
Identifying Traits with Formal Concept Analysis

Adrian Lienhard
Software Composition Group

University of Bern
(Switzerland)

lienhard@iam.unibe.ch
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ABSTRACT
Traits are basically mixins or interfaces but with method bodies.
In languages that support traits, classes are composed out of traits.
There are two main advantages with traits. Firstly, decomposing
existing classes into traits from which they can be recomposed im-
proves the factoring of hierarchies. Secondly it increases the li-
brary reuse potential by providing more reusable traits. Identify-
ing traits and decomposing class hierarchies into traits is therefore
an important and challenging task to facilitate maintainability and
evolution. In this paper we present how we use Formal Concept
Analysis to identify traits in inheritance hierarchies. Our approach
is two-staged: first we identify within a hierarchymaximal groups
of methodsthat have a set of classes in common, second we cluster
cohesive groups of methodsbased on method invocations as poten-
tial traits. We applied our approach on two significant hierarchies
and compare our results with the manual refactorization of the same
code which was done by the authors of traits.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Restructuring, reverse engineering, and reengineer-
ing

General Terms
Algorithms, Languages, Design

Keywords
Traits, Mixins, Formal Concept Analysis, Logical Views

1. INTRODUCTION
A trait is essentially a set of methods, similar to mixins or inter-

faces but with method bodies, featuring a reuse mechanism com-
plementary to inheritance [6, 20]. The advantage of traits for sup-
porting better composition and reuse has been recognized by lan-
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guages such as Perl 6, Squeak [17], Scala [19], Slate and Fortress
[11]. These languages have been extended to support the traits
mechanism. Several works are currently performed to introduce
traits at the level of type systems [10, 21]. The introduction of a
new construct like traits into a programming language, which pro-
vides support for writing better software with increased potential
for reuse, raises the issue of reengineering existing code to exploit
this construct. Clearly there is a need for a technique that supports
the identification of potential traits in existing libraries and applica-
tions, so that they can be easily refactored to exploit advantages of
traits. Up until now, the identification of traits has been a manual
task [4].

In this paper we describe an approach to trait identification based
on Formal Concept Analysis. We apply our approach to two major
Smalltalk class hierarchies. We validate our results by compar-
ing them with the results obtained by manual refactorization of the
same code base [4].

The problems that the reengineer is facing are manifold:

• A concrete class inherits its behavior from several ancestors
masking each others. Therefore concrete interfaces are scat-
tered over several classes with possible cancellation and re-
definition [1].

• Methods’ late-binding leads to yoyo effects and make the
code difficult to follow and understand [24, 26, 9].

• Identifying cohesive groups of methods that can be para-
metrized is challenging since several degrees of parametriza-
tion can be achieved and methods are spread over multiple
classes in a hierarchy.

Our approach is based on Formal Concept Analysis (FCA)1 to
help in the identification of groups of methods in existing hierar-
chies and in single classes and traits that could be turned into a
(sub)trait. FCA is an appropriate technique to cope with discover-
ing new kinds of “patterns”, as in our case set of methods, without
knowing in advance how they are composed.

Our approach is two-staged: (i) we restructure the hierarchy and
identify traits by detectingmaximal groups of methods shared by
a set of classeswithin a hierarchy, (ii) we clustercohesive groups
of methodsbased on method invocations as potential traits. The
1FCA [14] is a branch of lattice theory that allows us to identify
meaningful groupings of “objects” that have common “attributes”.
To avoid unfortunate clash with object-oriented terminology, we
use the termselementsandproperties. For details see Appendix of
this paper.



tool implementing it proposes behavior preserving refactorings but
does not transform hierarchies automatically. It presents a solution
which serves as a good starting point to refactor a system and which
supports program understanding. For the refactoring we are able to
retrieve relevant information,i.e., potential traits, classes and the
structure of the new inheritance hierarchy.

The contributions of the paper are:

• Analysis of coding idioms that shows the symptoms of the
lack of traits applications in existing single inheritance class
hierarchies.

• Use of FCA to identify trait refactoring opportunities based
on a two-staged approach: using method commonality within
a hierarchy and invocation relationships between methods.

• First evaluation of our approach compared with the results
obtained by manual refactorings of significant hierarchies
presented by the authors of traits [4].

The outline of the paper is the following: first we analyze the
code symptoms that can reveal the need to apply traits in existing
hierarchies (Section 2), then we present traits in a nutshell (Sec-
tion 3). Section 4 presents our approach of using FCA to identify
traits. In Section 5 we discuss the results we obtained on the Stream
and Collection Hierarchies of Squeak, an open-source Smalltalk,
and compare with the manual refactoring of the same code. We
discuss strengths and weaknesses of our approach before conclud-
ing.

2. REUSE IDIOMS IN SINGLE
INHERITANCE HIERARCHIES

In class-based object-oriented programming languages without
multiple inheritance or traits, the programmers are forced to du-
plicate code [12] or implement methods too high in the hierarchy.
This section discusses three known common idioms in Smalltalk
libraries used to work around the restrictions of single inheritance:
methodduplication, methods implemented too high in the hierar-
chy and thencancelledin subclasses, and not implemented meth-
ods.

Duplicated methods. When reusing code between two classes
that are not in the same class hierarchy, methods are duplicated
between different classes in the system. Figure 1 shows a simple
case of duplication (used in several subsequent sections of this pa-
per). It shows a part of the Smalltalk-80 Stream Hierarchy with the
root classStream, its subclassPositionableStream (both classes are
merged in the figure for simplicity) and the three concrete stream
classesWriteStream, ReadWriteStream andReadStream. The me-
thod next, used for reading from the stream, is duplicated in the
classesReadWriteStream andReadStream. If we push it up to the
common superclass,WriteStream would inherit this behavior al-
though it is not appropriate.

Methods implemented too high in the hierarchy.This is a com-
mon, and in most cases probably the best solution to share code
when it is applicable. The idiom is to implement the methods in
the common superclass of the classes that should share them. In
the other subclasses the unnecessary inherited methods arecan-
celledby overriding the original implementation with a method that
raises an exception at run-time.

A commonly used variation is the combination with the Tem-
plate Method design pattern [13]. The idea is to implement the tem-
plate methods that should be shared too high in the hierarchy and

(Positionable)
Stream

...

next
boolean
next:put:
nextPut:

WriteStream
...

next
nextPut:

ReadWriteStream

next

ReadStream

next
nextPut:

cancelled methodmethod

next/nextPut:
    self subclassResponsibility.
boolean
    ^ self next ~= 0.
next: anInteger put: anObject
    anInteger timesRepeat: [
        self nextPut: anObject ].
    ^ anObject.

Legend:

Figure 1: A part of the Smalltalk Stream Hierarchy where
methods are duplicated or defined too high.

only cancel (or mark as subclass-responsibility2) the hook method.
This has the effect that only the hook method needs to be cancelled
in the inappropriate classes. The other methods do not have to be
cancelled explicitly because they indirectly call the hook method
which is cancelled.

Figure 1 shows this idiom as follows. The template method
next:put: writes a number of times an object on the stream. It
is implemented inStream to be shared among the different write
streams. There exist eight other classes apart fromWriteStream and
ReadWriteStream that use this and related methods. The method
calls nextPut: which is declared asabstractin Stream. This hook
method is now, according to the kind of write stream, implemented
in each of the concrete classes and it is explicitly cancelled in the
others (likeReadStream). Methods likenext:put: do not have to be
modified in any of the subclasses ofStream.

The methodboolean, which implements reading a boolean value
from a binary stream is defined similarly tonext:put:. It has the
hook methodnext which is explicitly cancelled inWriteStream and
implemented inReadWriteStream andReadStream. In this case,
though, the concrete implementations ofnext are identical as dis-
cussed in the previous paragraph about method duplication.

Not implemented methods. Another symptom of missing reuse
possibility are methods that would ideally be understood by a class
but are not implemented3 or inherited, often because they would
cause further code duplication or because they were not needed
at the time the class was written. A prominent example is the it-
eration protocol in the Smalltalk Collection library. Often only a
fraction of the well-known methods are implemented. Commonly
the implementation of the collection protocol,e.g., iterating over
the collection, is implemented by delegating to a collection which
is hold as an instance variable.

For example the classPath in Squeak implements an ordered
sequence of points and it inherits fromDisplayObject which imple-
ments display primitives to present information on the screen.Path
has an instance variablecollectionOfPoints and it implements well
known methods of the collection protocol [3] such asat:, at:put:,
collect:, andselect:. But those methods are only a fraction of the

2In Smalltalk, marking a method as abstract is possible anywhere
in the hierarchy and is done by sending the messagesubclassRe-
sponsibility which raises a signal at run-time.
3Smalltalk is a dynamically typed language, therefore a method
can call another one that does not even exist.



protocol that is often used. For example the methoddo: to iterate
over the collection of points or the counterpart ofselect:, reject:, are
not implemented.

3. TRAITS IN A NUTSHELL
Traits are an extension of single inheritance with a similar pur-

pose as mixins but avoid their problems [20]. Traits are groups
of methods that serve as building blocks for classes. They are
primitive code reuse units. Traits allow common behavior to be
factored out to form an intermediate level of abstraction between
single methods and complete classes. A trait consists ofprovided
methodsthat implement its behavior, and ofrequired methodsthat
parameterize the provided behavior. Traits cannot specify any state,
and the methods provided by traits never directly access it. Instead,
required methods can be mapped to state when the trait is used by
a class.

With traits, the behavior of a class is specified as the composition
of traits and someglue methodsthat are implemented at the level
of the class or composite trait. These glue methods connect the
traits together and serve as accessor for the necessary state. The
semantics of such a class is defined by the following three rules:

• Class methods take precedence over trait methods.This al-
lows the glue methods defined in the class to override equally
named methods provided by the traits.

• Flattening property.A non-overridden method in a trait has
the same semantics as the same method implemented in the
class.

• Composition order is irrelevant.All the traits have the same
precedence, and hence conflicting trait methods must be ex-
plicitly disambiguated.

Because the composition order is irrelevant, aconflictarises when
we combine two or more traits that provide identically named meth-
ods that do not originate from the same trait. Conflict resolution
is explicit and based on the implementation of a glue method at
the level of the class that overrides the conflicting methods, or
by method exclusion, which allows the exclusion of the conflict-
ing method from all but one trait. In addition traits allowmethod
aliasing. The programmer can introduce an additional name for a
method provided by a trait to obtain access to a method that would
otherwise be unreachable, for example, because it has been over-
ridden. Traits can be composed from subtraits. The composition
semantics is the same as explained above with the only difference
being that the composite trait plays the role of the class. Whereas
inheritance is used to derive one class from another, traits are used
to achieve structure and reusabilitywithin a class definition.

Example: Geometric Objects.Suppose that we want to represent
a graphical object such as a circle or square that is drawn on a can-
vas. Such a graphical object can be decomposed into three reusable
aspects — its geometry, its color and the way that it is drawn on a
canvas.

Figure 2 shows this for the classCircle. First of all, the geometry
of a circle is specified with a traitTCircle. Furthermore the color
is expressed using a traitTColor, and the behavior for drawing an
object on a canvas is provided by a traitTDrawing:

• TCircle defines the geometry of a circle: it requires the meth-
odscenter, center:, radius, andradius: and provides methods
such asbounds, hash, and=.

• TDrawing requires the methodsdrawOn: andbounds and pro-
vides the methodsdraw, refresh, andrefreshOn:.

TColor
red
green
~=
=
hash

rgb
rgb:

TDrawing
draw
refresh
refreshOn:

bounds
drawOn:

TCircle
=
hash
...
bounds
area

center
center:
radius
radius:

initialize
=
hash
rgb
rgb:
center
center:
radius
radius:
drawOn:

TDrawing
draw
refresh
refreshOn:

bounds
drawOn:

TCircle
=
hash
...
bounds
area

center
center:
radius
radius:

TColor
red
green
~=
=
hash

rgb
rgb:

Circle

Legend:
requires method

provides method

Figure 2: Left: Three traits TColor , TCircle , and TDrawing .
Right: The classCircle composed from these traits. The class
Circle resolves conflicts by redefininghash and =.

• TColor requires the methodsrgb, rgb: and provides all kind
of methods manipulating colors. We only show the methods
hash and= as they will be conflicting with others at compo-
sition time.

The classCircle is then defined as follows: it specifies three in-
stance variablescenter, radius, andrgb and their respective acces-
sor methods. It is composed from the three traitsTDrawing, TCircle,
andTColor. As there is a conflict for the methodshash and= be-
tween the traitsTCircle andTColor, we alias those methods in both
traits to be able to access them in the methodshash and= of the
classCircle resolving the conflicts.

4. APPLYING FCA TO IDENTIFY TRAITS
AND RESTRUCTURE HIERARCHIES

Traits improve the sharing of code between classes and increase
the reuse potential. In a single inheritance hierarchy with traits,
the commonly used coding idioms identified in Section 2 can be
avoided.

Our approach restructures inheritance hierarchies and introduces
traits to solve the identified problematic idioms. We detect common
behavior which is shared among classes by using traits, and then re-
fine the obtained classes and traits by identifying traits within them.
The result is an optimally factored class hierarchy with fine-grained
traits and with the identical behavior like the original hierarchy.

Our approach applies Formal Concept Analysis (FCA) [14] which
is a branch of lattice theory that allows us to identify meaningful
groupings ofelementsthat have commonproperties. The groups
are namedconcepts. Concepts can be ordered in a lattice according
to a partial order. For more details of FCA, we refer the reader to
the Appendix of this paper.



Overview of our approach. Our approach is divided into two
stages. The first stage restructures the hierarchy and identifies traits;
the second stage then identifies traits within the obtained classes
and traits of stage one. The principle of stage one is to detect the
set of methods that a class should implement, inherit or obtain from
a trait. This information then serves as input to FCA from which
we retrievemaximal groups of methods that a set of classes have in
common. From these groups of methods we can then identify traits
and reconstruct the class hierarchy. In stage two we apply FCA on
individual classes and traits to identify cohesive groups of methods
by analyzing invocations.

Outline of the process.The two stages of the process are organized
in six steps shown in Figure 3. The steps 1 – 4 form thefirst stage
of the process in which the hierarchy is restructured and traits are
identified using FCA. In thesecond stage, performed in step 5 and
6, we once again apply FCA to identify traits, but this timewithin
classes and traits which were obtained from the first stage.

Step 1 Step 2 Step 3

Step 4 Step 6Step 5

Figure 3: Process of restructuring a hierarchy and identifying
traits.

The 6 steps, which are discussed in detail in the subsequent Sec-
tions 4.1 - 4.6, perform the following actions: step 1 generates the
input for FCA by analyzing the classes that are selected by the
reengineer. Step 2 produces the FCA concept lattice. Step 3 pro-
cesses the lattice to reduce information and remove not interesting
concepts. Step 4 identifies traits and infers the new hierarchy from
the lattice of the previous step. Step 5 and 6 are applied to each
of the obtained classes and traits from Step 4. Step 5 again applies
FCA to decompose a class or a trait into (sub)traits. The lattice pro-
duced in Step 5 proposes potential method groups to the reengineer
in Step 6. Step 4 and 6 are partly manual tasks which are supported
by the tool.

4.1 Generating the Input to FCA
For each class selected by the reengineer all concrete methods

that are implemented locally or that are inherited are collected.
Methods that cancel behavior or are abstract are eliminated by de-
tecting coding idioms discussed in Section 2.

The relevant information for FCA – elements, properties and
their mapping – is generated as follows:

• The set ofelementsis built from the classes that are analyzed.

• The set ofpropertiesis built from the methods that are actu-
ally understood(see definition below) by all the classes con-
tained in the set of elements. As a further optimization we do
not include methods that are inherited from above the root of

the hierarchy,i.e., Object, because we normally do not want
to include the classObject for refactorization.

In addition to cancelled behavior we detectduplication of
methods by comparing the decompiled method bytecode which
lets us identify duplicated methods with the same behavior
but possibly with different variable names or comments. In
FCA each group of duplicated methods is treated as one sin-
gle element in the properties set.

• The mapping between elements (classes) and properties (meth-
ods) is defined by a binary relation: a classC and a methodm
fulfill the relationR iff C implements or inherits the method
m and any instance of classC understandsm.

We define that a classunderstandsa method iff the method can
be executed without throwing an error indicating the method to
be cancelled or abstract4. Although this property depends on the
runtime behavior of the program, we are able to detect cancelled
methods by a static analysis of the source code if we presume
that (i) shouldNotImplement errors only occur within a sequence of
self sends,i.e., shouldNotImplement is never called when sending a
message to another object thanself and (ii) that ashouldNotImple-
ment message is sent whenever the cancelled method is executed,
i.e., theshouldNotImplement statement is not within a conditional
statement.

According to these assumptions we can test whether a method
m is understoodby an instancea of a classC by testing if (i) m
includes a message send with the selectorshouldNotImplement and
(ii) all methods which can be invoked by messages sent fromm to
self or super, areunderstoodby a. The second condition (ii) needs
to perform a method lookup for each message which is sent toself
or super starting at the classC or its superclass respectively. This
strategy allows us to detect if a method is really understood by a
class,i.e., it is not (indirectly) cancelled.

4.2 Generating an Optimal Factoring
The main output produced by FCA in the previous step is the

concept lattice. Each concept has a set of methods as properties,
and a set of classes as elements. All the methods in a concept are (i)
implemented by each of the classes (or by one of its superclasses)
and (ii)understoodby the instances of those classes.

Figure 4 shows a concept lattice produced by FCA for an input
of the three concrete classesWS, RWS, andRS and a few selected
methods. These classes (with abbreviated names) are the classes,
WriteStream, ReadWriteStream andReadStream which we discuss
in Section 2 and which are illustrated by Figure 1. We add four
methods to the methods already present in Figure 1 for additional
illustration: three methods with the namecontents which are im-
plemented differently by each of the three classes (and thus named
contents1, contents2 andcontents3), and the methodatEnd used by
all three classes by inheriting from the common superclass.

The produced lattice shown in Figure 4 has three concepts with
only one class and two concepts with two classes; the top concept
has the full set of classes and the bottom concept has an empty
set of classes. The actually understood methods of those sets of
classes are listed in the lower part of the concept (the FCA proper-
ties of this concept). The top concept of the lattice has exactly one
method,atEnd, which is shared by all classes. The bottom concept
has an empty set of classes, because it shows which classes use all
methods.

4In Smalltalk method abstractness or method cancellation are ex-
pressed as run-time errors raised by the execution of the methods
doesNotUnderstand: andshouldNotImplement.



WS, RWS, RS
atEnd

WS
atEnd, nextPut:, 

next:put:, 
contents1

RWS
atEnd, nextPut:, 
next:put:, next, 

boolean, contents2
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atEnd, next, 

boolean, 
contents3
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atEnd, nextPut:, 

next:put:

RWS, RS
atEnd, next, 

boolean

atEnd, nextPut:, 
next:put: next, 

boolean, contents1,2,3

Top Concept

Bottom Concept

Figure 4: A lattice generated by FCA. Each concept, depicted
as a rectangle, consists of a set of classes (upper part) and a set
of methods (lower part).

In this second step of our approach we obtained:

• The exact set of methods that a class needs to implement,
inherit or obtain from a trait.

• All the maximal subsets of these sets of methods shared be-
tween different classes.

4.3 Processing the Output of FCA
In addition to the related sets of classes and methods the lattice

generated by the FCA engine provides the order of concepts. This
means that each concept has one or more super- and subconcepts,
except for the top and bottom concept. We use this information to
reduce the sets of methods of a concept by the methods found in all
its superconcepts. Hence, the concept only includes the so-called
gamma, the methods that are additional in comparison to those of
the superconcepts.

Figure 5 illustrates the applied reduction on the lattice of Fig-
ure 4.

WS, RWS, RS
atEnd

WS
contents1

RWS
contents2

RS
contents3

WS, RWS
nextPut:, 
next:put:

RWS, RS
next, boolean

Figure 5: A gamma lattice generated by FCA.

In addition to reducing the methods, we remove the bottom con-
cept because it does not have an interesting meaning for us. Now,
most if not all of the concepts with only one class are located at the
bottom level of the lattice. There is no concept at this level which
does not have exactly one class because this would mean that there
are methods which do not belong to a class or there are two classes
that define exactly the same methods.

Naively, this lattice can be understood as a multiple inheritance
class hierarchy with inheritance from top to bottom, each concept
representing a class. If we analyze a particular class, its concept

and all its superconcepts present groups of methods that, summed
up, provide the full behavior of the class.

After the processing of the lattice as described above we obtain
the following information:

• Each concept presents a maximal group of methods and a set
of classes they belong to.

• Each bottom concept represents a class. Its set of (indirect)
superconcepts in the lattice indicates which groups of meth-
ods are needed, either by inheritance or obtained from a trait,
to get the full behavior.

This information is used in the next step to derive classes, traits
and the new hierarchy.

4.4 Reconstructing the Hierarchy with Traits
In this step of the analysis the concepts are investigated to iden-

tify potential traits and to infer the new class hierarchy. The manual
task of deciding whether a concept is a trait or a class is supported
by our tool by providing relevant properties of the concepts such
as required andprovidedmethods or the number of classes. For
example, we analyze the method body of the methods associated
with a concept to identify required methods. The set of required
methods of a concept are all messages that are sent toself but are
not in the set of provided methods.

The following list provides some basic heuristics we developed
while applying our tool in the case studies discussed in the subse-
quent Section 5.

• Concepts with only one class (in our example the three bot-
tom concepts in Figure 5) define the concrete classes in the
refactored system.

• The top concept, if its set of methods is not empty, is im-
plemented as the root class of the hierarchy. In our previous
example this would be a class that implementsatEnd.

• Concepts providing many methods which originally belonged
to the same abstract class, can again serve as abstract classes
if possible. They may be further split into traits in the second
stage of the process.

• Concepts with no or with just very few provided methods
for which it is not worth creating a trait are not implemented
as a class or trait. The methods of those concepts have to
be pushed up in the hierarchy using the idiom of cancelling
methods to make them available to the appropriate classes.
This decreases the factoring of the hierarchy and again in-
troduces rather undesired coding idioms. Nonetheless this
rather pragmatic decision is, in our opinion, better than hav-
ing to implement too many traits each defining just one or
two methods. Also, this situation sometimes points out weak-
nesses in the original hierarchy. For example, methods that
are not implemented in a class because they would have had
to be duplicated. In these cases, a refactoring can solve this
problem.

• The remaining concepts are good candidates for traits.

For a trait, its concept’s elementsi.e., the set of classes, indi-
cate which classes directly (or indirectly) need to apply the trait.
The required methods show which methods need to be provided
to be able to apply the trait. A small number of required methods
indicates that the trait is more universally applicable in different
contexts.



Applying the above principles in the example of Figure 5 leads
to the following class hierarchy and traits. The bottom concepts
become the concrete classesWS, RWS, andRS. The top concept
can as well be implemented as a class because all three concrete
classes use it. The remaining two concepts (the middle layer) are
good traits. The new hierarchy would be implemented with the
concrete three classes, inheriting from the root class and applying
one (or in the case ofRWS both) of the traits.

4.5 Input for FCA Invocation Analysis
In this step of the process we apply FCA again. This time we

use a different setup and do not apply it to the whole hierarchy but
to each individual class and trait we have identified in the previous
step. The goal is to further decompose them into traits or subtraits
where appropriate.

The set of elements, properties and the mapping for the FCA
input is generated as follows. The set of elements are all methods
defined locally by the class or trait we analyze. The properties are
all possible method invocations of this class or trait. In other words,
these are methods that can be invoked by sending messages toself
within the class or trait.

For the relation between the elements (methods) and the prop-
erties (invocations), theself-sendsof each method of the class are
analyzed. With this information we identify for each method all the
(transitively) invoked methods that are defined or inherited by the
class. By transitively invoked methods we mean for example, if a
methodm1 defines exactly oneself-sendof m2 andm2 in turn one
of m3, then the set of invocations ofm1 is { m2, m3 }.

4.6 Decomposing Classes and Traits
The output produced by FCA in the previous step is a concept

lattice which, without further processing, can be interpreted as fol-
lows. Each concept has as elements a maximal group of methods
which all have the same set of invocations. These groups of meth-
ods are good candidates for traits because they are likely to be re-
lated as they invoke the same methods. The concept lattice provides
the reengineer with several interesting alternatives for each poten-
tial trait: moving up the concept lattice reduces the set of common
invocations (properties) and hence provides additional methods (el-
ements) for bigger traits. In a similar way, if we walk down the lat-
tice, the concepts have more invocations which further restrict the
group of methods.

5. CASE STUDIES
To validate our approach we applied it to two significant inher-

itance hierarchies, namely the Smalltalk-80 Stream and Collection
hierarchies [16], which are often considered to be paradigmatic ex-
amples of object-oriented design. These hierarchies have been the
subject of case studies for the identification of interfaces [8, 2].
Godin et al. [15] also applied FCA to them. Moreover we chose
this case study because the authors of traits manually refactored
them to evaluate the relevance of traits [5]. Therefore by using
the same case studies we strengthen the evaluation of our approach
since we compare how our semi-automatic approach performs as
compared to apurely manualapproach.

In Squeak [17], the abstract classCollection has 98 subclasses,
and the abstract classStream has 39 subclasses, but many of these
(like Bitmap or CompiledMethod) are special purpose classes and
hence not categorized as “Collections” by the system organization.
For the purposes of this study, we use the term Collection Hierarchy
to meanCollection and its 37 subclasses that are also in the system
category Collections. We use the term Stream Hierarchy to mean
Stream and its 10 subclasses that are also in this category.

First we discuss the refactoring of the Stream Hierarchy, the re-
sults we obtained and then compare with the manual refactoring
approach. Then we present an important part of the results we ob-
tained by refactoring the Collection Hierarchy.

5.1 The new Stream Hierarchy
For this case study we chose to analyze the three most impor-

tant concrete classes of the Stream Hierarchy,ReadStream, Write-
Stream andReadWriteStream. Figure 1 shows the original inheri-
tance relationship of these classes:ReadWriteStream is a subclass
of WriteStream, WriteStream and ReadStream inherit from Posi-
tionableStream which finally inherits fromStream, the root of the
hierarchy (simplified in Figure 1).

First stage: Hierarchy Analysis. The run of our tool to identify
traits and restructure the hierarchy produced a total of nine con-
cepts. After processing the output of FCA as described in Sec-
tion 4.3 we now discuss the analysis of the obtained concepts to
build the new hierarchy and traits. The rationale of this manual
analysis are discussed in Section 4.4.

After filtering the concepts to reject the ones with less than two
classes and less than two provided methods, we obtain three candi-
dates for traits:

1. A concept with 42 methods shared betweenReadStream and
ReadWriteStream

2. A concept with 54 provided methods shared betweenWrite-
Stream andReadWriteStream

3. A concept with 36 methods and applying to all three classes
we are analyzing

The first concept of the above list is a promising candidate for a
trait. All methods implement behavior forreadingfrom a stream.
Separated into three groups these are: (i)next and similar methods
like nextWord, nextInt32, reading the next object, word, or 32-bit
integer from the stream, (ii)skipTo:, skipSeparators: etc. to move
the access position and (iii)do:, iterating over the objects in the
stream.

Most of these methods (37) are originally implemented inPosi-
tionableStream, three methods are implemented byStream and two
are originally defined in bothReadStream andReadWriteStream,
which means, that they have been duplicated.

The second concept is interesting as a trait as well. Having the
usersWriteStream andReadWriteStream, its 54 methods define the
behavior towrite on a stream. There are three main groups of
behavior: (i)nextPut:, nextPutAll:, nextWordPut: etc. to write on
objects, collections, words on the stream, (ii)cr, tab, space and
friends for conveniently writing carriage returns, spaces etc. and
(iii) growTo:, pastEndPut:, position:, reset, setToEnd to grow the
collection and setting the write position and write limit.

From those methodsWriteStream originally implemented 32 me-
thods,PositionableStream 19 methods andStream 3 methods.

The third and last concept of the above list has all three classes as
elements and thus we would rather implement it as a common su-
perclass of the three classes than as a trait. An additional argument
against using a trait is that most of the methods originate either
in PositionableStream or Stream; both are common superclasses of
the three concrete classes we analyze.

Figure 6 illustrates the refactored Stream Hierarchy. The two
traits we identified in this first stage of the refactoring are named
TReadableStream andTWriteableStream. As discussed in Section 4
we create the three concrete classes from the methods found in
the corresponding concepts. In our solution, we retain the two



abstract classesPositionableStream andStream; the methods they
implement are the ones from the remaining third concept we iden-
tified above.ReadWriteStream which was formerly a subclass of
WriteStream (see Figure 1) is now a direct subclass ofPosition-
ableStream, and is using both traitsTReadableStream andTWrita-
bleStream. By using traits to share reading and writing behavior,
PositionableStream nolonger defines behavior which is partly can-
celled in subclasses. Thus, its number of methods decreased from
84 to 22.

ReadStream ReadWriteStream WriteStream

TReadableStream TWriteableStream

PositionableStream

Stream

TWriteablePutData

TWriteablePutCharacter

TWriteableMultiple

TReadableFileIn

TReadableMultiple

composed from
inherits from

Legend:

Figure 6: The refactored Stream Hierarchy with seven identi-
fied traits.

Second stage: Traits Decomposition.On each of the traits and
classes we identified above we apply the analysis to detect fine-
grained traits as described in step 5 and 6 of our approach (see
Sections 4.5 and 4.6).

Applied to TReadableStream, FCA produced a total of 27 con-
cepts. We chose two concepts to be implemented as subtraits:

• TReadableMultiple which provides five methods that imple-
ment retrieving multiple elements at once from a stream,
(e.g., next:into: which reads a number of elements specified
by the first argument and stores them in the collection pro-
vided as second argument).

• TReadableFileIn which provides eight methods (such asfileIn,
nextChunk or skipStyleChunk) concerned with reading source
code from a stream which was previously “filed out”.

For the traitTWriteableStream we retrieved the following sub-
traits:

• TWriteablePutData which implements writing data on the str-
eam. The trait provides six methods such asuint16:, uint24:,
uint32:, string: etc.

• TWriteablePutCharacter which implements convenience meth-
ods to write characters on the stream. Methods, from a total
of seven, arecr, tab, crtab, space.

• TWriteableMultiple with nine methods. It provides the means
to write multiple objects on the stream at once:next:putAll:,
string:, verbatime: andtimestamp and methods that write sour-
ce code on the stream:nextChunkPut: or nextPutKeyword:with-
Arg:.

Thus, with the last stage of our refactoring we were able to de-
compose the two traits which we obtained from the first stage into
more fine-grained traits. The new traits are applied as subtraits to
the original traits as Figure 6 shows.

Comparison with the manual refactoring. Our semi-automatic
refactoring of the Stream Hierarchy succeeded in producing a very
similar result compared to that of the manual refactoring approach
[5]. The main restructuring of makingReadWriteStream a direct
subclass ofPositionableStream and sharing reading- and writing-
behavior between the three concrete classes with traits, is iden-
tical with their solution. Our two main traits,TReadableStream
andTWritableStream, match with only very few exceptions the pro-
vided methods of the corresponding traits in their solution.

The manual refactoring differs in respect to how the two main
traits are further split up into subtraits. Their solution has exactly
one subtrait for each of the two traits to group behavior that is not
related to the positionability of a stream. For example, the behavior
to read from a stream is defined in the traitsTReadablePositionable
and its subtraitTReadable.

Our approach is also capable of identifying some subtraits but
it does not distinguish methods by the property of positionability.
Also, our decomposition into subtraits seems to be only partial suc-
cessful: for example no trait inTWriteableStream was detected for
filing-out code, nor is there a trait for reading single characters.

5.2 The new Collection Hierarchy
We applied our approach on the most important concrete classes

of the Collection Hierarchy:Array, OrderedCollection, SortedCol-
lection, Set. Figure 7 shows a part of the original inheritance hier-
archy.

Array

SequenceableCollection

Collection

SortedCollection

OrderedCollection

Set

ArrayedCollection

inherits from

Legend:

Figure 7: Part of the original Collection Hierarchy

Identified traits and new inheritance hierarchy. We now de-
scribe part of the derived new Collection Hierarchy which is illus-
trated by Figure 8. The refinement with subtraits is not discussed
here because of space reasons. The main changes are that composi-
tion of behavior through trait use replaces subclassing and cancel-
lation as in case ofSortedCollection which was previously a sub-
class ofOrderedCollection and now is ofSequenceableCollection
but shares the traitTOrderedSortedCommon. This change to the
hierarchy and the new traitTOrderedSortedCommon improves the
factoring because no unwanted behavior,e.g., adding elements at a
specific position in the collection, is inherited and thus no methods
have to be cancelled.

Another case where the inheritance relationship changes are the
classesOrderedCollection andArray which share a trait namedTSe-
quencedElementAccess. This trait is not used bySortedCollection
due to the fact that a sorted collection cannot mutate an object at a
specific position. In the original implementation this behavior was
prevented by cancelling methods likeat:put: or addFirst: in Sorted-
Collection. Hence,SortedCollection cannot inherit fromOrdered-
Collection anymore - we make it a direct subclass ofSequenceable-
Collection as Figure 8 illustrates. Another trait we identified and
namedTOrderedSortedCommon, implements common behavior of



OrderedCollection and SortedCollection. There are still methods
implemented locally inOrderedCollection. This is the behavior that
is neither shared withSortedCollection nor with Array: these are
methods that implement adding elements at a specific position be-
causeArray cannot add elements andSortedCollection cannot add
elements at a specific place because it is sorted explicitly. Our
approach detects those methods in the concept which has as ele-
ment only the classOrderedCollection. The methods are:add:after:,
add:before:, addFirst: etc. and some methods that are specific to the
implementation ofOrderedCollection such asat:put: andcollect:.

Another trait we identified is used by all classes exceptArray and
Dictionary. Array cannot remove objects andDictionary uses a dif-
ferent interface (removeKey:). Originally the methods for removing
were pushed up toCollection. Our tool proposes to factor them out
into a trait and use them where appropriate. The trait has the re-
quirementremove:ifAbsent:, originally declared inCollection as a
abstract hook method. This method is defined by most classes in
a different way according to their kind of collection. As Figure 8
shows, we named the traitTRemovingElements and apply it to all
classes exceptArray andDictionary (latter is not shown in Figure 8).
OrderedCollection andSortedCollection indirectly use the trait via
the subtrait ofTOrderedSortedCommon.

TOrderedSorted-
Common

Array

TSequenced-
ElementAccess

SequenceableCollection

Collection

SortedCollection OrderedCollection

Set

TRemoving-
Elements

composed from
inherits from

Legend:

Figure 8: Part of the refactored Collection Hierarchy

Comparison with the manual refactoring. Compared to the man-
ual refactoring approach the most obvious difference is the num-
ber of identified traits (although, we restricted our analysis to only
the most important classes): our refactoring produced a couple of
traits whereas their solution includes 40 traits. We now compare
the three traits which were discussed above with the traits in the
manual refactoring.

The traitTSequencedElementAccess has similar methods as the
trait TElementAccessSM in the manual refactoring. But our so-
lution found two additional methods for this trait,swap:with: and
integerAt:put:. On the other hand our solution does not implement
methods for sorting the collection. The reason for this is that origi-
nally those methods were not understood byOrderedCollection but
only by Array and hence our algorithm does not detect them al-
though they would be applicable for an ordered collection. This
problem of missing implementation was identified in Section 2 as
a symptom of missing traits use.

The traitTOrderedSortedCommon of our solution (see Figure 8)
is named identically as in the manual refactoring and many of the
36 methods in our trait can be found in their trait.

The traitTRemovingElements corresponds to the traitTExtensi-
bleU in the manual refactoring. The difference is that our trait does
not implement methods for adding elements because this behav-
ior is implemented differently by the users ofTRemovingElements.
The reason why this behavior is nevertheless implemented in the
manual refactoring is because their traits are organized in different
layers where traits override inappropriate behavior from subtraits.

In contrast, our approach does not have any distinction between
implementation- and interface-traits as they have.

The difference between our solution produced by FCA and the
manual refactoring is big in respect to the number of traits. The
reason why the manual refactoring proposes a lot more traits is
because it modularizes the primitive properties more finely than
would have been necessary to avoid code duplication. The intent
of the manual refactoring was to create a hierarchy in which new
reuse possibilities would be possible.

Our approach iscurativein the sense that it identifies traits in ex-
isting code to support better reusei.e., to get rid of code duplication
or the need to implement methods too high in the hierarchy. The
manual refactoring isspeculativeas especially stressed by Black
et al., to apply fine-grained traits for better understandability and
reusability by users outside of the hierarchy.

The experience proved us that our approach produced a valuable,
although rather minimal solution. It showed to be able to identify
the different aspects,e.g., implicit/explicit ordering or extensibil-
ity of Array, OrderedCollection andSortedCollection and to propose
a reasonable solution including a restructuring of the inheritance
hierarchy.

6. DISCUSSION
The first stage of our approach identifies maximal groups of

common methods for a set of classes and hence it only detects traits
based on implementation sharing situations between classes. This
produces a maximally factored inheritance hierarchy with traits for
sharing behavior that would not be possible with single inheritance.
From the point of view of reuse it does not make sense to further
decompose those traits. But there are reasons for grouping behav-
ior into more fine-grained traits,e.g., for better understandability
of code, or for potential reuse at a later point. Thus, our approach
has a second stage to decompose those traits by analyzing method
invocations.

Our case studies showed that we recognized traits that were iden-
tified on the same code by manual analysis. One important prop-
erty of our approach is that it not only infers traits from an existing
sharing situation,e.g., inheritance, but also succeeds in identifying
traits even when the actual code is not shared.

To identify the actual methods a class should implement, inherit
or obtain from a trait, our algorithm detects cancelled and dupli-
cated methods. Whereas cancellation was widely used in the hier-
archies we analyzed, duplication was only detected in few cases.
The reason is that duplication is widely accepted as bad practice
and the hierarchies we studied are stable and well-designed hierar-
chies. Moreover our algorithm only detects methods that have the
same decompiled bytecode which means that their code only differs
in respect to variable names or comments. An interesting enhance-
ment of our approach would be to factor our common expressions
of methods into new methods to increase reuse possibilities.
Limitations. The analysis of our case studies shows also the limi-
tations of our approach. Our tool detects less traits compared to the
manual refactoring which aimed at achieving a maximal decompo-
sition [5]. The general problem is that our approach obviously does
not take the conceptual meaning of methods into account because
it is based on the analysis of structural relationship between meth-
ods and classes. For example, we do not necessarily distinguish
between different meanings of methods such ascollect: andselect:
versusadd: andremove: unless they can be detected by analyzing
the invocation relationships – but this is not always the case. An-
other example of such a conceptual distinction in the manual refac-
toring is the separation of traits into interface- and implementation
layers which were not detected by our approach.



7. RELATED WORK
In the context of inheritance hierarchy analysis and restructuring,

FCA was used in different ways.
Godinet al. [15] developed incremental FCA algorithms to in-

fer implementation and interface hierarchies that are expected to
have maximal factorization,i.e., they are guaranteed to have no re-
dundancy. To analyze their solutions from a point of view of com-
plexity and maintainability they propose a set of structural met-
rics. As experiment they also analyze the Smalltalk Collection
Hierarchy. Their mapping for FCA is very similar as our setup
for the first stage of the analysis. One important limitation is that
they consider each method declaration as a different method and
thus cannot identify code duplication as in our case. Moreover
their approach serves rather as a help for program understanding
than reengineering since the resulting hierarchies cannot be imple-
mented in Smalltalk because of single inheritance.

Interfaces and specifications of the Smalltalk Hierarchy were
also analyzed by Cook [8]. He also takes method cancellation
into account to detect protocols. By manual analysis and devel-
opment of specifications of the Smalltalk Collection Hierarchy he
proposes a better protocol hierarchy. Protocol hierarchies explic-
itly represent similarities between classes based on their provided
methods. Thus, compared to our approach, protocol hierarchies
present aclientview of the library rather than one of theimplemen-
tor. Former does not reveal the implementation of a hierarchy and
thus does not serve for our purpose of detecting traits.

Moore [18] proposes automatic refactorization of inheritance hi-
erarchies in Self [25], although not using FCA. Like with our ap-
proach, the structure of the original hierarchy is irrelevant in his
tool and refactoring can discover new relationships between classes
that did not exist before. In contrast to our approach, Moore focuses
on factoring out common expressions in methods. In the resulting
hierarchies none of the methods and none of the expressions that
can be factored out are duplicated. Moore’s factoring creates meth-
ods with meaningless names which can be a problem if the code
should be read.

In Casais’ approach [7] he uses an automatic structuring algo-
rithm to reorganize class hierarchies in Eiffel using decomposi-
tion and factorization. In his approach, he increases the number
of classes in the new refactored class hierarchy. In our case, we
keep the same number of classes or even remove abstract classes
but add traits in the new refactored class hierarchy.

The approaches by Godin, Moore and Casais are similar to our
approach in that they analyze inheritance hierarchies to propose
better factorization. One important difference in comparison to our
approach is that we do not only take method declarations into ac-
count but also invocation relationships. Hence, our approach is ad-
ditionally capable of detecting even fine-grained groups of methods
that can be factored out for better reusability and program under-
standability.

In C, Snelting and Tip analyzed a class hierarchy making the
relationship between class members and variables explicit [22]. By
analyzing theusageof the hierarchy by a set of client programs
they were able to detect design anomalies such as class members
that are redundant or that can be moved into a derived class.

Also from the perspective of a set of client programs which use
the hierarchy, Streckenbachet al. infer improved hierarchies in
Java with FCA [23]. Similar to our tool, their proposed refactoring
can then be used for further manual refactoring. Their editor al-
lows the reengineer to change the proposed result as long as it stays
consistent and it is able to generate code. If not, the tool proposes
the reengineer to move up methods in the hierarchy to work around
multiple inheritance generated by the generated lattice.

The work of Streckenbach is based on the analysis of the us-
age of the hierarchy by client programs. The resulting refactoring
is behavior preserving (only) with respect to the analyzed client
programs. Our approach differs in that we do not analyze the hier-
archy from a client view, producing optimal factoring in respect to
thepurposeof the hierarchy in specific scenarios, but rather from
the implementationpoint of view which features a globally behav-
ior preserving refactoring: each concrete class exhibits the identical
behavior as the original one.

8. CONCLUSIONS AND FUTURE WORK
We presented a semi-automatic approach for the identification of

traits in an existing class hierarchy. Our tool proposes a refactoring
of the class hierarchy with traits which preserves the original be-
havior of each of the classes. The approach is based on FCA and
is two-staged: it is based (i) on a static analysis of source code,
detecting idioms in Smalltalk which are commonly used to work
around restrictions of single inheritance and (ii) on an analysis of
the invocation relationships between methods to detect fine-grained
traits. The case study shows that the results we obtained were sim-
ilar — as far as the intention of the method grouping was the same
– to the ones obtained manually.

An interesting enhancement to improve our approach will be to
do method refactoring as mentioned in Section 6 and proposed by
Moore [18]. Another area we like to investigate into is to detect
traits based on the usage of the classes of a library by analyzing
applications that use it.

Acknowledgments.We gratefully acknowledge the financial sup-
port of the Swiss National Science Foundation for the project “Tools
and Techniques for Decomposing and Composing Software” (SNF
Project No. 2000-067855.02), and Recast: Evolution of Object-
Oriented Applications (SNF 2000-061655.00/1).

9. REFERENCES
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Formal Concept Analysis in a Nutshell
Formal concept analysis (FCA) [14] is a branch of lattice theory
that allows us to identify meaningful groupings of “elements” that
have common “properties” (referred to, respectively, asobjectsand
attributesin the standard FCA literature5).

To illustrate FCA, let us consider a toy example about musi-
cal preferences. Theelementsare a group of peopleFrank, Anne,
Arthur, John, Thomas, andMichael; and thepropertiesareRock,

5We use the termselementandpropertyinstead to avoid the unfor-
tunate clash with object-oriented terminology.

Pop, Jazz, Folk, andTango6. The following table shows which peo-
ple prefer which kind of music, and is called theincidence table

prefers Rock Pop Jazz Folk Tango
Frank True True True
Anne True True True
Arthur True True

Catherine True
Thomas True
Michael True True

Table 1: Incidence Table of the Music Example

A context is a triple C = (E, P, R), whereE and P are fi-
nite sets of elements and properties, respectively, andR is a binary
relation betweenE andP represented in the incidence table. In
the musical preferences example, the elements are the people, the
properties are the different kinds of music they prefer, and the bi-
nary relationprefersis defined by Table 1. For example, the tuple
(Frank, Folk)is in R, but (Anne, Jazz)is not.

Let X ⊆ E, Y ⊆ P , andσ(X) = {p ∈ P |∀e ∈ X : (e, p) ∈
R} andτ(Y ) = {e ∈ E|∀p ∈ Y : (e, p) ∈ R}, thenσ(X) gives
us all thecommon propertiesof the elements contained inX, and
τ(Y ) gives us thecommon elementsof the properties contained in
Y , e.g., σ({Arthur, Catherine}) = {Jazz}.

A conceptis a pair of sets — a set of elements (theextent) and
a set of properties (theintent) (X, Y ) — such thatY = σ(X)
andX = τ(Y ). In other words, a concept is a maximal collec-
tion of elements sharing common properties. In Table 1, a con-
cept is a maximal rectangle we can obtain with relations between
people and musical preferences. For example,({Frank, Anne},
{Rock, Pop}) is a concept, whereas({Catherine}, {Jazz}) is not,
sinceσ({Catherine}) = {Jazz}, but τ({Jazz}) = {Arthur, Cather-
ine, Thomas, Michael}. The extent and intent of each concept is
shown in the following table.

top ({ all elements},∅)
c7 ({Arthur, Catherine, Thomas, Michael},{Jazz})
c6 ({Frank, Arthur, Michael},{Folk})
c5 ({Frank, Anne},{Rock, Pop})
c4 ({Arthur, Michael},{Jazz, Folk})
c3 ({Frank},{Rock, Pop, Folk})
c2 ({Anne},{Rock, Pop, Tango})

bottom (∅,{ all properties})

Table 2: The set of concepts of the Music example

The set of all the concepts of a given context forms acomplete
partial order. Thus we define that a concept(X0, Y0) is a sub-
conceptof concept(X1, Y1), denoted by(X0, Y0) ≤ (X1, Y1), if
X0 ⊆ X1 (or, equivalently,Y1 ⊆ Y0). Inversely we define that
the concept(X1, Y1) is asuperconceptof concept(X0, Y0). For
example, the concept ({Anne}, {Rock, Pop, Tango}) is a sub-
concept of the concept ({Frank, Anne}, {Rock, Pop}). Thus
the set of concepts constitutes aconcept latticeL(T ) and there
are several algorithms for computing the concepts and the concept
lattice for a given context. For more details, the interested reader
should consult Ganter and Wille [14].

6The full property names areprefers Popor prefers Folk. We ab-
breviate these names for the sake of conciseness.


