
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
LD
I
*

Ar
tifact *

A
E
CZero-Overhead Metaprogramming

Reflection and Metaobject Protocols
Fast and without Compromises

Stefan Marr
RMoD, Inria, Lille

France
stefan.marr@inria.fr

Chris Seaton
Oracle Labs / University of Manchester

United Kingdom
chris.seaton@oracle.com

Stéphane Ducasse
RMoD, Inria, Lille

France
stephane.ducasse@inria.fr

Abstract
Runtime metaprogramming enables many useful applications and
is often a convenient solution to solve problems in a generic
way, which makes it widely used in frameworks, middleware, and
domain-specific languages. However, powerful metaobject proto-
cols are rarely supported and even common concepts such as re-
flective method invocation or dynamic proxies are not optimized.
Solutions proposed in literature either restrict the metaprogram-
ming capabilities or require application or library developers to
apply performance improving techniques.

For overhead-free runtime metaprogramming, we demonstrate
that dispatch chains, a generalized form of polymorphic inline
caches common to self-optimizing interpreters, are a simple opti-
mization at the language-implementation level. Our evaluation with
self-optimizing interpreters shows that unrestricted metaobject pro-
tocols can be realized for the first time without runtime overhead,
and that this optimization is applicable for just-in-time compila-
tion of interpreters based on meta-tracing as well as partial evalua-
tion. In this context, we also demonstrate that optimizing common
reflective operations can lead to significant performance improve-
ments for existing applications.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]; D.3.4 [Processors]: Optimization

Keywords Metaprogramming, Reflection, Proxies, Metaobject
Protocols, Meta-tracing, Partial Evaluation, Virtual Machines, Just-
in-Time Compilation

1. Introduction
Reflection, dynamic proxies, and metaobject protocols provide de-
velopers with mechanisms to provide generic solutions that abstract
from concrete programs. They are widely used to build frame-
works for functionality such as persistence and unit testing, or
as a foundation for so-called internal domain-specific languages
(DSLs) [Fowler 2010]. In dynamic languages such as Python,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PLDI’15, June 13–17, 2015, Portland, OR, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3468-6/15/06. . . $15.00.
http://dx.doi.org/10.1145/2737924.2737963

Ruby, or Smalltalk, the runtime metaprogramming facilities en-
able DSLs designers to taylor the host language to enable more
concise programs. Metaobject protocols (MOPs), as in Smalltalk
or CLOS, go beyond more common metaprogramming techniques
and enable for example DSL designers to change the language’s be-
havior from within the language [Kiczales et al. 1991]. With these
additional capabilities, DLSs can for instance have more restrictive
language semantics than the host language they are embedded in.

However, such runtime metaprogramming techniques still ex-
hibit severe overhead on most language implementations. For ex-
ample, for Java’s dynamic proxies we see 6.5x overhead, even so
the HotSpot JVM has one of the best just-in-time compilers. Until
now, solutions to reduce the runtime overhead either reduce expres-
siveness of metaprogramming techniques [Masuhara et al. 1995,
Chiba 1996, Asai 2014] or burden the application and library de-
velopers with applying optimizations [Shali and Cook 2011, De-
Vito et al. 2014]. One of the most promising solutions so far is
trace-based compilation, because it can optimize reflective method
invocation or field accesses. However, we found that MOPs still
require additional optimizations. Furthermore, trace-based compi-
lation [Bala et al. 2000, Gal et al. 2006] has issues, which have
prevented wider adoption so far. For instance, programs with many
unbiased branches can cause trace explosion and very bimodal per-
formance profiles. Another issue is the complexity of integrating
tracing into multi-tier just-in-time compilers, which has being in-
vestigated only recently [Inoue et al. 2012].

To remove the overhead of reflection, metaobject protocols, and
other metaprogramming techniques, we explore the applicability of
dispatch chains as a simple and sufficient optimization technique
for language implementations. Dispatch chains are a generaliza-
tion of polymorphic inline caches [Hölzle et al. 1991] and allow
optimization of metaprogramming at the virtual machine level. In
essence, they allow the language implementation to resolve the ad-
ditional variability introduced by runtime metaprogramming and
expose runtime stability to the compiler to enable optimization. We
demonstrate that they can be applied to remove all runtime over-
head of metaprogramming. Furthermore, we show that they are ap-
plicable to both major directions for the generation of just-in-time
(JIT) compilers for interpreters, i. e., meta-tracing [Bolz et al. 2009]
and partial evaluation [Würthinger et al. 2013].

The contributions of this paper are as follows:1

• For the first time, we demonstrate the optimization of an un-
restricted metaobject protocol so that all reflective overhead is
removed.

1 Artifact available: http://stefan-marr.de/papers/pldi-mar
r-et-al-zero-overhead-metaprogramming-artifacts/

Author Copy 1 2015/4/13

http://stefan-marr.de/papers/pldi-marr-et-al-zero-overhead-metaprogramming-artifacts/
http://stefan-marr.de/papers/pldi-marr-et-al-zero-overhead-metaprogramming-artifacts/

1 class ActorDomain : Domain {
2 fn writeToField(obj, fieldIdx, value) {
3 if (Domain.current() == this) {
4 obj.setField(fieldIdx, value);
5 } else {
6 throw new IsolationError(obj);
7 }
8 }
9 /* ... */ }

Listing 1. ActorDomain defines a metaobject that ensures that
actors write only to objects that belong to them. The example is
given in pseudo code for some dynamic object-oriented language.

• We identify dispatch chains as a simple and sufficient technique
to remove the runtime overhead of metaprogramming.

• We evaluate them in the context of just-in-time meta-compilers
for interpreters that identify their compilation units based on
either meta-tracing or partial evaluation.

• We show that existing Ruby libraries can benefit directly with-
out developer intervention.

2. Background
This section motivates the usefulness of metaobject protocols and
assesses the cost of related runtime metaprogramming techniques
on modern VMs. Furthermore, it briefly introduces self-optimizing
interpreters as the foundation for our experiments.

2.1 Metaobject Protocols and DSLs
Metaobject protocols (MOPs) enable the adaptation of a language’s
behavior [Kiczales et al. 1991] by providing an interface that can
be used by application and library developers. Among other use-
cases, MOPs are useful as a foundation for internal DSLs. For
example, a DSL to simplify concurrent programming might try to
free programmers from low-level issues such as race conditions.
Frameworks built in systems without a MOP such as Akka2 do
not guarantee isolation between actors, and so expose the risk of
race conditions. This leaves the burden of correctness with the
programmer.

The ownership-based metaobject protocol (OMOP) proposed
by Marr and D’Hondt [2012] is an example of such a MOP. It
provides framework and DSL implementers with abstractions to
guarantee, e. g., isolation between actors. It provides an interface to
change the semantics of state access and method invocation so that
one can guarantee that an actor accesses only objects that belong
to it. With the OMOP, an actor framework can associate each
actor with an instance of the class ActorDomain (cf. listing 1).
On line 2, this metaobject implements the writeToField()
handler that is called for each field write and ensures that an object
can only be written if it belongs to the current domain. If the test
on line 3 succeeds, line 4 performs the write to the object’s field,
otherwise an exception is raised.

This example illustrates the conciseness and power of such run-
time MOPs. Furthermore, it indicates that removing the runtime
overhead of reflective operations such as setField() and the
overall cost of the writeToField() handler is crucial for per-
formance. Otherwise, every field access would have a significant
performance cost.

2.2 State of the Art in Metaprogramming
Reflection in Common Systems. As mentioned earlier, reflec-
tive operations are used for a wide range of use cases. In dy-

2 akka, Typesafe, access date: 28 October 2014 http://akka.io/

namic languages such as Python, Ruby, or Smalltalk, they are
widely used to solve problems in a concise and generic way. For
instance, idiomatic Ruby embraces metaprogramming so that re-
flective method invocation and #method_missing are used in
common libraries. As concrete example, in the Ruby on Rails web
framework, the TimeWithZone class wraps a standard time value
and uses #method_missing to delegate method calls that do not
involve the time zone to the standard Time object. This delega-
tion pattern is also common to Smalltalk. In existing implementa-
tions of both languages this imposes a performance overhead com-
pared to direct method calls. A work-around often used is to have
#method_missing generate methods on the fly to perform the
delegation directly on subsequent calls, but this obfuscates the more
simple underlying logic—that of redirecting a method call.

Another example from the Ruby ecosystem is psd.rb,3 a widely
used library for processing Photoshop images. The Photoshop file
format supports multiple layers that are then composed using one
of about 14 functions that accepts two colors and produces a single
composed color. As the particular compose operation to run is
determined by the file contents and not statically, a reflective call
is used to invoke the correct method. Without optimization for
reflective operations, this is a severe performance bottleneck.

In the case of psd.rb, this has led to the development of
psd_native, which replaces performance critical parts of psd.rb
with C extensions. However this raises the barrier to contribution to
the library and reduces maintainability. Other approaches to avoid
the reflective call include creating a class for each compose opera-
tion and having each define a compose method. However, since this
leads to very repetitive code, metaprogramming is generally pre-
ferred in the Ruby community and considered idiomatic [Brown
2009, Olsen 2011].

Performance. Workarounds such as psd_native and pat-
terns to avoid metaprogramming foster the intuition that runtime
metaprogramming is slow. To verify this intuition, we investigated
reflective method invocation and dynamic proxies in Java 8, with
its highly optimizing HotSpot JVM, and PyPy 2.3, with its meta-
tracing just-in-time compiler. We chose those two to compare their
different approaches and get an impression of the metaprogram-
ming overhead in widely available VMs.

For Java, we used the generic Method.invoke() API from
java.lang.reflect and the MethodHandle API from
java.lang.invoke, which was introduced as part of the
invokedynamic support for dynamic languages in Java 7 [Rose
2009]. Our microbenchmarks add the value of an object field to the
same object field accessed via a getter method. The getter method
is then either invoked directly or via one of the reflective APIs. The
methodology is detailed in section 4.2.

Compared to the direct method invocation, the invocation via
a MethodHandle causes up to 7x overhead. Only when the
MethodHandle is stored in a static final field, we see no
overhead. Thus, the usability of method handles is rather limited in
normal applications. Language implementations, for which method
handles were designed, use bytecode generation to satisfy this strict
requirement. The java.lang.reflect API is about 6x slower
than the direct method invocation. Its performance is independent
of how the Method object is stored.

Java’s dynamic proxies (reflect.Proxy) have an overhead
of 6.5x. Our microbenchmark uses an object with an add(int b)
method, which reads an object field and then adds the parameter.
Thus, the overhead indicates the cost of reflection compared to a
situation where a JIT compiler can inline the involved operations
normally, and thus eliminate all non-essential operations.

3 psd.rb. Its 180 forks on GitHub indicate wide adoption. Access date: 05
November 2014 https://github.com/layervault/psd.rb

Author Copy 2 2015/4/13

http://akka.io/
https://github.com/layervault/psd.rb

The PyPy experiments were structured similarly. However,
since Python’s object model is designed based on the notion of
everything is a field read, it is simpler to perform reflective method
invocations. In addition, the meta-tracing approach has some ad-
vantages over method-based compilation when it comes to runtime
metaprogramming.

Concretely, neither reflective method invocation nor dynamic
proxies have runtime overhead in PyPy. To identify the limits of
RPython’s meta-tracing [Bolz et al. 2009, Bolz and Tratt 2013], we
experimented with a simple version of the OMOP (cf. section 2.1).
Implemented with proxies, we restricted the MOP to enable re-
definition of method invocations based on the metaobject. While
proxies alone do not show overhead, in this setting we see an over-
head of 49%. The resulting traces show that read operations on the
metaobjects and related guards are not removed from the most in-
ner benchmark loop. Such optimization would require value-based
specialization, e. g., by communicating constants via an API to the
compiler.4 Without such mechanisms, guards remain for all base-
level operations that interact with the MOP and their overhead be-
comes an issue not only for microbenchmarks.

From these experiments, we conclude that current VMs require
better support for runtime metaprogramming, independent of the
underlying JIT compilation technique. While PyPy’s meta-tracing
fares better than HotSpot’s method-based compilation and removes
the overhead of reflective operations and dynamic proxies, it still
requires better support for metaobject protocols such as the OMOP.

2.3 Self-optimizing Interpreters
Self-optimizing interpreters [Würthinger et al. 2012] are an ap-
proach to language implementation that uses abstract-syntax trees
(ASTs). We use them for our experiments detailed in section 4.1. In
such interpreters, AST nodes are designed to specialize themselves
during execution based on the observed values. Similar to bytecode
quickening [Casey et al. 2007, Brunthaler 2010], the general idea
of self-optimizing interpreters is to replace a generic operation with
one that is specialized and optimal to the context in which it is used.
For example, one can speculate on future executions doing similar
operations, and thus, specialize an operation on the types of its ar-
guments or cache the result of method or field lookups in dynamic
languages. Speculating on types of values has multiple benefits. On
the one hand it avoids boxing or tagging of primitive values, and
on the other hand it enables the specialization of generic operations
to optimal versions for the observed types. When applied consis-
tently, local variables can be specialized as well as object slots in
the object layout [Wöß et al. 2014]. Complex language constructs
can also be optimized. For instance Zhang et al. [2014] demon-
strate how to optimize Python’s generators based on AST special-
ization and peeling of generators. Similarly, Kalibera et al. [2014]
use views on R vectors to realize R’s complex data semantics with
good performance.

While this technique enables the optimization of interpreter per-
formance based on the high-level AST, it enables also the gener-
ation of efficient native code by meta JIT compilers. Truffle is a
Java framework for these interpreters. Combined with the Graal
JIT compiler [Würthinger et al. 2013], interpreters can reach per-
formance that is of the same order of magnitude as Java on top
of HotSpot [Marr et al. 2014]. To reach this performance, Truf-
fle applies partial evaluation on the specialized ASTs to determine
the compilation unit that corresponds to a relevant part of a guest-
language’s program, which is then optimized and compiled to na-
tive code. This approach is somewhat similar to RPython’s meta-
tracing, because it also works on the level of the executing inter-

4 RPython provides the promote() operation for this purpose, but it is not
exposed to the Python-level of PyPy.

preter instead of the level of the executed program as with tradi-
tional JIT compilers. With either meta-tracing or partial evaluation
as JIT compiler techniques, self-optimizing interpreters can be used
to build fast language implementations.

3. Using Dispatch Chains for Zero-Overhead
Metaprogramming

This section discusses how dispatch chains are applied so that run-
time metaprogramming has zero overhead. As a first step, we detail
how simple reflective operations are optimized. Only afterwards,
we discuss how more complex metaobject protocols are optimized.
Throughout, we contrast partial evaluation and meta-tracing to clar-
ify their different needs.

3.1 Reflective Operations
For this study, we show how reflective method invocation, object
field access, global variable access, and dynamic handling of un-
defined methods can be realized. These operations are common to
dynamic languages such as JavaScript, PHP, Ruby, and Smalltalk.
A subset of these operations is also found in more static languages
such as C# or Java.

To emphasize that the presented techniques are language ag-
nostic, we use pseudo code of a dynamic object-oriented language.
In this language, methods can be invoked reflectively by calling
obj.invoke(symbol, args), which use the symbol of the
method name to look up the method and invoke it with the given
arguments array. In case a method is invoked on an object that
does not implement it, the methodMissing(symbol, args)
method is called instead, which for instance allows to implement
dynamic proxies.

For reflective field access, objects have getField(idx) and
setField(idx, value) methods, which allows a program
to read and write fields based on an the field’s index. Global
variables are accessed with the getGlobal(symbol) and
setGlobal(symbol, value) methods. To simplify the dis-
cussion in this paper, we assume that reflective methods on objects
are not polymorphic themselves. However, this is not a requirement
and in our case studies, reflective methods can be overridden like
any other method.

Optimizing Reflective Method Invocation with Dispatch Chains.
Direct method calls are done based on the method name that is fixed
in the program text, and consequently represented as a constant in
the AST. For such calls, the number of methods invoked at a spe-
cific call site in a program is typically small [Deutsch and Schiff-
man 1984, Hölzle et al. 1991]. The reflective call with invoke()
takes however a variable argument. For optimization, we assume
that the number of different method names used at a reflective
call site are also small. Thus, the idea is to apply a generalization
of polymorphic inline caches [Hölzle et al. 1991] for the method
name, too. This generalization is called a dispatch chain.

Dispatch chains are a common pattern in self-optimizing inter-
preters. They generalize polymorphic inline caches from a mecha-
nism to record type information and avoid method lookup overhead
in dynamic languages to a mechanism to cache arbitrary values as
part of AST nodes in a program. Therefore, in addition to call sites,
they apply to a wide range of possible operation sites. For instance,
the Truffle DSL [Humer et al. 2014] uses dispatch chains to resolve
the polymorphism of different node specializations, e. g., for ba-
sic operations such as arithmetics. The object storage model [Wöß
et al. 2014] uses dispatch chains to resolve the polymorphism of
different shapes. Here, we explore their applicability for reflective
operations to resolve their extra degree of variability and expose
information about stable runtime behavior to enable JIT compiler
optimizations.

Author Copy 3 2015/4/13

Invoke

'inc

[]

'once

reflective
call site

variable
read

create
array

Symbol
Dsptch

Uninit
Dsptch

Method
Dsptch

Uninit
Dsptch

CallNode
Calculator.inc(.)

symbol
dispatch chain

method
dispatch chain

symbol literal

'inc Calculator

calc

symbol literal

Figure 1. AST for: calc.invoke('inc, ['once]) with
dispatch chain at the invoke() call site. The first level of the
dispatch chain records the observed symbols for method names
as indicated with the 'inc symbol as part of the cached sym-
bol node. The second level then is a classic polymorphic inline
cache for direct method dispatch, which caches the objects class
(Calculator) for comparison and refers to the CallNode rep-
resenting the actual method for direct invocation.

Uninit
Dsptch

Cached
Dsptch

Uninit
Dsptch

Cached
Dsptch

Cached
Dsptch

Uninit
Dsptch

…

target
node

target
node

target
node

key

value value value
key key

initial state chain with one caching node chain with two caching nodes

Figure 2. Buildup of a dispatch chain. A chain starts with only an
uninitialized node, which specializes itself to a cached node and
a new uninitialized node. A cached node determines whether it
applies based on a key value kept in the node. If it applies, the target
node is executed, otherwise it delegates to the following node in the
chain.

For invoke(symbol, args), we need to embed the dis-
patch chain for the reflective invocation as part of the call site of
invoke() in the AST. Figure 1 depicts the AST for a reflective
invocation of inc() on a Calculator object with an argument
array containing the symbol 'once. The Invoke node represents
the call site as part of the method in which invoke() is used.
Beside having the subexpression nodes to determine the object, the
symbol for the method name, and the argument array, the Invoke
node also has a nested dispatch chain. On the first level, we record
the method name symbols and on the second level, the dispatch
chain records the object’s classes observed at runtime and cache
the corresponding lookup results, i. e., the methods to be invoked.

Generally, a dispatch chain consists of a small number of linked
nodes (cf. fig. 2). Except the last node, each one keeps a key and a
target node. The key is checked whether it currently applies, e. g.,
the key is the method name and it is compared to the symbol used
for reflective invocation. The target node can be an arbitrary node
for instance a nested dispatch chain, a basic operation, or a method
call node that is execute in case the check succeeded. Otherwise, the
next node in the chain is executed. The last node is an uninitialized
node that specializes itself on execution. Usually, the number of
nodes in a chain are limited and if the limit is reached the chain
is either terminated by or completely replaced with a generic node
that can handle all dynamic values.

In the context of reflective method invocation, the nested dis-
patch chain fulfills two purposes. On the one hand, it allows an
interpreter to cache method lookups also for reflective invocation.
By nesting the dispatch chains, it becomes possible to first resolve

the variability of the symbol representing the method name, and
then use a classic polymorphic inline cache. On the other hand,
the dispatch chain directly exposes runtime constants to an opti-
mizing compiler. In the ideal situation, a call site records only a
single method name symbol as in our example, and is used only
with one class of objects, which makes it a monomorphic call site.
This enables compilers to use the constant values of the dispatch
chain nodes to for instance inline methods and benefit from the op-
timization potential enabled by it.

Optimizing methodMissing(). Since dispatch chain nodes
can do arbitrary operations, methodMissing(symbol,args)
can be handled by a special node for the method dispatch chain.
This means, in case the method lookup fails, a MethodMissing
node is added to the chain, and methodMissing() becomes part
of the normal dispatch and benefits from the related optimizations.
The dispatch(.) method sketched in listing 2 is part of this
node. First, line 8 checks whether the node is applicable by testing
that the class of the object is the expected one. If it is the expect
class, the methodMissing() handler needs to be called. On
line 9, the argument array is constructed to pass the object, the
method name, and the original arguments of the method call to the
handler, which is finally called on line 10. In case the object is of
another class, execution is delegated to the next node in the chain.

1 class MethodMissing(DispatchNode):
2 final _expected_class # cache key
3 final _method_name # name of missing method
4 final _mth_missing # methodMissing() handler
5 child _next # next node in chain
6

7 def dispatch(frame, obj, args):
8 if obj.get_class() == _expected_class):
9 args_arr = [_method_name, args]

10 return _mth_missing.call(frame,obj,args_arr)
11 else:
12 return _next.dispatch(frame, obj, args)

Listing 2. methodMissing() handler. It is a special node class
for the standard method dispatch chain. The cache key is the re-
ceiver’s class. The cache’s value is the handler method, which can
then be invoked directly.

With this implementation approach, the failing lookup that tra-
verses the whole superclass chain is avoided and the lookup of the
methodMissing() handler is avoided as well. Furthermore, the
handler is exposed as a constant to facilitate the same optimizations
as for direct method calls.

Reflective Field and Global Access Operations. To optimize
field accesses as well as accesses to global variables, we also
rely on dispatch chains. First a dispatch chain is used to resolve
the indirection used by the reflective operation and then the ac-
tual operation node can specialize itself in that context. This
means, for the field access operations getField(idx) and
setField(idx, value), we use a dispatch chain on the field
index, which works similar to the dispatch chain for method names.
The target nodes, i. e., the field read or write node can then special-
ize itself, for instance based on the type stored in the object field.

For accessing globals with the getGlobal(symbol) and
setGlobal(symbol, value) methods, the dispatch chain is
on the symbol and thus corresponds to the one for reflective method
invocation. The target nodes in this case are the nodes for accessing
the global, which for instance can cache the association to avoid a
runtime lookup in the hash table of globals.

Partial Evaluation versus Meta-Tracing. Independent of whether
partial evaluation or meta-tracing is used, the interpreter perfor-
mance benefits from the use of dispatch chains. Similar to classic

Author Copy 4 2015/4/13

1 class DirectInvokeNode(AstNode):
2 final _method_name # name of method
3 child _dispatch # dispatch chain
4

5 def execute(frame, obj, args):
6 if jit.is_tracing(): # only used while tracing
7 method = _lookup_method(obj)
8 if method:
9 return method.call(frame, obj, args)

10 else:
11 return _method_missing(frame, obj, args)
12 else: # uses the chain while interpreting
13 return _dispatch.dispatch(frame, obj, args)
14

15 @jit.elidable
16 def _lookup_method(obj):
17 return obj.get_class().lookup(_method_name)
18

19 def _method_missing(frame, obj, args):
20 hdlr = obj.get_class().lookup("methodMissing")
21 args_arr = [_method_name, args]
22 return hdlr.call(frame, obj, args_arr)

Listing 3. Sketch of direct method invocation and
methodMissing() handling during tracing. During nor-
mal interpretation, the dispatch chain is used, only during tracing
a simple direct path is used that relies on @jit.elidable for
optimization.

polymorphic inline caches, their use avoids for instance repeated
lookup overheads.

When compilation is based on partial evaluation to determine
the compilation unit, the dispatch chains are one of the main mech-
anisms to communicate optimization opportunities to the compiler.
Since the chains expose the cached keys and values as constants to
the optimizer, they enable further optimizations such as inlining.

For meta-tracing, the situation is slightly different. While dis-
patch chains speed up the interpreter, it can be beneficial to by-pass
them during the trace-recording and rely for instance on RPython’s
annotations to communicate constant values and elidable function
invocations to the optimizer. While this slows down trace record-
ing, it can result in fewer guards in optimized traces.

Considering the methodMissing() example, during tracing
it is beneficial to avoid the dispatch chain and instead use a fast
path for direct method invocation, including explicit handling of
the methodMissing() case.

Listing 3 sketches the implementation of direct method invo-
cation. The execute() method on line 5 first checks whether
the interpreter currently records a trace for compilation, or ex-
ecutes normally. If it is recording a trace, it performs a direct
lookup of the method to be invoked on line 7. The function
_lookup_method() is marked as elidable (cf. line 15), so that
the tracer knows that the function returns the same value for the
same parameters. Thus, in the same trace, the lookup does not need
to be repeated. Assuming the lookup failed, _method_missing()
is called and the methodMissing() handler is invoked (cf.
line 19). This corresponds to the implementation in the dispatch
chain sketched in listing 2. The difference here is that the trace
does not need to record the chain traversal, and thus results in
fewer runtime guards.

Generally this means that if interpreter performance is not rele-
vant, dispatch chains are not always necessary to optimize reflective
operations for meta-tracing. This confirms also the brief assessment
that tracing eliminates the overhead of reflective method invocation
and dynamic proxies in PyPy (cf. section 2.2).

3.2 Optimizing the OMOP
To optimize metaobject protocols such as the OMOP, dispatch
chains can be used to resolve the runtime-variability of metaob-
jects, and thus, to expose the desired optimization opportunities.
On the base level, all operations for method invocation, field, and
global accesses trigger the intercession handlers of the metaob-
ject,5 which is linked to a base-level object. With dispatch chains
over metaobjects, the intercession handler corresponding to a spe-
cific operation can be exposed as constants to the optimizers. Thus,
similar to the reflective operations that use dispatch chains over
method names or field indexes, the base-level operations dispatch
over metaobjects. The main conjecture here is that a program uses
only a fraction of the possible dynamicity, which leads to simi-
lar opportunities as classic polymorphic inline caches provide for
method calls.

In addition to exposing intercession handlers as runtime con-
stants, the use of dispatch chains provides a simple mechanism to
handle the standard semantics for method invocations, field, and
global accesses, too. In the case where an intercession handler has
not been customized, the dispatch chain can hold the node imple-
menting the standard semantics instead of having to dispatch to
the intercession handler implementing those reflectively. Thereby,
the overhead of the MOP is reduced also during interpretation
and without requiring compiler optimizations. This solution cor-
responds to implementing methodMissing() as part of the dis-
patch chain. A brief example is given and detailed in fig. 3.

Partial Evaluation versus Meta-Tracing. To optimize metaob-
ject protocols such as the OMOP, the compilation technique does
not change the requirements for the implementation. In our experi-
ence, the dispatch chains work well for partial evaluation and meta-
tracing. They give the necessary flexibility to determine the runtime
constants and thereby enable various compiler optimization.

4. Evaluation
To assess whether the use of dispatch chains is sufficient to remove
the runtime overhead of metaprogramming, we evaluate the perfor-

5 Since the OMOP does not support meta recursion, code execute on the
meta level can use separate ASTs containing only the direct operations that
are not changeable by metaobjects. This avoids runtime overhead at the
meta level.

Write
Field

1

+

1

field
write

variable
read

method
call

Actor
Dom

Unin

CallNode
ActorDomain.

writeToField()metaobject
dispatch chain

metaobject
dispatch chain

int
literal

int
literal

fieldA

Unin standard method
dispatch chain

trigger intercession handler

actor
Std
Dom

Figure 3. AST for actor.fieldA := 1 + 1, a field write on
an actor object. The method invocation and field write operation are
subject to the OMOP. Assuming that the actor object is owned by
the ActorDomain (cf. listing 1), the dispatch chain caches the
corresponding writeToField() intercession handler and calls
it instead of writing to the object field. The + method invocation
however is done on the 1 literal, which is owned by the standard
metaobject. Thus, the dispatch chain can directly nest the standard
method dispatch chain for the invocation.

Author Copy 5 2015/4/13

mance of a Smalltalk extended with the OMOP (cf. section 2.1),
measure the performance impact on JRuby and the psd.rb image
processing library, and examine the native code generated for re-
flective operations and dynamic proxies. The evaluation focuses
on the peak performance, i. e., stable state performance for a given
benchmark.

4.1 SOM Smalltalk and JRuby+Truffle
For our experiments, we rely on SOM, a Smalltalk designed for
teaching and research on VM techniques [Haupt et al. 2010], and
JRuby+Truffle [Seaton et al. 2014], a Ruby implementation for the
JVM that leverages the Truffle framework to outperform the other
Ruby implementations.

SOM: Simple Object Machine. SOM is designed to avoid inessen-
tial complexity, but includes fundamental language concepts such
as objects, classes, closures, and non-local returns. In Smalltalk
tradition, control structures such as if or while are defined as
polymorphic methods on objects and rely on closures and non-local
returns. For the experiments it also implements common reflective
operations such as method invocation and field access, as well as
the OMOP.

To cover meta-tracing as well as partial evaluation as JIT com-
pilation techniques, we use two SOM implementations. SOMMT is
implemented in RPython and the corresponding tool-chain gener-
ates a JIT compiler based on meta-tracing. SOMPE is implemented
in Java on top of the Truffle framework and the Graal compiler
with its partial evaluation approach. Both are self-optimizing inter-
preters and reach performance of the same order of magnitude as
Java on top of the HotSpot JVM [Marr et al. 2014], and thus, are
suitable to assess the performance of runtime metaprogramming.

JRuby+Truffle. Since SOM is rather academic, we also inves-
tigate the performance potential in the context of JRuby+Truffle,
which aims to be a fully compliant Ruby implementation, and thus
is significantly more complex. Being part of the JRuby code base,
it is comparable with other industrial-strength language implemen-
tations from the perspective of complexity. On a set of numerical
and semi-numerical benchmarks, JRuby+Truffle outperforms Ruby
2.1 and other Ruby implementations on most benchmarks, often by
more than an order of magnitude.6

To gain performance that is of the same order of magnitude as
Java, JRuby+Truffle uses Truffle and self-optimization for instance
to type-specialize basic operations such as arithmetics and com-
parisons [Humer et al. 2014], to optimize object field access [Wöß
et al. 2014], or to remove the overhead of debugging related func-
tionality [Seaton et al. 2014].

Similar to other dynamic languages such as Smalltalk, it offers
a wide range of metaprogramming facilities including reflective
method invocation with #send, checks whether a method is imple-
mented with #respond_to?, and #method_missing to han-
dle the case that a method is not implemented. These operations are
optimized with dispatch chains based on the approach discussed in
section 3.

4.2 Methodology
To account for the non-determinism in modern systems as well
as the adaptive compilation techniques in RPython and Truffle
combined with Graal and HotSpot, each reported result is based
on at least 100 measurements after a steady state has been reached.
To determine when a steady state is reached, each benchmark is
executed between 350 and 500 times within the same VM instance.
The steady state is determined informally by examining plots of the

6 Please see the supplement material with the performance numbers for
JRuby+Truffle.

SOM M T SOM PE

0.8

1.0

1.2

di
sp

at
ch

fie
ld

w
rit

e

fie
ld

re
ad

gl
ob

al
re

ad

ex
ec

.p
rim

iti
ve

di
sp

at
ch

fie
ld

w
rit

e

fie
ld

re
ad

gl
ob

al
re

ad

ex
ec

.p
rim

iti
ve

R
un

tim
e

no
rm

al
iz

ed
to

ru
n

w
ith

ou
tO

M
O

P

Figure 4. Microbenchmarks to assess the OMOP’s overhead

measurements for each benchmark and selecting a suitable range of
measurements that does not show signs of compilation.

The same approach was used for the PyPy results reported in
section 2.2, while the Java results were determined using JMH,7

which reports the number of operations per second after warmup.
The reported result is an average over 100 reported measurements.

The benchmark machine used has two quad-core Intel Xeons
E5520, 2.26 GHz with 8 GB of memory and runs Ubuntu Linux
with kernel 3.11, PyPy 2.3.1, and Java 1.8.0 11 with HotSpot
25.11-b03.

4.3 Performance of an Unrestricted Metaobject Protocol
One of the main goals of this work is to make unrestricted metaob-
ject protocols such as the OMOP (cf. section 2.1) efficient. Thus,
despite the ability to change metaobjects, i. e., the language seman-
tics of base-level objects at runtime, the cost to change semantics
of field accesses or method invocations should be reduced to the
cost of the involved base-level operations and avoid any overhead
for the involved metaobject handlers and reflection.

As explained in section 3.2, we speculate on the metaobject
of a base-level object staying the same to be able to eliminate
overhead of reflection and the involved metaobject handlers. In the
evaluation, we want to assess the overhead in the best-case scenario
that the metaobject does not change so that we can see the impact
of the residual guards and checks on the peak performance.

Overhead for Metaprogramming. To assess the scenario where
the OMOP is used to change the language’s behavior, we measure
the runtime overhead on simple microbenchmarks. In each of them,
one aspect of the language’s behavior is changed for a selected ob-
ject. Thus, either method dispatch, field read, field write, reading
a global value, or executing a primitive function provided by the
interpreter. To see whether any unnecessary overhead remains, the
changed behavior increments the result of, e. g., the field read oper-
ation simply by adding one. The baseline benchmark for the com-
parison does the same operations, i. e., a field read and adding one
executes without triggering the MOP. Thus, the benchmarks mea-
sure the cost of moving a base-level operation to the meta level.
Ideally, this does not incur any cost even so that it requires call-
ing the metaobject’s handlers and doing the customized operation
reflectively.

Figure 4 shows the measured results as boxplots indicating
median, 25th, and 75th percentiles. Measurement errors aside, the

7 JMH is a Java harness for building, running, and analyzing micro bench-
marks, OpenJDK, access date: 28 August 2014 http://openjdk.jav
a.net/projects/code-tools/jmh/

Author Copy 6 2015/4/13

http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/

results show that moving between base and meta level does not
incur any overhead, and thus, dispatch chains are sufficient to
optimize MOPs as dynamic as the OMOP.

On SOMMT the benchmark for field writes sticks out. An anal-
ysis of the resulting traces shows that the optimizer was able to
remove the overhead of the reflective operations as in the other
microbenchmarks. The differences are another type of guard and
a different type of add instruction being used. However, the over-
all number of guards and operations is identical, but on the used
hardware, the selected instructions have different performance. We
attribute that to the fact that RPython’s backend does currently
not take the different cost of instructions into account. For the
other benchmarks, RPython as well as Graal produce the same ma-
chine code. The only difference are in memory offsets. Ignoring
the anomaly, we conclude that the proposed optimizations are suf-
ficient on top of meta-tracing as well as partial evaluation to enable
the optimizers to remove the reflective overhead and minimize the
necessary runtime guards.

Note, compared to the experiment with PyPy, which showed
an overhead of 49% (cf. section 2.2), our approach eliminates the
overhead completely.

Inherent Overhead. While we were able to show that moving
operations from the base level to the meta level does not incur any
overhead, the question remains what the inherent overhead for the
support of the OMOP is. Since metaobjects can change at runtime,
some guards need to remain in the program to ensure the correct
semantics of the OMOP. To measure the inherent overhead these
guards cause, we assess the runtime impact on benchmarks that
are executed with the OMOP but without using it to change the
language’s behavior. Thus, we assess whether the proposed opti-
mizations are sufficient to remove the overhead of metaoperations
and minimization of guards. We use 22 benchmarks. DeltaBlue
and Richards have been used by various VM implementers to
represent polymorphic object-oriented programs. Mandelbrot and
NBody measure whether the optimizer can reduce object-oriented
programs to the basic numerical operations. The other benchmarks
are kernels that stress a wide range of VM aspects such as garbage
collection, string performance, data movement, as well as basic lan-
guage features such as method invocation, loop constructs, and re-
cursion.

Figure 5 shows that in practice there is an overhead to ensure the
OMOPs semantics, i. e., possibly changing metaobjects at runtime.
On average, the overhead is 3.6% (min. −0.9%, max. 19.2%) on
SOMMT and 8.6% (min. −7.2%, max. 38.2%) on SOMPE.

Smaller benchmarks are generally as fast as their versions run-
ning without the OMOP. Larger benchmarks such as DeltaBlue and
Richards exhibit about 10–25% runtime overhead, which comes
solely from remaining guards. All overhead such as extra alloca-
tions for reflective argument passing is removed. In case reflective
overhead would remain, it be at least in the range of 5–10x.

To conclude, dispatch chains are sufficient to remove the over-
head of reflective operations completely. For MOPs such as the
OMOP, there can be a small inherent runtime cost, since remov-
ing the remaining guards would compromise its correctness.

4.4 Performance Benefits for JRuby+Truffle
To evaluate the impact of optimized dispatch chains on real code
used in production applications, we measure the impact of using
dispatch chains to optimize reflective operations in JRuby+Truffle.
We use 18 image composition kernels from the psd.rb library as
benchmarks. The compose operations that produce a single color
value from multiple inputs are key for performance as they are run
for every pixel in an image, and in psd.rb these are implemented
using multiple metaprogramming operations. Following the Ruby
philosophy of choosing convenient implementations over creat-

ing extra abstraction with classes, the library developers chose to
pass the name of the composition operation as an argument, which
is then used by the reflective method invocation #send. Within
each composition operation, color value manipulation methods
are called that are not part of the object. These are caught via
#method_missing, filtered with #respond_to? and dele-
gated with #send, in a form of ad hoc modularity. In an extreme
case for each pixel in the image there are 7 calls to #send and
6 each to #method_missing and #respond_to?. Although
this structure may not be optimal for other implementations of
Ruby, and could be alternatively expressed using existing tools for
modularity, this is the code that the psd.rb developers found was
most clear for their purpose and it is common for Ruby programs.

To assess the benefit of the optimization, the benchmarks com-
pare the performance with and without the use of dispatch chains.
Thus, we assess the effectiveness of the optimization in the con-
text of complex interactions of reflective operations on real code.
Without the optimization, the optimizer is not able to cache method
lookups and inline method calls to enable further optimizations.

Figure 6 shows that using dispatch chains gives between 10x
and 20x speedup over unoptimized calls. Thus, they give a signifi-
cant performance benefit without requiring the developer to change
the implementation style or to use native extensions.

4.5 Compilation of Reflection and Dynamic Proxies
Finally, we investigate the compilation result for the use of re-
flective operations and compare it with the result for the direct
operations. To assess the results for meta-tracing as well as par-
tial evaluation, we use microbenchmarks on top of SOMMT and
SOMPE. The microbenchmarks use a counter object that imple-
ments a increment method to increment an integer. The baseline
for comparison calls increment directly. The PerformAdd
benchmark calls the increment method reflectively. For DnuAdd
the counter does not implement increment and instead uses
SOM’s missing-method handler (#doesNotUnderstand:) to
do the integer increment. DnuPerformAdd combines missing-
method handling with a reflective method call. The ProxyAdd
benchmark combines missing-method handling with reflective calls
to assess the overhead of dynamic proxies built with it.

For each of these benchmarks, we assessed the generated ma-
chine code for SOMMT as well as SOMPE. In either case, the com-
pilation results for each of the benchmarks is identical to the non-
reflective counter part, leaving memory offsets aside. Thus, the
generated instructions are the same and the optimizers were able
to completely remove the overhead of reflection. Neither reflective
method invocation nor missing-method handling with its additional
allocation of arrays for argument passing resulted in additional ma-
chine code instructions. Thus, we conclude that the dispatch chains
expose the essential information to the optimizers that enable them
to generate the same machine code they generate for non-reflective
operations. The performance measurements of the benchmarks are
depicted in fig. 7 as boxplots. The expected result is that these
benchmarks perform identical to their non-reflective counter parts
and thus results are on the 1-line. Since the machine code is iden-
tical, we attribute the measured difference to memory offset dif-
ferences, measurement inaccuracies, garbage collection, and other
influences outside of our experimental control.

5. Discussion
Our evaluation showed that dispatch chains are sufficient to elimi-
nate the overhead of metaprogramming. It enables the optimizers in
the context of meta-tracing as well as partial evaluation to eliminate
the cost of reflective operations. However, the dynamic semantics
of the MOP might require runtime checks for correctness, which
cannot be eliminated.

Author Copy 7 2015/4/13

SOM M T SOM PE

0.8

1.0

1.2

1.4

B
ou

nc
e

B
ub

bl
eS

or
t

D
is

pa
tc

h
Fa

nn
ku

ch
Fi

bo
na

cc
i

Fi
el

dL
oo

p
In

te
ge

rL
oo

p
Li

st
Lo

op
Pe

rm
ut

e
Q

ui
ck

S
or

t
R

ec
ur

se
S

to
ra

ge
S

um
To

w
er

s
Tr

ee
S

or
t

W
hi

le
Lo

op
D

el
ta

B
lu

e
M

an
de

lb
ro

t
N

B
od

y
R

ic
ha

rd
s

B
ou

nc
e

B
ub

bl
eS

or
t

D
is

pa
tc

h
Fa

nn
ku

ch
Fi

bo
na

cc
i

Fi
el

dL
oo

p
In

te
ge

rL
oo

p
Li

st
Lo

op
Pe

rm
ut

e
Q

ui
ck

S
or

t
R

ec
ur

se
S

to
ra

ge
S

um
To

w
er

s
Tr

ee
S

or
t

W
hi

le
Lo

op
D

el
ta

B
lu

e
M

an
de

lb
ro

t
N

B
od

y
R

ic
ha

rd
s

R
un

tim
e

no
rm

al
iz

ed
to

ru
n

w
ith

ou
tO

M
O

P

Figure 5. Overhead of running benchmarks with the OMOP, but without changing language behavior.

10.0

12.5

15.0

17.5

20.0

C
om

po
se

C
ol

or
B

ur
n

C
om

po
se

C
ol

or
D

od
ge

C
om

po
se

D
ar

ke
n

C
om

po
se

D
iff

er
en

ce
C

om
po

se
E

xc
lu

si
on

C
om

po
se

H
ar

d
Li

gh
t

C
om

po
se

H
ar

d
M

ix
C

om
po

se
Li

gh
te

n
C

om
po

se
Li

ne
ar

B
ur

n
C

om
po

se
Li

ne
ar

D
od

ge
C

om
po

se
Li

ne
ar

Li
gh

t
C

om
po

se
M

ul
tip

ly
C

om
po

se
N

or
m

al
C

om
po

se
O

ve
rla

y
C

om
po

se
P

in
Li

gh
t

C
om

po
se

S
cr

ee
n

C
om

po
se

S
of

tL
ig

ht
C

om
po

se
V

iv
id

Li
gh

t

S
pe

ed
up

ov
er

un
op

tim
iz

ed
(h

ig
he

ri
s

be
tte

r)

Figure 6. Speedup on psd.rb image composition kernels from op-
timizing reflective operations.

SOM M T SOM PE

0.98

1.00

1.02

D
nu

A
dd

D
nu

Pe
rfo

rm
A

dd

Pe
rfo

rm
A

dd

P
ro

xy
A

dd

D
nu

A
dd

D
nu

Pe
rfo

rm
A

dd

Pe
rfo

rm
A

dd

P
ro

xy
A

dd

R
un

tim
e

no
rm

al
iz

ed
to

no
n-

re
fle

ct
iv

e
op

er
at

io
n

Figure 7. Performance of using reflective operations and proxies.

In this work, we used dispatch chains together with self-
optimizing interpreters. However, we believe that the notion of
generalized polymorphic inline caches is applicable to VMs in
general, but demonstrating their effectiveness remains future work.
When building self-optimizing interpreters on top of meta-tracing
or partial evaluation, we did not notice any particularities that were
specific to one of the compilation techniques. However, we saw
indications that their heuristics might require adaptations. Meta-
tracing uses trace length as criterium for compilation and par-
tial evaluation also relies on size-based heuristics. Since dispatch
chains introduce additional operations, such heuristics might re-
quire further fine tuning. For the benchmarks used in this paper, the
standard heuristics were however sufficient.

Since the evaluation of dispatch chains focused on peak perfor-
mance, we did not evaluate their impact on interpreted performance
or on other dimensions of performance beyond running time, such
as memory consumption. Generally, they are caching data struc-
tures and thus consume additional memory. However, since the
length of dispatch chains is typically bounded to avoid the over-
head of long linear searches, they introduce only a memory over-
head with an upper bound per AST. Furthermore, we expect them
to also improve interpreter performance. On the one hand, travers-
ing a dispatch chain is less complex than the lookup operations
of languages such as Ruby and Smalltalk, and on the other hand,
we assume that most dispatch points are monomorphic. Similar to
the observations made for method dispatches [Hölzle et al. 1991],
we expect programs to exhibit much less dynamic behavior than
that which the language allows for. Thus, reflective operations have
a high chance to be monomorphic and caching will be effective.
Highly polymorphic or megamorphic usage of reflective operations
can also be solved by inlining to contextualize these operations.
Thus, methods that access various fields reflectively can be inlined
into the callers to expose that each caller only accesses a small num-
ber of fields. On top of Truffle, such AST-based inlining is done by
the framework and in RPython the meta-tracing also provides the
necessary contextualization. In the future, it should however be ver-
ified that reflective operations and MOPs exhibit similar restricted
variability at runtime.

6. Related Work
As mentioned before, dispatch chains are a common pattern in self-
optimizing interpreters and have been used for other optimizations
such as an efficient object storage model [Wöß et al. 2014] or a
fast C [Grimmer et al. 2014]. They are similar to the method han-
dle infrastructure introduced with Java’s invokedynamic [Rose
2009]. Method handles can also be used to implement polymorphic

Author Copy 8 2015/4/13

inline caches. Most relevant for this paper is however the insight
that they can be used to remove the overhead of reflective opera-
tions and complex metaobject protocols, which to our knowledge
has not been demonstrated before. On the contrary, below we dis-
cuss a number of approaches that all restrict the reflective power or
burden the application or library level with performance optimiza-
tions.

Compile-time Metaprogramming. Compile-time metaprogram-
ming techniques try to preserve the expressiveness of their run-
time counterparts but improve performance by applying analyses
and optimizations on the metaprograms, which then are statically
compiled to obtain performance properties that are ideally on a par
with programs that do not use metaprogramming. Chiba [1996]
proposed Open C++, a compile-time MOP, to enable changes to
the language’s behavior. Unfortunately, to enable the optimiza-
tion of reflective operations, the MOP needs to be severely re-
stricted and for instance metaobjects cannot change at runtime. Be-
side MOPs, compile-time metaprogramming can also take forms
similar to templates or Lisp-like macro systems. Examples in-
clude MetaML [Taha and Sheard 1997], Converge [Tratt 2005], and
Racket [Tobin-Hochstadt et al. 2011]. These approaches typically
give programmers the power to interact safely with the compiler to
produce optimized program fragments. However, the programming
model is usually different from the normal language and requires
good understanding of which parts are executed at compile time
and which at runtime. Furthermore, most incarnations are not as
powerful as MOPs in that they cannot redefine the language’s se-
mantics.

Runtime Metaprogramming. The CLOS MOP [Kiczales et al.
1991] employs currying to facilitate memoization of lookups. How-
ever, it is not sufficient to eliminate all runtime overhead. Further-
more, to enable memoization, the MOP design compromises ex-
pressiveness for performance by restricting the API.

To preserve the flexibility of runtime metaprogramming but to
reduce its overhead, Masuhara et al. [1995] proposed to use partial
evaluation. However, this early work treats the connection between
base-level objects meta level as fixed, so that partial evaluation
could be applied on methods ahead of time, again compromising
expressiveness for performance.

The metaXa system [Golm and Kleinöder 1999] focuses on
performance of method interception in the context of an early JVM.
While the JIT compiler optimized the transition from base to meta
level, the system was very basic. For instance, it enabled inlining
only for very small methods, and required hints that objects are
used only locally.

Sullivan [2001] proposed to use dynamic partial evaluation to
reduce the overhead of MOPs. He uses partial evaluation based
on observed runtime types as well as values. Methods can be
specialized to observed type signatures, which then can be selected
at runtime to avoid the restrictions of optimization based on purely
static analyses. Unfortunately, the work remains mostly theoretical.

Another approach to gain performance is partial behavioral re-
flection [Tanter et al. 2003], which restricts the application of a
MOP in spatial and temporal manner. Instead of applying to all pro-
gram parts equally, the developer optimizes the MOP’s application
to only the places where it is needed to avoid unnecessary overhead.
However, this does not reduce the cost of reflective operations used.
Furthermore, it burdens again the programmer with the optimiza-
tion while dispatch chains are part of the language implementation
and thus optimize reflective operations without programmer inter-
vention.

Recent Hybrid Approaches. Shali and Cook [2011] proposed
more recently the notion of hybrid partial evaluation, which is a
combination of PE and compile-time metaprogramming. The main

idea is that programmers can indicate that certain expressions are
to be evaluated at compile time so that they can be precomputed via
partial evaluation. While this leads to major performance benefits,
the burden is on programmers and for instance forbids the use
of compile-time objects at runtime, which might be a to strong
restriction for some use cases.

Exotypes proposed by DeVito et al. [2014] are similar in spirit.
Their idea is to give programmers language abstractions to use
staged programming, which allows the generation of specialized
implementations for a given problem such as serialization at run-
time. Their implementation is then able to use the known types to
generate efficient code that can outperforms similar custom imple-
mentations. However, as with hybrid partial evaluation, it is up to
the programmers to implement these kind of staged programs.

Similar techniques have also been investigated by Asai [2014]
to improve performance of a tower of meta interpreters with a pow-
erful metaobject protocols. However, the staging approach limits
the expressiveness of the meta interpreters and the ability to change
language behavior is restricted under compilation. Since our ap-
proach of using dispatch chains integrates with JIT compilation and
dynamic code invalidation, expressiveness is not restricted and lan-
guage behavior can be changed dynamically.

7. Conclusion
This work shows that the overhead of reflective operations and
metaobject protocols can be eliminated based on a generalized no-
tion of polymorphic inline caches called dispatch chains. Dispatch
chains resolve the dynamicity introduced by meta-operations at
runtime. They expose the stable runtime behavior and cache, e. g.,
lookup results to enable compiler optimizations such as inlining.

We demonstrate the effectiveness of the approach in the context
of self-optimizing interpreters on top of meta-tracing and partial-
evaluation-based compilers, which are both able to remove the in-
directions introduced by metaprogramming. We showed that the
overhead of reflection can be removed completely, and that the cost
of a MOP can be minimized to runtime-checks that are required
to preserve the semantics of the MOP. In the context of JRuby, we
further demonstrate that there is huge potential for performance im-
provements for real production code that embraces metaprogram-
ming to improve programmer productivity.

While the presented solution is simple and in hindsight obvious,
it enables us for the first time to make MOPs perform well and have
reflection without overhead, restrictions, or forcing programmers to
optimize manually as solutions proposed so far. We hope that the
simplicity of the approach encourages language implementers to
optimize runtime metaprogramming to remove the still common
but unnecessary performance penalty.

For future work, we intend to investigate how dispatch chains
can be constructed as generalized forms of polymorphic inline
caches in the context of native code generation. In the current
form, dispatch chains have been evaluated for self-optimizing in-
terpreters. However, modern VMs typically use multi-tier compi-
lation. Baseline compilers could support generalized polymorphic
inline caches in a similar way to determine the necessary runtime
values for optimization in later compilation tiers.

Furthermore, we will reinvestigate metaobject protocols with
the now possible performance properties. For a long time, MOPs
have lost the attention of the community, which favored techniques
such as aspect-oriented programming to avoided some of the per-
formance cost. However, MOPs provide a greater power, e. g., by
enabling internal domain-specific languages to enforce behavioral
restrictions and semantics, which might help to solve challenges in
areas with high complexity such as concurrent programming.

Author Copy 9 2015/4/13

Acknowledgments
We would like to thank Carl Friedrich Bolz, Maciej Fijałkowski,
and Armin Rigo from the PyPy community for their support with
optimizing SOMMT. Likewise, we would like to thank Christian
Humer, Lukas Stadler, Andreas Wöß, Thomas Würthinger, and the
wider Truffle community for their help with optimizing SOMPE.
We would also like to thank Clément Bera, Marcus Denker, and
Laurence Tratt for comments on early drafts of this paper.

References
K. Asai. Compiling a Reflective Language Using MetaOCaml. In Proc

of the Conference on Generative Programming: Concepts and Experi-
ences, GPCE 2014, pages 113–122. ACM, 2014.

V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A Transparent Dynamic
Optimization System. In Proc. of the Conference on Programming
Language Design and Implementation, PLDI ’00, pages 1–12. ACM,
2000.

C. F. Bolz and L. Tratt. The Impact of Meta-Tracing on VM Design and
Implementation. Science of Computer Programming, 2013.

C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. Tracing the Meta-level:
PyPy’s Tracing JIT Compiler. In Proc. of the Workshop on the Im-
plementation, Compilation, Optimization of Object-Oriented Languages
and Programming Systems, ICOOOLPS ’09, pages 18–25. ACM, 2009.

G. T. Brown. Ruby Best Practices. O’Reilly, Sebastopol, CA, June 2009.

S. Brunthaler. Efficient Interpretation Using Quickening. In Proc. of the
Symposium on Dynamic Languages, number 12 in DLS, pages 1–14.
ACM, Oct. 2010.

K. Casey, M. A. Ertl, and D. Gregg. Optimizing Indirect Branch Prediction
Accuracy in Virtual Machine Interpreters. ACM Trans. Program. Lang.
Syst., 29(6):37, 2007.

S. Chiba. A Study of Compile-time Metaobject Protocol. Phd thesis,
University of Tokyo, November 1996.

L. P. Deutsch and A. M. Schiffman. Efficient implementation of the
smalltalk-80 system. In Proceedings of the Symposium on Principles
of Programming Languages, pages 297–302. ACM, 1984.

Z. DeVito, D. Ritchie, M. Fisher, A. Aiken, and P. Hanrahan. First-
class Runtime Generation of High-performance Types Using Exotypes.
In Proc. of the Conference on Programming Language Design and
Implementation, PLDI ’14, pages 77–88. ACM, 2014.

M. Fowler. Domain-Specific Languages. Addison-Wesley, October 2010.

A. Gal, C. W. Probst, and M. Franz. HotpathVM: An Effective JIT Compiler
for Resource-constrained Devices. In Proc. of VEE, pages 144–153.
ACM, 2006.

M. Golm and J. Kleinöder. Jumping to the Meta Level. In P. Cointe, editor,
Meta-Level Architectures and Reflection, volume 1616 of LNCS, pages
22–39. Springer, 1999.

M. Grimmer, M. Rigger, R. Schatz, L. Stadler, and H. Mössenböck. Truf-
fleC: Dynamic Execution of C on a Java Virtual Machine. In Proc of the
Conference on Principles and Practices of Programming on the Java
Platform: Virtual Machines, Languages, and Tools, PPPJ ’14, pages 17–
26. ACM, 2014.

M. Haupt, R. Hirschfeld, T. Pape, G. Gabrysiak, S. Marr, A. Bergmann,
A. Heise, M. Kleine, and R. Krahn. The SOM Family: Virtual Machines
for Teaching and Research. In Proc of the Conference on Innovation
and Technology in Computer Science Education (ITiCSE), pages 18–22.
ACM Press, June 2010.

C. Humer, C. Wimmer, C. Wirth, A. Wöß, and T. Würthinger. A Domain-
Specific Language for Building Self-Optimizing AST Interpreters. In
Proc. of the Conference on Generative Programming: Concepts and
Experiences, GPCE ’14. ACM, 2014.

U. Hölzle, C. Chambers, and D. Ungar. Optimizing Dynamically-Typed
Object-Oriented Languages With Polymorphic Inline Caches. In Proc.
of the European Conference on Object-Oriented Programming, volume
512 of LNCS, pages 21–38. Springer, 1991.

H. Inoue, H. Hayashizaki, P. Wu, and T. Nakatani. Adaptive multi-level
compilation in a trace-based java jit compiler. In Proc. of the Conference
on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’12, pages 179–194, New York, NY, USA, 2012. ACM.

T. Kalibera, P. Maj, F. Morandat, and J. Vitek. A Fast Abstract Syntax
Tree Interpreter for R. In Proc of the Conference on Virtual Execution
Environments, VEE’14, pages 89–102. ACM, 2014.

G. Kiczales, J. des Rivières, and D. G. Bobrow. The Art of the Metaobject
Protocol. The MIT Press, 1991.

S. Marr and T. D’Hondt. Identifying A Unifying Mechanism for the Im-
plementation of Concurrency Abstractions on Multi-Language Virtual
Machines. In Objects, Models, Components, Patterns, 50th Interna-
tional Conference, TOOLS 2012, volume 7304 of LNCS, pages 171–186.
Springer, May 2012.

S. Marr, T. Pape, and W. De Meuter. Are We There Yet? Simple Language
Implementation Techniques for the 21st Century. IEEE Software, 31(5):
60–67, September 2014. ISSN 0740-7459.

H. Masuhara, S. Matsuoka, K. Asai, and A. Yonezawa. Compiling Away the
Meta-level in Object-oriented Concurrent Reflective Languages Using
Partial Evaluation. In Proc. of the Conference on Object-oriented Pro-
gramming Systems, Languages, and Applications, OOPSLA ’95, pages
300–315. ACM, 1995.

R. Olsen. Eloquent Ruby. Professional Ruby. Addison-Wesley, Upper
Saddle River, NJ, February 2011.

J. R. Rose. Bytecodes meet Combinators: invokedynamic on the JVM. In
Proc. of the Workshop on Virtual Machines and Intermediate Languages,
pages 1–11. ACM, Oct. 2009.

C. Seaton, M. L. Van De Vanter, and M. Haupt. Debugging at Full Speed.
In Proc. of the Workshop on Dynamic Languages and Applications,
Dyla’14, pages 2:1–2:13. ACM, 2014.

A. Shali and W. R. Cook. Hybrid Partial Evaluation. In Proc. of the
Conference on Object Oriented Programming Systems Languages and
Applications, OOPSLA ’11, pages 375–390. ACM, 2011.

G. Sullivan. Dynamic Partial Evaluation. In Programs as Data Objects,
volume 2053 of LNCS, pages 238–256. Springer, 2001.

W. Taha and T. Sheard. Multi-stage Programming with Explicit Annota-
tions. In Proc. of the Symposium on Partial Evaluation and Semantics-
based Program Manipulation, PEPM ’97, pages 203–217. ACM, 1997.

E. Tanter, J. Noyé, D. Caromel, and P. Cointe. Partial Behavioral Reflection:
Spatial and Temporal Selection of Reification. In Proc. of the Conference
on Object-oriented Programing, Systems, Languages, and Applications,
pages 27–46. ACM, October 2003.

S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, and M. Felleisen.
Languages as libraries. In Proc. of the Conference on Programming
Language Design and Implementation, PLDI ’11, pages 132–141. ACM,
2011.

L. Tratt. Compile-time Meta-programming in a Dynamically Typed OO
Language. In Proc. of the Symposium on Dynamic Languages, DLS ’05,
pages 49–63. ACM, 2005.

T. Würthinger, A. Wöß, L. Stadler, G. Duboscq, D. Simon, and C. Wimmer.
Self-Optimizing AST Interpreters. In Proc of the Dynamic Languages
Symposium, DLS’12, pages 73–82, October 2012.

T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq, C. Humer,
G. Richards, D. Simon, and M. Wolczko. One VM to Rule Them All. In
Proc. of the Symposium on New Ideas, New Paradigms, and Reflections
on Programming & Software, Onward!’13, pages 187–204. ACM, 2013.

A. Wöß, C. Wirth, D. Bonetta, C. Seaton, C. Humer, and H. Mössenböck.
An Object Storage Model for the Truffle Language Implementation
Framework. In Proc. of the Conference on Principles and Practices of
Programming on the Java Platform: Virtual Machines, Languages, and
Tools, PPPJ ’14. ACM, 2014.

W. Zhang, P. Larsen, S. Brunthaler, and M. Franz. Accelerating Iterators
in Optimizing AST Interpreters. In Proc. of the Conference on Object
Oriented Programming Systems Languages & Applications, OOPSLA
’14, pages 727–743. ACM, 2014.

Author Copy 10 2015/4/13

	1 Introduction
	2 Background
	2.1 Metaobject Protocols and DSLs
	2.2 State of the Art in Metaprogramming
	2.3 Self-optimizing Interpreters

	3 Using Dispatch Chains for Zero-Overhead Metaprogramming
	3.1 Reflective Operations
	3.2 Optimizing the OMOP

	4 Evaluation
	4.1 SOM Smalltalk and JRuby+Truffle
	4.2 Methodology
	4.3 Performance of an Unrestricted Metaobject Protocol
	4.4 Performance Benefits for JRuby+Truffle
	4.5 Compilation of Reflection and Dynamic Proxies

	5 Discussion
	6 Related Work
	7 Conclusion

