
Capturing How Objects Flow at Runtime∗

Adrian Lienhard 1, Stéphane Ducasse2, Tudor Gı̂rba1 and Oscar Nierstrasz1

1 Software Composition Group, University of Bern, Switzerland
2 LISTIC, Université de Savoie, France

Abstract

Most of today’s dynamic analysis approaches are based
on method traces. However, in the case of object-
orientation understanding program execution by analyzing
method traces is complicated because the behavior of a
program depends on the sharing and the transfer of ob-
ject references (aliasing). We argue that trace-based dy-
namic analysis is at a too low level of abstraction for object-
oriented systems. We propose a new approach that captures
the life cycle of objects by explicitly taking into account ob-
ject aliasing and how aliases propagate during the execu-
tion of the program. In this paper, we present in detail our
new meta-model and discuss future tracks opened by it.

1 Introduction
Understanding an object-oriented system is not easy if

one relies only on static source code inspection [19]. Inher-
itance, and late-binding in particular, make a system hard
to understand. The dynamic semantics of self (or this) pro-
duces yo-yo effects when following sequences of method
calls [18]. Moreover, the method lookup depends on the
receiver which in turn varies depending on the transfer of
object references at runtime.

Dynamic analysis covers a number of techniques for an-
alyzing information gathered while running the program
[2, 17]. Dynamic analysis was first used for procedural pro-
grams for applications such as debuggers [5] or program
analysis tools [15].

As object-oriented technology became more wide-
spread, it was only natural that procedural analysis tech-
niques were adapted to object-oriented languages. In this
context many dynamic analysis techniques focus on only
the execution trace as a sequence of message sends [11, 20,
1]. However, such approaches do not treat the characteris-
tics of object-oriented models explicitly.

Although dynamic analysis has the potential to over-
come limitations of static source code inspection, it is not

∗Proceedings of the 2nd International Workshop on Program Compre-
hension through Dynamic Analysis (PCODA 2006), pp. 39–43

without its own limits. We identify the characteristic of non-
local effects in object-orientation which renders program
comprehension difficult and motivates a need for a dynamic
analysis at the level of objects.

Nonlocal effects are possible due to object aliasing,
which occurs when more than one reference to an object
exists at the same time [10]. Objects often are not short-
lived but are passed as arguments or return values and hence
get aliased (or referenced) by multiple other objects. In this
way, object aliasing introduces nonlocal effects: an object
can be visible from different locations of the program at the
same time and hence, through side-effects, a message sent
to the object in one context can influence the behavior of the
object in another context.

These effects are hard to understand from method traces
alone because object aliasing and the transfer of aliases are
not explicit. Another area in which object aliasing compli-
cates the understanding of program execution is debugging.
Although the debugger shows the current execution stack in
which the error occurred, it is often hard to find the actual
cause of the error because object references may have been
incorrectly set at some distant time in the past.

The main contribution of this paper is a novel meta-
model of object-oriented program execution which explic-
itly represents object aliasing, the transfer of aliases and
the evolution of object state. We believe that such a model
opens new ways of understanding the dynamics of object-
oriented systems. To illustrate our approach we present
three works in progress that are applications of our model

Outline. Section 2 discusses the object flow meta-
model. Next we describe in Section 3 three example ap-
plications of our model. In Section 4 we describe the im-
plementation of our prototype for obtaining the object flow
information. Section 5 reports on the state-of-the-art and
Section 6 presents the conclusions.

2 Representing the runtime space
We propose a novel model to capture how objects circu-

late or flow through a software system. Our model is in-
tended to express the fact that an instance of a class can be



execution model static model

Alias

Instance

*

0..1

0..1 *

sender

Method* 1

Class1*

*

1

creator

HistoricalAlias ArgumentAlias ReturnAlias TempAlias

GlobalAlias FieldAlias

0..1

0..1

Attribute
*

1

Activation
ancestor receiver

subject

predecessor

Figure 1. The object flow meta-model

referenced from several places at once, and that those ref-
erences can be passed around to create other references. To
capture this, we put at the center of our model the alias, as
an explicit reification of an object reference.

Figure 1 shows the class diagram of our model. To get
a complete picture of the system, we model the static part
(e.g., classes, methods, attributes), the execution part (i.e.,
instances and method activations) and we complement these
parts with aliases. In the following we detail the execution
model and its integration with aliases.

Activation. An activation in our model represents a
method execution. It holds the sender activation and the
method it executes. This is very similar to commonly-
used dynamic analysis approaches. Depending on the us-
age, approaches additionally identify the receiver instance
for which a method is executed.

In our model, however, the receiver of an activation is the
alias through which the message is sent. The fact that an ac-
tivation does not directly reference an instance but rather an
alias of this instance is an important property of our model.

Alias. We define an alias to be a first-class entity iden-
tifying a specific reference to an object in the analyzed pro-
gram. An alias is created when:

• an object is instantiated,
• an object is stored in a field,
• an object is stored in a local variable,
• an object is passed as argument, and
• an object is returned from a method execution.

Except for the very first alias which stems from the ob-
ject instantiation primitive, an alias can only be created
from a previously existing alias, its ancestor. Based on
this relationship we can construct the flow of objects. The
flow shows where the instance is created and how it is then
passed through the system. Since several new aliases can be
created for each alias, the aliases of an instance form a tree.

Each alias is bound to its creator, a method activation.
By creator we understand the activation in which the alias
is first visible. For example, when passing an object as argu-
ment, the argument alias is created in the activation which
handles the message received (rather than the activation in
which the message was sent). The same holds for return
values: the alias of a return value is created in the activation
to which the object is returned.

The rationale is that aliases should belong to the activa-
tion in which an object becomes visible. Aliases of argu-
ments, return values and temporary variables are only vis-
ible in the activation where they are created whereas field
aliases may be accessed in other activations as well.

Special kinds of aliases include field and global aliases,
as they additionally carry information about the evolution
of the program’s state. Field and global aliases point via
their predecessor to the alias which was stored in the field
before the assignment. The impact on our model is that it
is capable of capturing the full history of the state evolution
of objects. The predecessor reference enables backtracking
of the state of objects to any point in the past.



3 Applications

We envision that our model has an impact both on re-
verse engineering and on forward engineering. In this sec-
tion we describe three application examples that make use
of the data captured in our model.

3.1 Relating Object Flows to Static
Structure

The most straightforward application is relating the dy-
namic information to the static information. Figure 2 shows
the hierarchy of the Smalltalk Squeak bytecode compiler
[16], and on top of it we show how the aliases have trav-
eled through the system at runtime. We emphasize in red
the aliases of the particular instance that is the focus of our
attention.

We envision several usages of such views. For example
with such a view:

• We can check whether the path of the objects is what
is expected.

• We can identify which classes play a primary role in
the runtime object flow.

C
D

E

BA

Figure 2. Example of several object flows
mapped to a class hierarchy.

3.2 Characterizing Object Flows

Another application is to reason how a certain instance is
aliased within the system. We are working on a simple vi-
sualization that captures the flow of an object by displaying
a tree of aliases.

Figure 3 shows the same instance as in Figure 2, only
now we emphasize the different kinds of aliases of this ob-
ject using distinct colors.

Thus, the initial alias (1) is assigned to the field (2). The
following six sequences of yellow and blue aliases (3-4)
show that the instance is passed six times as argument to
other objects in which it is then stored in a field. If we
want to see in which class and method an alias is created,

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Legend

field alias
instance creation

argument alias
return alias

Figure 3. Example of object flow visualization
of an instance.

our visualization tool [14] allows us to interactively get this
information by moving the mouse over an alias.

The rightmost path shows that the object is passed as
return value through (5) and (6) and is then stored in a field
(7). Finally the object is passed by argument (8).

We also map metrics to the shape of the boxes in the
diagrams [12]. We map the number of messages sent to
the alias to the width of a box, and we map the number of
messages sent from this alias to other objects to the height.
In our example, the field alias (2) is wide which means that
many messages have been sent to that alias. On the other
hand, the alias (7) has a rather tall shape which means it
sent more messages to other object than it received.

This visualization offers useful information regarding
how the instance interacted with other objects during its life
cycle. From the visualization of Figure 3 we can for exam-
ple understand the following usage scenario of the instance:
in a first stage it is set up, then it is passed around but is
never used, and in the last stage, the object is used and itself
interacts with other objects.

3.3 Object-centric Debugging

Another application area is debugging. In object-
oriented programming, the understanding of problems is
often complicated due to the temporal and spatial gap be-
tween the root cause and the effect of errors.

Figure 4 illustrates an example execution trace of a pro-
gram. While the cause of the bug is introduced at the be-
ginning of the execution, the effect occurs later (temporal
gap). Figure 4 also shows the execution stack at the point
when the error occurred. This is the typical view of a de-
bugger showing the method activation in which the bug is
manifested. The location of the cause of the bug, however,
is hidden because objects have been passed around during
execution (spatial gap).



Legend

activation
object flow

execution stack

execution
order

effect of bugcause of bug

Figure 4. Example of how the cause of a bug
can be outside the current stack.

By means of fields the flow of an object can bridge the
linear sequence of method executions. With red we illus-
trate the flow of an object relative to the same program ex-
ecution. While the object is first passed along with the ex-
ecution trace, its path later diverges and jumps to distant
branches of the tree.

This example illustrates how changes to the software
system which modify the behavior of objects may have un-
expected effects at distant locations in the program execu-
tion. Therefore, to connect the cause and the effect of errors
we need to trace the flow of objects. This will support the
developer in finding errors by allowing him to follow incor-
rectly behaving objects back along their path. We call this
approach object-centric debugging.

4 Implementation

We have implemented the model extractor in Squeak, a
Smalltalk dialect. Since instrumenting method activation
and field access would not allow us to trace the flow of ob-
jects precisely enough, we also keep track of aliases at run-
time. That is, during the program execution we actually in-
stantiate for each reference an alias object. The alias objects
then act as proxies which trap message sends and forward
them to the object.

The instrumentation of the target program happens in
two phases. In the first phase the relevant part of the class
hierarchy is replicated to facilitate scoping the effects of the
instrumentation (i.e., the classes are copied and the class
hierarchy is reconstructed). This is necessary because we
also want to instrument core libraries such as the class Ar-
ray which is used by other parts of the system.

In the second phase the classes are instrumented by an-
notating the abstract syntax tree (AST) of the methods. This

means that our approach does not rely on source code mod-
ification but rather operates on a more abstract level. The
instrumentations modify for example field assignment. In
this case the assignment is replaced with bytecode which
instantiates a new field alias, sets its ancestor (and prede-
cessor reference if appropriate) and eventually stores it in
the actual field.

The performance overhead of the current prototype im-
plementation is around a factor of 10. However, we have
not yet done any performance optimization, and we expect
to improve the performance in the future. We plan to push
aliases down one level into the VM. The responsibility of
aliases (capturing a specific reference to an object) can be
implemented at this level much more efficiently. Instead
of instantiating new alias objects, the indirection can be
achieved by using a table which maps object pointers.

5 Related work

Dynamic analysis covers a number of techniques for an-
alyzing information gathered while running the program
[2, 6]. Many techniques focus on analyzing the program
as a sequence of method executions [11, 20].

To better understand object-oriented program behavior
various approaches have extended method traces. As an ex-
ample, Gschwind et al. illustrate object interactions taking
arguments into account [7] and De Pauw et al. exploit visu-
alization techniques to present instance creation events [3].

These approaches extend method traces with some addi-
tional information. In contrast, our approach is much more
radical as it proposes a new model which is centered around
objects, capturing object aliasing, a key characteristic of
object-orientation.

Most approaches of dynamic analysis in the context of
object-orientation primarily analyze the program’s execu-
tion behavior rather than the structure of its object relation-
ships. An exception is Super-Jinsight, which visualizes ob-
ject reference patterns to detect memory leaks [4], and the
visualizations of ownership-trees proposed by Hill et al. to
show the encapsulation structure of objects [8].

Those two approaches are based on snapshots whereas
our model has an explicit notion of the evolution of objects:
on one hand the object flow, and on the other the object his-
tory. Another practical advantage and difference to the two
approaches mentioned above is that we do not only show
how objects are referenced and how references evolve, but
that we also combine this information with method traces.

Backward-in-time debuggers [9, 13] allow one to navi-
gate back in the history program execution. Those debug-
gers capture the full execution and object history and like
this allow the user to inspect any intermediate state of the
program. Although some navigation facilities are provided,



the notion of how objects flow through the system is missing
because the event-based tracing approaches do not provide
complete information about the flows.

6 Conclusions

Dynamic information contains valuable information
about how the systems works at runtime. Most of the ap-
proaches to analyze dynamic information use a trace-based
view. However, in the case of object-oriented programs, the
trace needs to be complemented with a view of how objects
are referenced and passed around in the system.

In this paper, we present a novel approach in which we
capture object references and explicitly model them as first
class entities (i.e., aliases). In our model we distinguish be-
tween several types of aliases and we build a meta-model
that incorporates static information, trace information, and
object flow information.

We have chosen to build our prototype implementation
in Squeak because of the flexible nature of Squeak’s envi-
ronment. Until now, we have performed several case studies
to test the scalability. Even though we witness a factor of 10
of slowdown, we are optimistic to improve the performance
by adding support for aliases to the VM.

We foresee that this model opens new research tracks
both from a reverse engineering perspective and from a for-
ward engineering perspective. We have listed three exam-
ples of our work in progress, namely: (1) relating object
flow to static structure, (2) characterizing objects based on
the objects flows, and (3) object-centric debugging.

Acknowledgments. We gratefully acknowledge the fi-
nancial support of the Swiss National Science Foundation
for the project “Analyzing, capturing and taming software
change” (SNF Project No. 200020-113342, Oct. 2006 -
Sept. 2008).

References

[1] G. Antoniol and Y.-G. Guéhéneuc. Feature identification: a
novel approach and a case study. In Proceedings of ICSM
2005 (21th International Conference on Software Mainte-
nance 2005. IEEE Computer Society Press, Sept. 2005.

[2] T. Ball. The Concept of Dynamic Analysis. In Proceed-
ings of ESEC/FSE ’99 (7th European Software Engineering
Conference and 7th ACM SIGSOFT International Sympo-
sium on the Foundations of Software Engineering, number
1687 in LNCS, pages 216–234, sep 1999.

[3] W. De Pauw, D. Kimelman, and J. Vlissides. Model-
ing object-oriented program execution. In M. Tokoro and
R. Pareschi, editors, Proceedings ECOOP ’94, LNCS 821,
pages 163–182, Bologna, Italy, July 1994. Springer-Verlag.

[4] W. De Pauw and G. Sevitsky. Visualizing reference patterns
for solving memory leaks in Java. In R. Guerraoui, edi-
tor, Proceedings ECOOP ’99, volume 1628 of LNCS, pages
116–134, Lisbon, Portugal, June 1999. Springer-Verlag.

[5] M. Ducassé. Coca: An automated debugger for C. In Inter-
national Conference on Software Engineering, pages 154–
168, 1999.

[6] O. Greevy and S. Ducasse. Correlating features and code
using a compact two-sided trace analysis approach. In
Proceedings of CSMR 2005 (9th European Conference on
Software Maintenance and Reengineering, pages 314–323.
IEEE Computer Society Press, 2005.

[7] T. Gschwind and J. Oberleitner. Improving dynamic data
analysis with aspect-oriented programming. In Proceedings
of CSMR 2003. IEEE Press, 2003.

[8] T. Hill, J. Noble, and J. Potter. Scalable visualisations with
ownership trees. In Proceedings of TOOLS ’00, June 2000.

[9] C. Hofer, M. Denker, and S. Ducasse. Design and imple-
mentation of a backward-in-time debugger. In Proceedings
of NODE’06, 2006.

[10] J. Hogg, D. Lea, A. Wills, D. deChampeaux, and R. Holt.
The Geneva convention on the treatment of object aliasing.
SIGPLAN OOPS Mess., 3(2):11–16, 1992.

[11] M. F. Kleyn and P. C. Gingrich. GraphTrace — understand-
ing object-oriented systems using concurrently animated
views. In Proceedings OOPSLA ’88 (International Confer-
ence on Object-Oriented Programming Systems, Languages,
and Applications, volume 23, pages 191–205. ACM Press,
Nov. 1988.

[12] M. Lanza and S. Ducasse. Polymetric views—a lightweight
visual approach to reverse engineering. IEEE Transactions
on Software Engineering, 29(9):782–795, Sept. 2003.

[13] B. Lewis. Debugging backwards in time. In Proceedings of
the Fifth International Workshop on Automated Debugging
(AADEBUG 2003), Oct. 2003.

[14] M. Meyer, T. Gı̂rba, and M. Lungu. Mondrian: An agile
visualization framework. In ACM Symposium on Software
Visualization (SoftVis 2006), 2006. To appear.

[15] H. Ritch and H. M. Sneed. Reverse engineering programs
via dynamic analysis. In Proceedings of WCRE ’93, pages
192–201. IEEE, May 1993.

[16] Squeak home page. http://www.squeak.org/.
[17] T. Systä. Understanding the behavior of Java programs. In

Proceedings WCRE ’00, (International Working Conference
in Reverse Engineering), pages 214–223. IEEE Computer
Society Press, Nov. 2000.

[18] D. Taenzer, M. Ganti, and S. Podar. Problems in object-
oriented software reuse. In S. Cook, editor, Proceedings
ECOOP ’89, pages 25–38, Nottingham, July 1989. Cam-
bridge University Press.

[19] N. Wilde and R. Huitt. Maintenance Support for Object-
Oriented Programs. IEEE Transactions on Software Engi-
neering, SE-18(12):1038–1044, Dec. 1992.

[20] A. Zaidman, T. Calders, S. Demeyer, and J. Paredaens. Ap-
plying webmining techniques to execution traces to sup-
port the program comprehension process. In Proceedings of
CSMR 2005 (9th European Conference on Software Main-
tenance and Reengineering). IEEE Computer Society Press,
2005.


