows us to improve the debugging
session since it adds a frame simulating the call to map,
followed by a call to reduce. If the developer steps over the
map, the reduce is executed locally, and on the portion of
the data available in the copy of the stack. This enables
simulating how the execution would continue if the code was
correctly fixed, allowing developers to analyze the state of
the execution (and all its variables) in a step-by-step manner.

Stack comparison and Delta Stack operations. Stack
comparison and delta stack operations are crucial in Port to

avoid overwhelming the developer with numerous debug-
ging sessions. When using Port, the same failure may happen
at different times during a single parallel execution depend-
ing on how a dataset is partitioned, or on the nondetermin-
istic behaviour of the parallel execution. When an exception
happens, a debugging session is created and the debugger UI
is presented to the developer’s machine. Originally, develop-
ers would be presented with different debuggers, containing
different (but in fact similar) call-stacks, leaving is to the
developer to determine how and whether they were related.
We employed stack comparison and delta stack calculation
to group similar call-stacks and present a single debugger
whenever possible. Exception raised by the samemethod, but
on different data, are hence grouped, and the developer can
decide which particular execution to debug, without needing
to replay. Delta stacks also enable framework-specific debug-
ging, such as debugging on virtual partition, described by
Marra et al. [13]. This operation helped us to further reduce
at least by half the amount of data that has to be sent over
the network when serializing an exception for debugging (cf.
Section 6.3).

6.1.2 Framework Developer’s Experience. Since Port’s
applications are written around two user-defined functions,
it is easy to clearly identify the entry and exit points to be
able to reason about the different Sarto’s operations, improv-
ing the debugging experience. This was not the case for the
other frameworks. To identify user-defined stack frames in
the other frameworks, we analyzed a series of exceptions
found while implementing Port’s framework code (as Port
employs Zinc, SUnit, and Taskit). By analysing those excep-
tions, we extrapolated the framework entry and exit points
(as identified in Section 3.2) as those methods that actually
performed a call back to user code. To our experience, find-
ing the framework entry/exit point was not particularly time
consuming, since it happened gradually while debugging
the aforementioned frameworks.

Deciding which stack frame to craft, however, was a more
complex task than identifying the framework entry/exit
points, because it requires a higher level of knowledge on
the framework, and the elements to abstract for debugging.
The interface proposed in Section 4 allows developers

to define a crafted stack frame by specifying which method
should be used in the stack frame, and giving control on what
context should be crafted, e.g., whether it should substitute
the exit point. This interface, however, may not be specific
enough in some cases (e.g., setting the PC at a message send
may not be straightforward when the same message may be
sent multiple times in the same crafted method). Thus, our
experiences with Sarto’s crafting method interface indicate
that further application to other frameworks is needed to
identify recurrent patterns to abstract, and to improve the
interface.

Framework-Aware Debugging with Stack Tailoring DLS ’20, November 17, 2020, Virtual, USA

6.2 Performance of the Operations
In this section, we evaluate the performance overhead of
exception handling when using our approach. We do so, by
answering three questions:

1. Do the stack operations impact the time of exception
handling for debugging?

2. Are the stack operations affected when increasing the
size of the stack?

3. Are there advantages when storing a delta stack as
opposed to storing all exceptions?

Setup. We perform our benchmarks using Pharo 8.0, on a
MacBook Pro 2017 with a Intel(R) Core(TM) i7-7567U CPU
@ 3.50GHz and 16 GB of RAM DDR3.

6.2.1 Overhead on Exception Handling. To verify the
performance impact of our solution we compare the time
to handle an exception with our approach and without it
in the Zinc and SUnit frameworks. For Zinc, we setup an
HTTP server (with and without the special handler), and we
measure the time between performing an HTTP post request
through a client, and the moment in which the debugger is
opened. Similarly, for SUnit we measure the time between
running the test and the moment in which the debugger is
opened.

For the purposes of this validation, we extended the debug-
ger to store a timestamp just before it is opened. We perform
the measurement 25 times for each of the frameworks.

Table 3. Time to open a debugger with or without managing
the exceptions. Times in milliseconds.

Framework Managed ErrM Default ErrD

HTTP Framework 71.5 3.1 103.5 7.74
Unit Testing 28.32 1.5 75.08 4.2

Table 3 shows the results of our benchmark: the managed
column represents the average execution when managing
the exception with Sarto, the unmanaged column represents
the average execution time when managing the exception
with the default handler. The error columns represent the
standard error of the mean. Both managing or not managing
an exception show average delays in the order of maximum
103.5 milliseconds, which we consider small enough for an
interactive debugger. Handling an exception with our instru-
mentation layer resulted about 50 milliseconds faster than
the unmanaged one. Although this looks like a performance
improvement, we believe the result is related to traversing
the stack less times. From those results, we conclude that
our instrumentation layer does not introduce a significant
impact in the execution.

6.2.2 Overhead when Increasing Stack Size. This
benchmark measures the influence of the stack size on our
approach. This benchmark is a variation of the previous one,

0

20

40

60

80

100

120

140

160

180

200

1 KB 10 KB 100 KB 1 MB 10 MB 100 MB

Time to open a debugger on promise failure
increasing stack size

Managed
Unmanaged

Figure 13. Runtime of a failing promise, when increasing
the size of the stack.

and we decided to apply it on a third use case: promises
using TaskIt. This use case, in fact, requires a copy of the
call-stack, hence it gives a measure of the overall overhead
of our approach. We measure the time since a promise is
created, until a debugger is opened on a failing promise. Note
that, to avoid the influence of network communication, the
promise is resolved in the same virtual machine that creates
it.
Figure 13 shows the results of our benchmarks. When

increasing the size of the stack our approach does not intro-
duce a significant overhead. The black dashed line represents
the execution time in the absence of our infrastructure (un-
managed), while the blue line represents the execution time
in the presence of Sarto (managed). Both of the trends are lin-
ear to the amount of data, although at first sight it may look
like the two curves are exponential: we have to consider that
the X axis, i.e., the amount of data, is growing exponentially
(by a factor of 10).

6.3 Memory Usage of Delta Stacks
This benchmark determines the advantages of storing a delta
stack as opposed to storing full call-stacks. We performed
this benchmark on the parallel execution framework Port,
integrating our approach into the existent debugging support.
We measure the size of the serialized debugging messages
that a debugger receives from a remote cluster. A debugging
message includes the exception and its full call-stack cut at
the framework exit point. In case of a subsequent exception,
a delta stack is sent instead of the full call-stack.

We compare the behavior of two different applications: the
first one (Simple Error) produces a division by zero during a
map; the second one (Kmeans) is a parallel implementation
of the k-means clustering algorithm to calculate statistics
on previously recorded tweets. We inject an exception while
extracting data from the tweet stream.

DLS ’20, November 17, 2020, Virtual, USA Marra et al.

The first application presents a short call-stack upon ex-
ception, that does not reference heavy data structures, and
shows the basic overhead of our approach. The second ap-
plication, presents a more realistic call-stack that is deeper
and references heavy data structures.
We run our benchmarks with an increasing number of

parallel workers, so the number of exceptions that happen
in parallel increase consequently, and measure the impact
on the size of a single delta.

For the k-means application we run not only with different
numbers of workers, but also on different amounts of data,
increasing the size of the stack. We analyze 250 MB of data
with 2, 4, and 8 workers, and 1 GB of data with 4 workers.
Please note that the benchmarks were executed on a low-
spec processor, so we could not further increase the amount
of workers or data analyzed.

Table 4. Size of debugging event using Delta Stacks. Sizes
are in KB.

Application Nworkers Exceptionsize Deltasize

Simple Error 2 3.505 1.911
Simple Error 4 4.437 1.860
Simple Error 6 3.254 1.845
Simple Error 8 3.744 1.837
Kmeans 250 MB 2 494.667 263.747
Kmeans 250 MB 4 445.053 214.131
Kmeans 250 MB 8 405.888 232.272
Kmeans 1 GB 4 442.416 211.458

Table 4 shows the results of the benchmark on the dif-
ferent scenarios. The first column depicts the scenario, the
second the number of workers, the third the size in KB of
the debugging event including a copy of the full call-stack,
and the last column the size in KB of the debugging event in-
cluding only the delta stack. The first scenario error does not
seem dependent on the number of workers. Also, the size of
the full debugging event is between 3.2 and 4.3 KB, while the
size of the delta debugging event is around 1.8 KB. Although
the numbers are relatively low for both measurements, our
results show two trends: the size of the delta event is from
1.7 to 2.4 times lower than the full debugging event, and the
delta event introduces a basic memory usage of less than 2
KB with small stacks.
The first trend is visible also when running the measure-

ments with the more complex k-means application. As for
the simple error application, the results do not look depen-
dent on the number of workers. We observe the same ratio
between delta event size and full exception: the first is be-
tween 1.7 and 2 times lower than the second. The second
trend, instead, is less visible because the basic overhead of
the delta debugging event is hidden by the bigger size of the
call-stacks.

Finally, when increasing the amount of data we can no-
tice that the size of the debugging event does not grow ac-
cordingly. This is because of further optimizations to the
serialization of the debugging event already present in the
framework: big data structures are resized to fit a certain
limit, so debugging events (and their deltas) cannot grow
unbound.

7 Related work
In this section we describe some of the closest related work
in the field of debugging domain-specific code and domain-
specific debuggers for asyncronous execution and Big Data.

Debugging domain-specific code. There exist several
work about debugging techniques to help developers de-
bug domain specific code. Classical debuggers, such as GDB
or Eclipse’s Debugger, offer some primitives to filter stack
frames. When debugging Python code in GDB, developers
can define different frame filters to hide some stack frames
from the view. Similarly, Eclipse’s debugging support offers
a filtering operation, that based on heuristics (e.g., the file or
package where the executed method was defined), filters out
some stack frames. While these solutions are viable to hide
framework stack frames, they are bound by one heuristic
that does not let framework developers tailor the stack that
will be debugged. Furthermore, these approaches offer no
support for relating debugging information.
The moldable debugger [4] provides different visualiza-

tions of both the call-stack and the debugged method. Devel-
opers extend it to debug different domains such as bytecodes,
parsers or notification systems. The moldable debugger has
its focus set on the tool: debugger extensions and custom
debuggers are mainly implemented by specializing the UI.
Our approach shares with this work the domain-tailoring
objective, where we focus particularly on framework-aware
support in the underlying mechanisms of a debugger. As
such, our approach presents 6 operations that, combined dif-
ferently, can tailor call-stacks not only to display them in a
debugger, but also to improve the performance of debugging
remote applications.
The Chrome DevTools Protocol [8], is a protocol to com-

municate information, including debugging information,
from a runtime to the IDE. It defines a set of primitives
that allow tools to debug different languages, provided that
the information passed to a supported tool follows the cor-
rect specification. Similarly, Keidel et al. [10] propose an
IDE-independent intermediate representation, that can be
used by different IDEs, reducing the amount of IDE plugins
necessary to debug a single language. While these solutions
focus on debugging different languages, or supporting dif-
ferent tools, they do not provide domain-specific solutions
to debug user code within a framework execution.

Framework-Aware Debugging with Stack Tailoring DLS ’20, November 17, 2020, Virtual, USA

Debuggers for asynchronous execution. Debugging
asynchronous executions is difficult, mainly because the ex-
ecution of a program spans over many different threads. In
the case of promises, the thread that creates the promise has
a relationship with the thread that is executing the promise,
but the second is normally not shown in a debugger, that
will allow to debug only the promise execution. Different
domain-specific solutions for better debugging of asynchro-
nous execution have been proposed. Dragos et al. [7] focus
on capturing stack frames at interesting points (such as fu-
ture creation), to show them to the developer when debug-
ging. Similarly, Chrome DevTools [8] supports debugging
of asynchronous stack traces by storing such information
in the stack trace. Other approaches [1, 19] propose a graph
visualization of the state of the promise, based on run-time
information about the asynchronous promise, to help devel-
opers understand the execution. The closest work is Leske
et al. [12] which describe an approach in which the stack of
a failing promise execution is linked with the stack of the
promising thread, at the point of the promise creation. The
developer can then debug a single stack that combines both
the frames leading to the promise creation, and the ones of
the promise execution. While very similar to our approach,
they employ proxies to stack frames in order to link the two
threads. This means that they do not copy stack frames, but
add a proxy to each of the frames. This makes their approach
susceptible to debugging interference due to the use of net-
work communication for every operation that needs to be
done [14]. Furthermore, their approach focuses specifically
on promises, and is not directly adaptable to other frame-
works: they present an approach to concatenate stack of
promises, while our approach provides five other operations
that are combinable and applicable to other scenarios.

Domain specific debuggers for BigData. Several related
work exists in the literature about debugging support for Big
Data frameworks. Most solutions can be classified as either
replay solutions, such as Arthur [5], or online solutions com-
bined with data provenance, such as BigDebug [9]. The first
family of solutions suffer of high replay times. The second
offer online debugging capabilities that partially reduce the
amount of replay by, e.g., inserting simulated breakpoints.
More recently, Marra et al. [13] define a debugging model
to deal with such parallel failures remotely, that involves
serializing the call-stack over the network for debugging. In
their approach, they use different stack operations to reduce
the amount of data serialized over the network, including
stack cutting and crafting stack frames. Interestingly, they
use the concept of composite exceptions to relate exceptions
that happen in parallel, specifically in the case of the same
exception caused in parallel by multiple data. They devise
an approach where, when two similar exceptions happen, so
two or more exceptions that have structurally exactly the
same call-stack, the debugger can calculate some meta-data

to identify one of the two exceptions, so only one full stack
is sent over the network. Similarly, our approach presents
operations applicable to the domain of Big Data, by tailor-
ing call-stacks using Big Data frameworks to minimize the
transfer of data and remove the noise of extra stack frames.
However, our solution applies not only to Big Data but to a
broader spectrum of frameworks.

8 Conclusion
Debugging user code within framework code is not always
easy: the call-stack presents irrelevant information, with
many stack frames that the developer is not interested in.
On the other hand, the call-stack misses important informa-
tion, with some relevant methods not present at all in the
call stack, because they already returned or they executed
in another thread. Furthermore, when multiple exceptions
happen in parallel or over a sequence of time, limited support
is provided to relate the different exceptions in order to ease
debugging.
In this paper, we explored introducing different stack

operations in the debugging instrumentation layer to en-
able framework-aware debugging. We introduced Sarto, a
call-stack instrumentation layer that improves debugging of
user code within framework code with six call-stack opera-
tions, to tailor the stack accordingly to the framework usage.
With Sarto, framework developers define different entry/exit
points in their framework code to delimitate the information
that may be hidden during debugging. They define custom
stack frames to augment call-stacks with missing informa-
tion. Our solution also offers operations to compose different
call-stacks (e.g., to unify the execution of the promise with
the promising stack), and to relate and compose different
exceptions.
We applied our solution to four different use cases: an

HTTP web server, a Unit Testing framework, Promise Ex-
ecutions, and Parallel Executions. They all use a different
subset of the 6 operations. To show the validity of our solu-
tion we presented our experience in both instrumenting and
debugging one of the frameworks (Port) using Sarto. Then,
we conducted performance benchmarks to show that our
approach does not add noticeable overhead in exception han-
dling, and that delta stacks actually improve performance
when debugging multiple exceptions, reducing the memory
footprint by half when compared to storing the full stack of
all the exceptions.

Acknowledgments
We would like to thank the anonymous reviewers for their
useful feedback. We would also like to thank Stefan Marr for
his early input and Kevin De Porre for his help reviewing
the paper. Matteo Marra is a PhD-SB fellow at the Fonds
Wetenschappelijk Onderzoek - Vlaanderen - Project number:

DLS ’20, November 17, 2020, Virtual, USA Marra et al.

1S63418N. We are also grateful to the European Smalltalk
User Group (http://www.esug.org) for their financial support.

References
[1] Saba Alimadadi, Di Zhong, Magnus Madsen, and Frank Tip. 2018.

Finding Broken Promises in Asynchronous JavaScript Programs. Proc.
ACM Program. Lang. 2, OOPSLA, Article 162 (Oct. 2018), 26 pages.
https://doi.org/10.1145/3276532

[2] Elisa Gonzalez Boix, Carlos Noguera, Tom Van Cutsem, Wolfgang
De Meuter, and Theo D’Hondt. 2011. REME-D: A Reflective Epi-
demic Message-Oriented Debugger for Ambient-Oriented Applica-
tions. In Proceedings of the 2011 ACM Symposium on Applied Computing
(TaiChung, Taiwan) (SAC ’11). Association for Computing Machin-
ery, New York, NY, USA, 1275–1281. https://doi.org/10.1145/1982185.
1982463

[3] Jean-Pierre Briot, Rachid Guerraoui, and Klaus-Peter Lohr. 1998. Con-
currency and Distribution in Object-Oriented Programming. 30, 3
(Sept. 1998), 291–329. https://doi.org/10.1145/292469.292470

[4] Andrei Chis, Marcus Denker, Tudor Gorba, and Oscar Nierstrasz. 2015.
Practical domain-specific debuggers using the Moldable Debugger
framework. Computer Languages, Systems & Structures 44 (2015), 89 –
113. https://doi.org/10.1016/j.cl.2015.08.005 Special issue on the 6th
and 7th International Conference on Software Language Engineering
(SLE 2013 and SLE 2014).

[5] Ankur Dave,Matei Zaharia, Scott Shenker, and Ion Stoica. 2013. Arthur:
Rich Post-Facto Debugging for Production Analytics Applications.
Technical report, University of California (2013).

[6] Martín Dias, Mariano Martinez Peck, Stéphane Ducasse, and Gabriela
Arévalo. 2011. Clustered Serialization with Fuel. In Proceedings of the
International Workshop on Smalltalk Technologies (Edinburgh, United
Kingdom) (IWST ’11). ACM, New York, NY, USA, Article 1, 13 pages.
https://doi.org/10.1145/2166929.2166930

[7] Iulian Dragos. 2013. Stack Retention in Debuggers For Concurrent
Programs. http://iulidragos.com/assets/papers/stack-retention.pdf

[8] Google. [n.d.]. Chrome DevTools Protocol. https://chromedevtools.
github.io/devtools-protocol/

[9] Muhammad Ali Gulzar, Matteo Interlandi, Seunghyun Yoo, Sai Deep
Tetali, Tyson Condie, Todd Millstein, and Miryung Kim. 2016. BigDe-
bug: Debugging Primitives for Interactive Big Data Processing in Spark.
In Proceedings of the 38th International Conference on Software Engi-
neering (Austin, Texas) (ICSE ’16). ACM, New York, NY, USA, 784–795.
https://doi.org/10.1145/2884781.2884813

[10] Sven Keidel, Wulf Pfeiffer, and Sebastian Erdweg. 2016. The IDE
Portability Problem and Its Solution in Monto. In Proceedings of the
2016 ACM SIGPLAN International Conference on Software Language
Engineering (Amsterdam, Netherlands) (SLE 2016). Association for
Computing Machinery, New York, NY, USA, 152–162. https://doi.org/
10.1145/2997364.2997368

[11] Ivan Lanese, Naoki Nishida, Adrián Palacios, and Germán Vidal. 2018.
CauDEr: A Causal-Consistent Reversible Debugger for Erlang. In Func-
tional and Logic Programming (FLOPS’18, Vol. 10818). Springer, 247–263.
https://doi.org/10.1007/978-3-319-90686-7_16

[12] Max Leske, Andrei Chiş, and Oscar Nierstrasz. 2016. A Promising
Approach for Debugging Remote Promises. In Proceedings of the 11th
Edition of the International Workshop on Smalltalk Technologies (Prague,
Czech Republic) (IWST’16). ACM, New York, NY, USA, Article 18,
9 pages. https://doi.org/10.1145/2991041.2991059

[13] Matteo Marra, Guillermo Polito, and Elisa Gonzalez Boix. 2020. A
debugging approach for live Big Data applications. Science of Computer
Programming 194 (2020), 102460. https://doi.org/10.1016/j.scico.2020.
102460

[14] Matteo Marra, Guillermo Polito, and Elisa Gonzalez Boix. 2018. Out-
Of-Place Debugging: a debugging architecture to reduce debugging

interference. The Art, Science and Engineering of Programming 3, 2
(October 2018), pp. 3:1–3:29. https://doi.org/10.22152/programming-
journal.org/2019/3/3

[15] Eliot Miranda, Clément Béra, Elisa Gonzalez Boix, and Dan Ingalls.
2018. Two Decades of Smalltalk VM Development: Live VM Devel-
opment through Simulation Tools. 57–66. https://doi.org/10.1145/
3281287.3281295

[16] Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld. 2019. Graal-
Squeak: Toward a Smalltalk-Based Tooling Platform for Polyglot Pro-
gramming. In Proceedings of the 16th ACM SIGPLAN International Con-
ference on Managed Programming Languages and Runtimes (Athens,
Greece) (MPLR 2019). Association for Computing Machinery, New
York, NY, USA, 14–26. https://doi.org/10.1145/3357390.3361024

[17] Kazuhiro Shibanai and TakuoWatanabe. 2017. Actoverse: A Reversible
Debugger for Actors. In Proceedings of the 7th ACM SIGPLAN Interna-
tional Workshop on Programming Based on Actors, Agents, and Decen-
tralized Control (Vancouver, BC, Canada) (AGERE 2017). ACM, New
York, NY, USA, 50–57. https://doi.org/10.1145/3141834.3141840

[18] Terry Stanley, Tyler Close, and Mark Miller. 2009. Causeway: A
message-oriented distributed debugger. Technical Report. HP Labs.
1–15 pages.

[19] Haiyang Sun, Daniele Bonetta, Filippo Schiavio, and Walter Binder.
2019. Reasoning about the Node.Js Event Loop Using Async Graphs.
In Proceedings of the 2019 IEEE/ACM International Symposium on Code
Generation and Optimization (Washington, DC, USA) (CGO 2019). IEEE
Press, 61–72.

http://www.esug.org
https://doi.org/10.1145/3276532
https://doi.org/10.1145/1982185.1982463
https://doi.org/10.1145/1982185.1982463
https://doi.org/10.1145/292469.292470
https://doi.org/10.1016/j.cl.2015.08.005
https://doi.org/10.1145/2166929.2166930
http://iulidragos.com/assets/papers/stack-retention.pdf
https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/
https://doi.org/10.1145/2884781.2884813
https://doi.org/10.1145/2997364.2997368
https://doi.org/10.1145/2997364.2997368
https://doi.org/10.1007/978-3-319-90686-7_16
https://doi.org/10.1145/2991041.2991059
https://doi.org/10.1016/j.scico.2020.102460
https://doi.org/10.1016/j.scico.2020.102460
https://doi.org/10.22152/programming-journal.org/2019/3/3
https://doi.org/10.22152/programming-journal.org/2019/3/3
https://doi.org/10.1145/3281287.3281295
https://doi.org/10.1145/3281287.3281295
https://doi.org/10.1145/3357390.3361024
https://doi.org/10.1145/3141834.3141840

	Abstract
	1 Introduction
	2 Motivation
	2.1 Case 1: Debugging Web Servers
	2.2 Case 2: Debugging Unit Tests
	2.3 Case 3: Debugging Promise Executions
	2.4 Case 4: Debugging Parallel Executions
	2.5 Problem Statement

	3 Sarto: a Call-Stack Instrumentation Layer for Framework-Aware Debugging
	3.1 The Stack Operations
	3.2 Debugging Framework Code with Sarto

	4 Sarto in Practice
	5 Implementation Details
	5.1 Crafting Stack Frames
	5.2 Copying Call-stacks
	5.3 Serializing Call-stacks
	5.4 Applicability in other Languages and Runtimes

	6 Validation
	6.1 Experiences in using Sarto
	6.2 Performance of the Operations
	6.3 Memory Usage of Delta Stacks

	7 Related work
	8 Conclusion
	Acknowledgments
	References

