Object Flow Analysis — Taking an
Object-Centric View on Dynamic Analysis*

Adrian Lienhard', Stéphane Ducasse?, Tudor Girba!

1Software Composition Group, University of Bern, Switzerland
2LISTIC, University of Savoie, France

Abstract. To extract abstract views of the behavior of an object-oriented
system for reverse engineering, a body of research exists that analyzes
a system’s runtime execution. Those approaches primarily analyze the
control flow by tracing method execution events. However, they do not
capture information flows. We address this problem by proposing a novel
dynamic analysis technique named Object Flow Analysis, which comple-
ments method execution tracing with an accurate analysis of the runtime
flow of objects. To exemplify the usefulness of our analysis we present a
visual approach that allows a system engineer to study classes and com-
ponents in terms of how they exchange objects at runtime. We illustrate
and validate our approach on two case studies.

1 Introduction

A large body of research exists for supporting the reverse engineering process
of legacy systems. However, especially in the case of dynamic object-oriented
programming languages, statically analyzing the source code can be difficult.
Dynamic binding, polymorphism, and especially behavioral and structural re-
flective capabilities pose limitations to static analysis.

Many approaches tackle these problems by investigating the dynamic infor-
mation collected from system runs [6,16,21,1]. Most proposed approaches are
based on execution traces, which typically are viewed as UML sequence dia-
grams or as a tree structure representing the sequence and nesting of method
executions [15,10,1,9]. Such views analyse message passing to reveal the control
flow in a system or the communication between objects or between classes [25,5].

Various approaches extend method execution tracing with object informa-
tion to improve object-oriented program understanding. For example, they trace
instantiation events to analyze where objects are created [5,24,1,8]. Other ap-
proaches analyze object reference graphs to make object encapsulation explicit
[12] or to find memory leaks [7].

While data flows have been widely studied in static analysis [13], none of
the above mentioned dynamic analysis approaches captures the runtime transfer
of object references. In this paper we present Object Flow Analysis, a novel

* Proceedings of International Conference on Dynamic Languages (ICDL’07), ACM
Digital Library, 2007, pp. 121-140, DOI 10.1145/1352678.1352686

2 A. Lienhard, S. Ducasse, T. Girba

dynamic analysis approach, which captures the complete and continuous path
of objects. We propose a meta-model that explicitly captures the transfer of
object references.

To exemplify the usefulness of our analysis, we propose the following appli-
cation for facilitating program comprehension of object-oriented legacy systems.
A difficulty with studying the control flow of a program, e.g., using an UML
sequence diagram, is that the propagation of objects is hard to understand. For
example, it is often not obvious how objects created in one class or package prop-
agate to others. Also, inspecting how objects refer to each other, e.g., using object
inspectors, does not reveal how the object reference graph evolved. Our goal is
to analyze how the objects are passed at runtime to facilitate understanding the
architecture of a system. We want to address the following explicit questions
that arose from our experience maintaining large industrial applications written
in dynamic languages:

Which classes exchange objects?

Which classes act as object hubs?

— Given a class, which objects are passed to or from it?

— Which objects get stored in a class, and which objects just pass through it?
Which continuous object flows spanning multiple classes exist?

To address the questions, we present a prototype tool that is based on Object
Flow Analysis. It provides visualizations to facilitate exploring the results of
our analysis. We implemented the tracing infrastructure in Squeak!, an open
source Smalltalk dialect, and the meta-model in Visual Works Smalltalk using
Moose/Mondrian [19,18].

Outline. In the next section we emphasize the need for complementing execution
traces with object flow information to provide a more exhaustive fundament
for object-oriented program analysis. Section 3 is dedicated to discuss Object
Flow Analysis, our novel dynamic analysis technique that tracks how objects are
passed through the system. Section 4 presents our approach to exploit object
flows for studying the behavior of object-oriented programs at the architectural
level. Section 5 evaluates our visual approach based on two case studies, and
Section 6 provides a discussion. Section 7 reports on the state-of-the-art and
Section 8 presents the conclusions.

2 Challenges Understanding Object Propagation

Unlike pure functional languages where the entire flow of data is explicit, in
object-oriented systems the flow of objects is not apparent from the source code.
However, also with today’s dynamic analysis approaches, understanding object
flows is hard.

! See http://www.squeak.org/

Object Flow Analysis 3

The predominantly captured data of dynamic object-oriented program be-
havior are execution traces. An execution trace can be represented as a method
call-tree. Figure 1 illustrates a small excerpt of such a tree from one of our case
studies (a Smalltalk bytecode compiler). It shows as nodes the class name of the
receiver and the method that was executed.

RBMethodNode>>generate
ASTTranslator class>>new

IRBuilder>>initialize
IRMethod class>>new

ASTTranslator>>visitNode:

ASTTranslator>>ir
IRMethod>>compiledMethod
IRTranlator class>new

IRTranslator>>interpret:

IRTranlator>>compiledMethod

Fig. 1. Excerpt of an execution tree.

A limitation of execution traces is that they typically provide little infor-
mation about the actual objects involved. In Figure 1 we see that an IRMethod
instance is created in IRBuilder. Later an IRMethod instance is sent the message
compiledMethod in RBMethodNode. Some of the execution trace approaches record
the identity of the receiver object of a method execution. With this information
we can reveal that the IRMethod instance created is the identical one in both
places of the trace.

However, the execution trace cannot answer how this instance was passed
there. The instance could be passed from IRBuilder to RBMethodNode via a se-
quence of method return values through other classes, but it could as well be
stored in a field and then be accessed directly later on.

Speculating about the answer is hampered even more because execution
traces are usually very large. Figure 1 only shows the first five levels and ten
method executions. In our case, the area of the tree hidden by the dots, though,
is 46 levels deep and comprises 4793 method executions.

Gschwind et al. propose a dynamic analysis that captures also the objects
passed as arguments [11]. They argue that this information was essential to gain

4 A. Lienhard, S. Ducasse, T. Girba

a deeper insight into the program execution. Walker et al. visualize the operation
of a system at the architectural level and note in their discussion that “it may
be useful to capture the migration of objects” [24].

Object passing and sharing complicates program comprehension because it
can introduce complex object interrelationships. Nevertheless, object passing,
i.e., the transfer of object references, is an essential feature of object-orientation.
A large body of research has been conducted into controlling object aliasing at
the type system level to provide a strong notion of object encapsulation [14,20].
However, such advanced typed systems are still in the realm of advanced re-
search.

Our goal is to analyze how the objects are passed at runtime to support
program comprehension of object-oriented legacy systems. This analysis is espe-
cially interesting for the objects that are not encapsulated, i.e., objects that are
aliased and that are passed around. At the heart of our analysis are the following
two questions:

— In which method executions was an object made visible through a reference?
— Where did a specific object reference come from?

The first question reveals all locations, i.e., arguments, return values, instance
and global variables, the object is passed through (including those in which it
does not receive messages). The second question reveals the path of the object,
that is, how it is passed from one to another location, starting from where it is
instantiated.

In the next section we introduce the concept of Object Flow Analysis and
present its meta-model. Based on the captured information we can then precisely
answer how the IRMethod instance in Figure 1 is passed through the system.

3 Object Flow Analysis

In this section we present Object Flow Analysis, our approach to track how
objects are passed through the system at runtime. This technique is based on
an explicit model of object reference and method execution.

3.1 Representing Object References

The key idea we propose to extract such runtime information is to record each
situation in which an object is made visible in a method execution through
an object reference. We represent in our meta-model each such situation by a
so-called Alias (see Figure 2).

In our program execution representation, an object alias is created when
an object is (1) instantiated, (2) stored in a field (i.e., instance variable) or
global, (3) read from a field or global, (4) stored in a local variable, (5) passed
as argument, or (6) returned from a method execution.

The rationale is that each object alias is bound to exactly one method execu-
tion (referred to as Activation in our meta-model), namely the method execution

Object Flow Analysis 5

execution model static model
subject
Instance = r Class 1
sender 1
* 0..1‘& |* o
0.1 Alias : Activation | -——— Metnod
parent A T receiver 4\
creator
Attribute
| |]
HistoricalAlias ArgumentAlias ReturnAlias TempAlias
GlobalAlias FieldAlias

Fig. 2. The Object Flow meta-model extends the static and execution meta-
models with the notion of Alias.

in which the alias makes the object visible. By definition, arguments, return val-
ues, and local variables are only visible in one method activation. In contrast,
objects that are stored in fields (i.e., instance variables) or globals, can be ac-
cessed in other activations as well. Therefore, we distinguish between read and
write access of fields and globals.

With the record of all aliases of an object and their relationships to method
activations, we can now determine where the object was visible during program
execution. The other key information from which we can extract the object flow
resides in the relationships among the aliases.

Apart from the very first alias, which stems from the object instantiation
primitive, all aliases are created from a previously existing one. This gives rise
to a parent-child relationship between aliases originating from the same object.
With this relationship we can organize the aliases of an object as a tree where
the root is the alias created by the instantiation primitive. This tree represents
the object flow, i.e., it tells us how the object is passed through the system.

3.2 Control Flow vs. Object Flow Perspective

To illustrate and discuss details of the object flow construction we introduce
a concrete example taken from one of our case study applications, namely the
Smalltalk bytecode compiler (see Section 5 for more details). The example used
in this section shows the interplay of important classes of the last two com-
piling phases (translating the abstract syntax tree (AST) to the intermediate
representation (IR), and translating the IR to bytecode).

6 A. Lienhard, S. Ducasse, T. Girba

The center of interest is the instance of the class IRMethod. It acts as a con-
tainer of IRSequence instances, which group instructions and form a control graph.
We now take two complementary perspectives to study the program behavior in
which the IRMethod instance is used. The first perspective emphasizes the con-
trol flow, that is, the sequence and nesting of the executed methods. The second
perspective, illustrates the one we gain from studying object flows.

Control flow perspective. The execution trace in Figure 1 illustrates the order
and nesting of the executed methods through which the IRMethod instance is
passed. RBMethodNode>>>generate is the first executed method. On the left side of
Figure 3 we see its source code. It creates an instance of ASTTranslator, which
in turn instantiates and stores an instance of IRBuilder in a field. IRBuilder in its
constructor method initialize instantiates an IRMethod and stores it in the field
named ir.

After this, the control is returned to RBMethodNode which then sends to
ASTTranslator the message visitNode:. ASTTranslator is a visitor which traverses
the AST and delegates the building of the IR to the IRBuilder instance. In the
process IRBuilder creates several new sequences.

IRBuilder>>initialize instantiation
ir := IRMethod new.

field store
IRBuilder>>startNewSequence
newSequence := IRSequence new. .
newSequence method: ir. field read
argument

IRSequence>>method: aMethod A
method :W field store

ASTTranslator>>ir
A builder ir. return

RBMethodNode>>generate
ast := ASTTranslator new visitNode: self.

ir = astir return
A ir compiledMethod. ff'_ell(é _storg
ield rea
IRMethod>>compiledMethod
A compiledMethod := IRTranslator new
interpret: self;
compiledMethod.
IRTranslator>>interpret: ir argument

Fig. 3. Object flow of an IRMethod.

Object Flow Analysis 7

When the IR is built, the IRMethod object is obtained by sending ir to the
ASTTranslator which indirectly gets it from the IRBuilder instance. The execu-
tion now continues by sending compiledMethod to the IRMethod instance which
eventually generates bytecode.

Object flow perspective. In this perspective we take the point of view of how
the IRMethod instance flows through the system. The methods on the left side
of Figure 3 are ordered by when the instance is passed through them (rather
than by the order of the control flow). The right side of Figure 3 illustrates
the corresponding flow as a tree. Nodes represent aliases and edges are created
depending on the parent-child relationship of the aliases.

This tree represents the object flow of the IRMethod instance. The flow starts
with the root alias instantiation in the method IRBuilderinitialize where the
IRMethod instance is created. The object is then directly assigned to a field
named ir (represented as a field store alias).

During the lifetime of IRBuilder the object is read from the field (1) and
then passed as argument to IRSequence objects where it is stored in a field called
method. Notice that in the actual execution the branch starting with (1) happens
multiple times, but Figure 3 only shows one for conciseness.

When RBMethodNode>generate requests the IRMethod instance, the object is
first returned from the IRBuilder to the AST Translator (2) (this happens through a
getter not shown here). Only then it is returned to RBMethodNode (3). This last
return alias directly gets stored into the field ir of RBMethodNode.

A special case of aliasing is when an object passes itself as argument. In
our code example this happens when the method compiledMethod of IRMethod is
executed through the field read alias in RBMethodNode. The object instantiates
an IRTranslator and passes itself to it as argument (see bottom of Figure 3). The
argument alias which is created in IRTranslator has as parent alias the field read
alias, that is, the alias which was used to activate the object that passed itself.
This property of our model assures that the object flows are continuous.

In the next section, to illustrate the usefulness of Object Flow Analysis, we
present a visual approach to answer the reverse engineering questions formulated
in Section 1.

4 Visualizing Object Flows between Classes

Based on our meta-model we can analyse the transfer of object references be-
tween classes to answer questions such as:

— Which classes exchange objects?

— Which classes act as object hubs?

— Given a class, which objects are passed to or from it?

Which objects get stored in a class, and which objects just pass through it?
— Which continuous object flows spanning multiple classes exist?

We propose two explorative and complementary views to address the above
questions:

8 A. Lienhard, S. Ducasse, T. Girba

— The Inter-unit Flow View depicts units connected by directed arcs sub-
suming all objects transferred between two units (Section 4.1). By unit we
understand a class, or a group of classes that a software engineer knows they
conceptually belong together (e.g., all classes in a package, in a component,
or in an application layer like the domain model or the user interface).

— The Transit Flow View allows a user to drill down into a unit to identify
details of the actual objects and of the sequence of their passage (Section 4.2).

4.1 Inter-unit Flow View

Figure 4 shows an Inter-unit Flow View produced on our compiler case study.
The nodes represent units (i.e. either individual classes or groups of classes),
and the directed arcs represent the flows between them. The thickness of an arc
is proportional to the number of unique objects passed along it.

A force based layout algorithm is applied (nevertheless, the user can drag
nodes as she wishes). This layout results in a spatial proximity of classes and
units that exchange objects. This supports a software engineer in building a
mental model and systematically exploring the software architecture.

Constructing the visualization. The Object Flow model shows how objects
are passed between other objects. As the goal of our visualization is to show
how objects are passed through classes, we aggregate the flow at the level of
classes and groups of classes (units). In our prototype units are stated by the
system engineer using a declarative mapping language (similar to the approach
of Walker et al. [24]). Rules are provided to map classes to units based on dif-
ferent properties such as the package they are contained in, their inheritance
relationship, or a pattern matching their names. For instance, the first rule be-
low maps all classes in the AST-Nodes package to the unit AST. The second rule
maps IRInstruction and all classes inheriting from it to the unit IR.

classes containedInPackage: 'AST-Nodes' mapTo: 'AST’
classes hierarchyRootedlIn: 'IRInstruction’ mapTo: 'IR’

For the proposed visualization we do not take into account (i) through which
instances of a class objects are passed, and (ii) the flow of objects that are only
used within one class. Another important property is that we treat the flows
through collections transparently. This means that when an object is passed
from one class to a collection, and later from the collection to another class, the
intermediate step through the collection is omitted in the visualization. The flow
directly goes from one to the other class and there is no node created for the
collection class. This abstraction makes the visualization much more concise and
emphasises the conceptual flows between application classes.

FEzxzample. Let’s consider again Figure 4, which shows the Inter-unit Flow View
of the Smalltalk bytecode compiler case study. Various classes are aggregated to
units, displayed with the number of contained classes in brackets. For instance,

Object Flow Analysis 9

Scanner (3)

SmaCCToken

Parser (4)

Scopes/Vars (8)

AST-Translator (5)

IRBuilder

Intermediate-Representation (18) StackCount

BytecodeG 1
IRTranslator Joroaeenerator

Fig. 4. Inter-unit Flow View of the bytecode compiler.

the group AST (9) contains the nine classes representing the abstract syntax
tree.

The visualization shows which classes exchange objects. For example, there
are many objects passed from the Scanner to the Parser or from Intermediate-
Representation to IRTranslator. On the other hand, we also see which classes are
distant in that objects can only flow between them via several other classes.

Considering the thick arcs, we can detect a propagation of objects from Scan-
ner (top) to BytecodeGenerator (bottom-right) traversing the Parser (top). This
corresponds to the conceptual steps of a compiler.

An interesting exceptional flow is the one from AST to IRTranslator. It con-
tains exactly one object, the IRMethod instance we encountered in the previous
examples. As we can find out with the features introduced below, the object flow
starts at IRBuilder and passes via AST-Translator. This corresponds to the object
flow illustrated in Figure 3.

10 A. Lienhard, S. Ducasse, T. Girba

Scanner (3) Scanner (3) ‘Scanner (3)

SmaCCToken SmaCCToken SmaCCToken
Parser (4) Parser (4) Parser (4)

AST (9) AST(9) AST(9)
ScopesiVars (8) ScopesiVars (&) Scopesivars (8)

AST-Translator (5) AST-Translafor (5) AST-Translator (5)

1RBuilder 1RBuider 1RBuider

StackCount StackCount Intermediate-Representation (16)

Intermediate-Representation (16) Intermediate-Representation (16)

BytacodeGenerator BytecodeGenerator
RTransator " IRTransiator

Step 1 Step 2 Step 3

Fig. 5. Chronological propagation of flows in the compiler.

The chronological propagation of objects. The Inter-unit Flow View shows
an overview of the entire execution. However, as not all objects are passed around
at the same time, we are also interested in the chronological order to identify
the phases of a system’s execution. For example, in a program with an Ul the
phases may be related directly to the exercised features.

With our prototype implementation the user can scope the visualized ob-
ject flow information to a specific time periode by using a slider representing
the timeline. The position of the slider defines up until which point in time
object flows are taken into account. A recently active arc is displayed in dark
gray which then fades and eventually becomes invisible. The goal of this feature
is to facilitate investigation of how objects are propagated during a program
execution.

Figure 5 illustrates three snapshots in the evolution of the compiler execution
(compare with Figure 4). In the first step we see that objects are passed from
Scanner to Parser and from Parser to AST. In the second step, many objects are
passed between AST and AST-Translator, IRBuilder and Intermediate-Representation.
In the third step, many objects pass from Intermediate-Representation to Bytecode-
Generator.

Highlighting spanning flows. With the aforementioned features we can see
which units directly exchange objects and when. However, we cannot see if there
exist objects that are passed from one unit to another indirectly, i.e., spanning
intermediate units.

This information is useful to understand which units act as steps in object
flows leading to a unit. The same holds for the objects passed outside a unit
where it is interesting to know to which other units the objects are forwarded
and which paths are taken.

In our prototype the user can select a unit. Thereafter, all arcs that contain
objects being passed to the selected unit are highlighted in orange and all arcs
with objects passed from the selected entity are highlighted in blue.

Object Flow Analysis 11

Figure 6 shows twice the same visualization (compare with Figure 4) but with
different classes selected. In Figure 6.A Parser is selected. We see that objects
are passed to it directly from Scanner (orange arc). On the other hand, the
objects it passes outside reach many different units, the longest path reaches the
Intermediate-Representation unit (blue arcs). In Figure 6.B IRBuilder is selected. We
see that it obtains objects from most above units and forwards objects to almost
all units below.

A Scanner (3) B Scanner (3)

SmaCCToken -SmaCCToken

Parser (4)

I rarser

ScopesiVars (8)

AST (9)
Scopes/Vars (8)

AST-Translator (5) AST-Translator (5)

IRBuilde

BytecodeGenerator BytecodeGenerator

IRTranslator ;, IRTranslator S

IRBuilder

Intermediate-Representation (16) StackCount Intermediate-Representation (16) StackCount

Fig. 6. Orange and blue arcs indicate flows leading to and coming from selected
unit Parser (A), resp. unit IRBuilder (B).

This view highlights from where objects are passed to a unit and which routes
are taken. This tells us, for example, how dependent a unit is on other units,
e.g., IRBuilder depends on objects created by or passed through all upper classes
except for Scanner and SmaCCToken. The highlighted outgoing flows, on the other
hand, tell us how influential a class is.

4.2 Transit Flow View

The aforementioned visualization lacks information about the actual objects
being passed through a unit. To facilitate investigating this information our
prototype allows the user to drill down to access detailed information about the
objects transiting a unit.

Figure 7 illustrates the Transit Flow View for the class IRBuilder. It lists
from top to bottom all instances that transit IRBuilder grouped by their class.
The objects inside a class are grouped by their arrival time. For each instance
the point in time when it was passed into or out of the class is indicated with
a rectangle. An orange rectangle shows that the object is passed in; a blue

12 A. Lienhard, S. Ducasse, T. Girba

rectangle that it is passed out. A line is displayed during the time when the
object is stored in a field (or contained in a collection that is stored in a field).

IRBuilder

IRMethod] (1]
IRPop]

IRReturn 1
IRSend]

IRSequence

IRTempRead]

IRTempStore]
PrimitiveNode]
RBAssignmentNode]
RBBlockNode UL
RBMessageNode L)

RBMethodNode n

RBSequenceNode

RBVariableNode 1 .

T timeline
classes

Fig. 7. IRBuilder Transit Flow View.

The Transit Flow View shows when flows take place and how many in-
stances of which class are involved. Further exploration reveals: (1) objects
passed through directly (orange/blue pairs without line), (2) objects stored in
fields or collections (line), (3) objects created (the first rectangle is not orange,
therefore, the object is created in the class), and (4) objects passed in or out
multiple times (several rectangles for the same object).

For example, in Figure 7, the IRMethod instance is created in IRBuilder, it is
stored in a field, and it is passed out multiple times. Intermediate representation
instances are created in IRBuilder but are not stored in it, whereas the instances
at the bottom (AST nodes) are passed from outside and are stored.

Object Flow Analysis 13

5 Case Studies

In this section we provide an overview of the results we obtained from applying
the visualizations on two case studies: a Smalltalk bytecode compiler and a
health insurance web application. Both are implemented in Squeak, an open-
source Smalltalk dialect. Our choice of those two case studies was motivated by
the following reasons: (1) they are both non-trivial and model a very different
domain, (2) we have access to the source code, and (3) we have direct access to
developer knowledge to verify our findings.
The table below shows the static dimensions of the code :

Compiler‘ Insurance App.
Classes 127 308
Methods 1’912 4’432
Lines of code 11208 40’917

The objective of these preliminary investigations is to evaluate the usefulness
of the two visualizations and to learn about a practical exploration process using
our tool.

5.1 Bytecode Compiler

We chose the Smalltalk bytecode compiler as a case study because we wanted to
understand its underlying mechanism to use it as basis for the future implemen-
tation of our Object Flow Analysis infrastructure. The compiler is a complex
program, yet, its domain is well known.

To generate experimental data we run the compiler on a typical method
source code which includes class instantiations, local variable usage, a conditional
and a return statement.

The Inter-unit Flow View illustrated by Figure 4 shows the final state of the
view after several iterations of exploring and refining the mappings of units. We
describe the exploration process of our tool which crystallized from the two case
studies in the next section.

Using the Inter-unit Flow View (see Figure 5) we could correctly, i.e., in line
with the documentation, extract the key phases of the compiler: (1) scanning
and parsing, (2) translating AST to the intermediate representation, and (3)
translating the intermediate representation to bytecode.

With the help of the highlighting feature we obtained more detailed knowl-
edge about the system. For example, IRBuilder plays a key role as it is a hub
through which objects from the upper units in the view are passed to the lower
ones. Using the Transit Flow View (see Figure 7) we studied detailed inter-
relationships between the units. For example, we could see where exactly the

14 A. Lienhard, S. Ducasse, T. Girba

transitions between the three different representations happen. For the transi-
tion from AST to IR (phase 2) we see that the unit AST-Translator passes all AST
nodes to IRBuilder, which in turn creates the intermediate representation objects.

In the the remaining part of this section we want to shed light on an inter-
esting aspect of our approach we noticed in this case study.

Inversion of execution flow. The object flows do not necessarily evolve in the
same direction as the execution flow. For instance, the Parser creates the Scanner
and then regularly accesses it to get the next token. An analysis of the execution
trace shows the call relation Parser — Scanner. The object flow view, on the
other hand, shows the conceptually more meaningful order Scanner — Parser.
The reason is that with Object Flow Analysis we can provide object-centric
views, which abstract implementation details, e.g., the distinction of sender and
receiver of a message. This trait also distinguishes our approach from the ones
that are based call graphs in which edges point from the sender to the receiver
class of a method execution [25,5].

There are two ways how objects are passed to an instance: (i) objects are
pushed to an object, i.e., passed to the instance as method arguments, or (ii)
objects are pulled by the instance, i.e., received as return value in response to
a message send. In the latter case (ii) the objects flow in the opposite direction
compared to the message sends.

To further illustrate this point, let’s consider again the introductory example
of the IRMethod instance. In the execution trace excerpt, shown in Figure 1, the
first executed method in which the IRMethod instance occurs is
RBMethodNode>>>generate. Studying this method first, however, leaves us with
the question of how the object is set up and how it is passed there — something
which is only visible later (or deeper) in the execution tree. In contrast, Object
Flow Analysis is capable of providing a more meaningful viewpoint for studying
the life cycle of the instance as illustrated by Figure 3.

5.2 Insurance Web Application

This industrial application was put into production six years ago and since that
time has undergone various adaptations and extensions. The analysed scenario
comprises the oldest and most valuable part for the customer, the process of
creating a new offer. It is composed of ten features, including adding persons,
specifying entry dates, selecting and configuring products, computing prices, and
generating PDFs.

We first report on the exploration process, which we refined in this second
case study and then discuss our investigations.

Step 1: Creating coarse-grained units. We started by investigating the Inter-unit
Flow View with units corresponding to packages. Although we pictured first
coherences among the packages, the view was hard to work with because there
were many web-related packages that seemed less interesting for now. Therefore,
we put all classes of the web packages into one unit, representing the Ul layer.

Object Flow Analysis 15

Step 2: Re-grouping to appropriate units. The resulting view was already more
concise. Now focusing on the domain model, we saw many packages correspond-
ing to individual products, each package containing the product classes and as-
sociated calculation model classes. We re-grouped the classes into a Products unit
and a Calculation Models unit because we wanted to learn about the higher-level
concepts rather than how products differ.

This change dramatically improved the view. We obtained only nine units and
we could identify interesting flows between them (see Figure 8). For instance,
with the help of the Transit Flow View, we could understand how versioning
works and how products and calculation models relate to each other. Products
pass dates to the package responsible for versioning and in turn calculation
models are passed to the products (we used the Transit Flow View to access this
information).

Web App I:ayer (51)

PLInternetOffel /
PLModel-News

PLOverviewCalculator

PLModel-Versioning (3)

Calculation Models (47)

Products (20)

PLProductValidator

PLModel-Products (4)

Fig. 8. Inter-unit Flow View of the insurance application case study.

Step 3: Extract interesting candidate classes. Once we gained an overview, we
started to dig deeper. We split off packages to show individual classes, e.g.,
ProductValidator which is packaged in PLModel-Products, but from its name does
not seem be a product but rather provides specific behavior. Another similar
candidate class is OveviewCalculator.

To obtain more details about those classes we used the highlighting feature
to show which other units are involved in passing objects with respect to the
selected class. In the case of OverviewCalculator we see that it passes a person and
a date to products which forwards date and eventually returns price objects to
the calculator.

16 A. Lienhard, S. Ducasse, T. Girba

As soon as we had gained an overview of the domain model, we further
explored the Ul layer by extracting classes responsible for generating web views.

Discussion. The exploration process we took, which proved useful, was to first
gain a coarse-grained view (step 1), find appropriate units (step 2), and only
then get into more detail (step 3). Our internal declarative mapping language
was helpful to create conceptual groups of classes with varying level of detail. It
was essential to be able to specify units that crosscut the package structure.

From the Inter-unit Flow View, conceptual relationships between units were
intuitively understandable. The presented information is high-level and thus ap-
propriate for studying an unfamiliar system. Yet, means are provided to drill
down to gain more detailed knowledge where appropriate.

In contrast to the compiler case study, the feature for investigating the
chronological propagation of objects was not particularly useful. A plausible
explanation is that the compiler has a much stronger notion of sequentially
transforming one representation to another. The exercised features of the health
insurance application, on the other hand, do not exhibit this characteristic.

6 Discussion

The application of Object Flow Analysis proposed in this paper focuses on study-
ing classes or intentional groups of classes referred to as units. Hence, in our
information space, classes are the basic parts which represent fixed points on
which the object flows are mapped.

As a point of variation, the basic entities could be instances. This would allow
one to study the object flows at a much more detailed level (“which objects pass
through a particular instance?”). Whether this information is valuable depends
on the task at hand. The objective of the approach presented in this paper is to
study a system at the architectural level, therefore, we focused on classes.

Other applications of Object Flow Analysis. We believe that Object Flow Anal-
ysis can be successfully exploited in many more ways, which yet have to be
discovered. Our approach maps object flows to structural entities. For instance,
a very different way of looking at object flows is to consider dynamic boundaries.
In previous work we described an approach to analyse the flow of objects be-
tween features to detect feature runtime dependencies [17]. Another promising
application of our object flow analysis technique could be to analyze object flows
between threads, which would reveal how objects are shared between them and
how they are transferred.

Scalability. Naturally, the additional information about object flows do not come
for free. Namely, a larger amount of data has to be dealt with. We adopt an offline
approach, that is, at runtime the tracer gathers aliasing and method execution
events. After execution, the data is then fed into the analysis framework on top
of which our prototype is implemented.

Object Flow Analysis 17

In a typical program, the number of alias events is higher compared to method
execution events. However, as the figures in the table below show, the relative
increase is moderate.

Compiler Insurance App.
Method executions 11’910 120’569
Aliases 16’033 197°499
Ratio 1.3 1.6

Summarizing, Object Flow Analysis, which gathers both object aliasing and
method executions, consumes about 2.5 times the space of conventional execu-
tion trace approaches. Our approach deals with the potential large number of
events by providing an abstract view at the architectural level. Detailed infor-
mation about the objects is only shown on demand.

While a factor of 2.5 is not negligible, we believe that the complementary
information about the flow of objects justifies the overhead.

Limitations. Considering recall, a noteworthy limitation of our approach is the
well-known fact that dynamic analysis is not exhaustive, as not all possible paths
of execution are exercised [2]. Therefore, a dynamic analysis always has to be
understood in the context of the actual execution.

Like with most other dynamic analysis approaches, scalability may be a lim-
iting factor. The Transit Flow View is most vulnerable because it shows single
objects. While in our case studies this view scaled well (the largest one displaying
about 100 instances that were passed between two units), it may be cumbersome
to study when containing thousands of instances. A solution to this problem may
be to even further compact the representation, to apply filters to sort out less
interesting objects, or to make selected application classes transparent like col-
lections.

Language independence. To perform object-flow analysis, we need to capture
details in the trace that reveal the path of objects through the system. We
chose Smalltalk to implement our Object Flow Tracer because of its openness
and reflective capabilities, which allowed us to evaluate different alias tracking
techniques. We are currently implementing an Object Flow Tracer for Java.
Particular difficulties are the instrumentation of system classes and the capturing
of object reference transfers. On the other hand, the meta-model (both the static
and dynamic part) and the visualizations we describe are language independent.

7 Related Work

Dynamic analysis covers a number of techniques for analyzing a program’s run-
time behavior [2,23,10]. Many techniques focus on analyzing execution traces
[15,25,6,22].

18 A. Lienhard, S. Ducasse, T. Girba

Many different approaches exist to make execution traces accessible. For in-
stance, Lange and Yuichi built the Program Explorer to identify design patterns
[16]. Pauw et al. propose a tool to visually present execution traces to the user
[6]. They automatically identify reoccurring execution patterns to detect domain
concepts that appear at different locations in the method trace. Scenariographer
is a tool which computes groups of similar sequences of method executions to
reveal class usage scenarios [22]. While those approaches target understanding a
system through the analysis of method executions our approach provides a com-
plementary view based on the the flow of objects. As discussed, an advantage of
Object Flow Analysis is that it can reveal more meaningful architectural views
because object flows do not depend on implementation details like caller-callee
relationships.

Most approaches, including the ones mentioned above, primarily analyze the
program’s execution behavior. Other approaches analyze the structure of object
relationships. Super-Jinsight visualizes object reference patterns to detect mem-
ory leaks [7], and the visualizations of ownership-trees proposed by Hill et al.
show the encapsulation structure of objects [12]. Those two approaches are based
on heap snapshots whereas our approach has an explicit notion of the evolution
of object references in the form of object flows. With our meta-model we can
accurately track continuous flows of the objects which is key to understanding
flows spanning multiple classes.

Dynamic data flow analysis is a method of analyzing the sequence of actions
(define, reference, and undefine) on data at runtime. It has mainly been used
for testing procedural programs, but has been extended to object-oriented pro-
gramming languages as well [4,3]. Since the goal of those approaches is to detect
improper sequences on data access, they do not capture how objects are passed
through the system, nor how read and write accesses relate to method execu-
tions. To the best of our knowledge, Object Flow Analysis is the only dynamic
analysis approach that explicitly models object reference transfers.

A large body of research has also been conducted into facilitating program
comprehension through static analysis. The static analysis of data flows, e.g.,
based on a points-to analysis, is an active research area. Challenges are precision
and cost of the algorithms. The visualizations we present in this paper could
potentially also be based on a static data flow analysis instead of a runtime
analysis of object flows. The drawback of a static analysis is that it provides
a conservative view (which in some cases may even include infeasible execution
paths of the program). Our analysis, on the other hand, produces a precise under-
approximation. A key advantage is that it allows the user to constrict analysis to
the features of interest and thus directly relate them to the obtained knowledge.
The fact that the results depend on the program execution is an advantage in this
case. Our approach trades off precision for completeness, and therefore we have
to anticipate that the results do not apply to all possible program executions.

Object Flow Analysis 19
8 Conclusions

The hallmark of object-oriented applications is the deep collaboration of objects
to accomplish a complex task. Understanding such applications is then difficult
since reading the classes only reveals the static aspects of the computation.
While dynamic analysis approaches offer solutions, they often focus only on the
execution of a program from a message passing point of view.

In this paper we identified a missing aspect of dynamic object-oriented pro-
gram analysis, namely the tracking of how objects are passed through the system.
We introduce our approach we named Object Flow Analysis, in which we treat
object references as first class entities to track the flows of objects. This approach
complements the view on method executions with the view on objects.

To show the usefulness of our approach, we exemplified it with an application
in the form of two visualizations: Inter-unit Flow View and Transit Flow View.
We used these visualizations to explore the object flows between classes and we
applied them on two case studies. These initial experiments showed promising
benefits of this new perspective.

We strongly believe that our approach opens a new perspective on dynamic
analysis and we intend to further pursue different applications based on it.

Acknowledgments. We gratefully acknowledge the financial support of the Swiss Na-
tional Science Foundation for the project “Analyzing, capturing and taming software
change” (SNF Project No. 200020-113342, Oct. 2006 - Sept. 2008) and the Cook ANR
project “COOK (JCO05 42872): Réarchitecturisation des applications industrielles ob-
jets”.

References

1. Giuliano Antoniol and Yann-Gaél Guéhéneuc. Feature identification: a novel ap-
proach and a case study. In Proceedings IEEE International Conference on Software
Maintenance (ICSM’05), pages 357-366, Los Alamitos CA, September 2005. IEEE
Computer Society Press.

2. Thomas Ball. The concept of dynamic analysis. In Proceedings Furopean Soft-
ware Engineering Conference and ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (ESEC/FSC 1999), number 1687 in LNCS,
pages 216-234, Heidelberg, sep 1999. Springer Verlag.

3. Abdulazeez S. Boujarwah, Kassem Saleh, and Jehad Al-Dallal. Dynamic data flow
analysis for Java programs. Information & Software Technology, 42(11):765-775,
2000.

4. T.Y. Chen and C. K. Low. Dynamic data flow analysis for C++. In Proceedings
of the Second Asia Pacific Software Engineering Conference (APSEC’95), page 22,
Washington, DC, USA, 1995. IEEE Computer Society.

5. Wim De Pauw, Doug Kimelman, and John Vlissides. Modeling object-oriented
program execution. In M. Tokoro and R. Pareschi, editors, Proceedings of the
European Conference on Object-Oriented Programming (ECOOP’94), LNCS 821,
pages 163-182, Bologna, Italy, July 1994. Springer-Verlag.

20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

A. Lienhard, S. Ducasse, T. Girba

Wim De Pauw, David Lorenz, John Vlissides, and Mark Wegman. FExecution
patterns in object-oriented visualization. In Proceedings Conference on Object-
Oriented Technologies and Systems (COOTS’98), pages 219-234. USENIX, 1998.
Wim De Pauw and Gary Sevitsky. Visualizing reference patterns for solving mem-
ory leaks in Java. In R. Guerraoui, editor, Proceedings of the European Conference
on Object-Oriented Programming (ECOOP’99), volume 1628 of LNCS, pages 116
134, Lisbon, Portugal, June 1999. Springer-Verlag.

Stéphane Ducasse, Michele Lanza, and Roland Bertuli. High-level polymetric views
of condensed run-time information. In Proceedings of 8th European Conference on
Software Maintenance and Reengineering (CSMR’04), pages 309-318, Los Alami-
tos CA, 2004. IEEE Computer Society Press.

Mohammad El-Ramly, Eleni Stroulia, and Paul Sorenson. Recovering software re-
quirements from system-user interaction traces. In Proceedings ACM International
Conference on Software Engineering and Knowledge Engineering, pages 447-454,
New York NY, 2002. ACM Press.

Orla Greevy and Stéphane Ducasse. Correlating features and code using a compact
two-sided trace analysis approach. In Proceedings of 9th European Conference on
Software Maintenance and Reengineering (CSMR’05), pages 314-323, Los Alami-
tos CA, 2005. IEEE Computer Society.

Thomas Gschwind and Johann Oberleitner. Improving dynamic data analysis with
aspect-oriented programming. In Proceedings of the Seventh European Conference
on Software Maintenance and Reengineering (CSMR’03), page 259, Washington,
DC, USA, 2003. IEEE Computer Society.

T. Hill, J. Noble, and J. Potter. Scalable visualisations with ownership trees.
In Proceedings 37th International Conference on Technology of Object-Oriented
Languages and Systems (TOOLS’00), pages 202-213, June 2000.

Michael Hind. Pointer analysis: Haven’t we solved this problem yet?”. In 2001
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering (PASTE’01), pages 54-61, New York, NY, USA, 2001. ACM.

John Hogg, Doug Lea, Alan Wills, Dennis deChampeaux, and Richard Holt. The
Geneva convention on the treatment of object aliasing. SIGPLAN OOPS Mess.,
3(2):11-16, 1992.

Michael F. Kleyn and Paul C. Gingrich. GraphTrace — understanding object-
oriented systems using concurrently animated views. In Proceedings of Interna-
tional Conference on Object-Oriented Programming Systems, Languages, and Ap-
plications (OOPSLA’88), volume 23, pages 191-205. ACM Press, November 1988.
Danny Lange and Yuichi Nakamura. Interactive visualization of design patterns
can help in framework understanding. In Proceedings ACM International Con-
ference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA’95), pages 342-357, New York NY, 1995. ACM Press.

Adrian Lienhard, Orla Greevy, and Oscar Nierstrasz. Tracking objects to de-
tect feature dependencies. In Proceedings International Conference on Program
Comprehension (ICPC’07), pages 59-68, Washington, DC, USA, June 2007. IEEE
Computer Society.

Michael Meyer, Tudor Girba, and Mircea Lungu. Mondrian: An agile visualization
framework. In ACM Symposium on Software Visualization (SoftVis’06), pages
135-144, New York, NY, USA, 2006. ACM Press.

Oscar Nierstrasz, Stéphane Ducasse, and Tudor Girba. The story of Moose: an agile
reengineering environment. In Proceedings of the Furopean Software Engineering
Conference (ESEC/FSE’05), pages 1-10, New York NY, 2005. ACM Press. Invited

paper.

20.

21.

22.

23.

24.

25.

Object Flow Analysis 21

James Noble, John Potter, and Jan Vitek. Flexible alias protection. In Eric Jul,
editor, Proceedings of the 12th European Conference on Object-Oriented Program-
ming (ECOOP’98), volume 1445 of LNCS, pages 158-185, Brussels, Belgium, July
1998. Springer-Verlag.

Tamar Richner and Stéphane Ducasse. Recovering high-level views of object-
oriented applications from static and dynamic information. In Hongji Yang and
Lee White, editors, Proceedings of 15th IEEE International Conference on Software
Maintenance (ICSM’99), pages 13-22, Los Alamitos CA, September 1999. IEEE
Computer Society Press.

Maher Salah, Trip Denton, Spiros Mancoridis, Ali Shokoufandeh, and Filippos I.
Vokolos. Scenariographer: A tool for reverse engineering class usage scenarios from
method invocation sequences. In Proceedings of 21th International Conference on
Software Maintenance (ICSM’05), pages 155-164. IEEE Computer Society Press,
September 2005.

Tarja Systd, Kai Koskimies, and Hausi Miiller. Shimba — an environment for
reverse engineering Java software systems. Software — Practice and Ezperience,
31(4):371-394, January 2001.

Robert J. Walker, Gail C. Murphy, Bjorn Freeman-Benson, Darin Wright, Darin
Swanson, and Jeremy Isaak. Visualizing dynamic software system informa-
tion through high-level models. In Proceedings of International Conference
on Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA’98), pages 271-283. ACM, October 1998.

A. Zaidman, T. Calders, S. Demeyer, and J. Paredaens. Applying webmining
techniques to execution traces to support the program comprehension process. In
Proceedings IEEE European Conference on Software Maintenance and Reengineer-
ing (CSMR’05), pages 134-142, Los Alamitos CA, 2005. IEEE Computer Society
Press.

	Object Flow Analysis --- Taking an Object-Centric View on Dynamic Analysis
	Adrian Lienhard1, Stéphane Ducasse2, Tudor Gîrba1

