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a b s t r a c t

A layered software architecture helps in understanding the role of software entities (e.g.
packages or classes) in a system and, hence, the impact of changes on these entities.
However, the computation of an optimal layered organization in the presence of cyclic
dependencies is difficult. In this paper, we present an approach that (i) provides a strategy
supporting the automated detection of cyclic dependencies, (ii) proposes heuristics to
break cyclic dependencies, and (iii) computes an organization of software entities in
multiple layers even in the presence of cyclic dependencies. Our approach performs better
than the other existing approaches in terms of accuracy and interactivity, and it supports
human inputs and constraints. In this paper, we present this approach and compare it to
existing solutions. We applied our approach on two large software systems to identify
package layers and the results are manually validated by software engineers of the two
systems.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Classes and packages are important software entities that form building blocks of object-oriented software.
Understanding such entities and their dependencies is important for reengineering because making changes to an entity
may impact the entire system depending on its dependencies. Modifying a core entity can have a large impact, whereas
modifying a peripheral entity should have a low impact on the other entities. A good organization of these entities eases the
understanding, maintenance, testing and evolution of software systems [30].

It is considered good practice to arrange software entities in layered structures [3,8]. It allows for simpler system
maintenance because side effects are limited to the layers above the change. Therefore, layered organization of software
entities helps controlling change impact in a software system. Such layered organization is formed by placing client entities
on top of their provider entities [3]. According to this principle, creating a layered organization from an existing program
can look as simple as: (i) compute dependencies between software entities; and (ii) put the entities in layers such that no
lower layer accesses a layer above it.

However, in practice, it might be difficult to ascertain providers and clients because entities have cyclic dependencies
among each other. Cyclic dependencies are common in large software applications [19]. For example, the largest cycle of
ArgoUML contains almost half of the system’s packages, and for JEdit, almost two-thirds of the packages are in the largest
cycle [19]. Hence, cyclic dependencies should be dealt with before trying to create a layered organization.

Existing approaches such as the ones based on a dependency structural matrix [42] or minimal feedback arc set [18] do
not adequately handle the problem of cyclic dependencies. These approaches may place unrelated packages, e.g. Tests and
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Fig. 1. An example of a layered architecture. The dashed arrow represents an undesired dependency that would break the layer structure, the thick arrow
represents a dependency allowed in open layering, but not in closed layering.

Core, in a single layer, which does not makemuch sense. Other approaches do not take into account program semantics and
can try to break dependencies without considering their relevance. Therefore, an approach is needed that is able to take into
account the semantics of the dependencies (e.g. by asking the developers) to propose a layered organization of a system.

In this paper, we present an approach, oZone, which proposes an organization in layers of a set of software entities, even
in the presence of cyclic dependencies. This is done by ignoring some dependencies for breaking cycles. In addition, while
our approach can be run automatically, it also supports human inputs and constraints so that system knowledge can be
imparted in the creation of layers. Our contributions are: (i) an algorithm to identify dependencies that break the layered
structure; and (ii) a method to organize entities (even in the presence of cycles) in multiple layers. Such an approach also
takes constraints set by the developer.

The benefits of our approach are two-fold. First, it helps removing undesired cyclic dependencies. Second, it helps
grouping packages into layers.We validate our approachwith a study of two large open-source software systems: theMoose
and Pharo projects. Engineers of these two projects manually validated the results reported by our approach. Compared to
other approaches, ours contains less false-positive and false-negative results when evaluated by experts, and it supports
human inputs and constraints.

Although computing a layer organization or handling cyclic dependencies may work at different abstraction levels (e.g.
packages, classes), in this paper we focus on packages. Thus, for explanation and experimental purposes, in this paper the
term ‘‘entities’’ denotes packages.

The paper is organized as follows. Section 2 details the importance of layered architecture and the problem of layered
organization computation in three existing approaches. Section 3 defines the terms used and explains our approach and
Section 4 proposes a user interface to interact with the tool and fine tune the layered organization. Section 5 presents the
validation of the approach. Related work is presented in Section 6. Section 7 concludes the paper and presents future work.

2. Layer identification

2.1. Context

When a large system is well structured, its structure simplifies its evolution. One of the structures that eases evolution
is the layered architecture. A layered architecture is an architecture where entities in a layer may access only entities in
the layers below it. Fig. 1 describes an example of such an architecture (the reader should ignore the dotted dependency
from Kernel to pack A at this point as it would break a proper layered architecture). A layered architecture eases software
evolution because changes can be limited to layers above; it also offers good properties of modifiability and portability [3].
Moreover, using a layered view on a software system is a common approach to understand it [15].

Szyperski [43] and Bachmann et al. [3] make a distinction between closed layering and open layering. In closed layering,
the implementation of one layer should only depend on the layer directly below it. In Fig. 1, if one omits the bold dependency
from pack E to Kernel (and the dotted dependency), one gets a closed layering. In open layering, any lower layermay be used,
such as pack E using Kernel in the figure.

A basic algorithm to compute a layered architecture consists in putting in the lower layer all entities that do not depend on
anything (this algorithm is presentedmore formally in Section 3.4). From this first layer, the architecture is built recursively:
Entities depending on at least one entity in layer n, and possibly on entities in layers ≤n, are placed in layer n+1. Note that,
typically, in software systems not explicitly conceived with a layered architecture in mind, entities from layer n + 1 will
also depend on entities from layers below n, which means the result will be an open layering. Closed layering is useful for
a clean and well encapsulated system, but can only result from an explicit effort to organize the system according to that
principle.

This basic algorithm can usually not be applied because of problems related to dependencies between entities. As
illustrated by the dashed arrow in Fig. 1, cyclic dependencies between the entities being layered have the potential to either
break the layer structure, or to impose to merge layers (in the figure: Layer 0 and Layer 1). In extreme cases, a cycle can
include more than half the packages of a system (e.g. ArgoUML or JEdit).
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Fig. 2. An example of cycles between packages.

Cyclic dependencies are a known architectural problem. For example, it is specifically targeted by the Acyclic
Dependencies Principle, defined by Martin [30], stating that the dependency graph between packages should be a directed
acyclic graph: there should not be any cyclic dependency between packages. Unfortunately, legacy and/or large systems
often present structures that donot respect this principle [26]. Consequently, identifying layers in a large system is not trivial.
Some approaches support layer creation in the presence of cyclic dependencies. We will now review these approaches and
their limitations.

2.2. Limitation of existing approaches

Three main approaches try to extract a layered structure from package dependencies. They are incarnated in the tools:
Lattix [42], NDepend3 and Structure1014 [18]. We now present these approaches and their limitations for creating a layered
architecture.

We use the graph from Fig. 2 to illustrate how these approaches work and what their limitations are. In the figure,
the entities to gather in a layer (e.g. packages) are represented by nodes. In this example, we consider that the nodes
are packages, but other entities (e.g. classes) would lead to the same conclusions. Dependencies between entities are
represented by edges. Edges may be weighted, for example in the case of packages, the weight of a dependency from one
package to the other could be the number of classes in the first package that depend on classes in the second package.

NDepend. NDepend is a tool that uses software metrics, dependency structural matrix and simple visualizations to support
software engineers. It considers a layered structure as an acyclic structure. When there are cyclic dependencies between
entities, these entities are excluded from the layer representation and structure. Entities that depend, directly or indirectly
on entities in a cycle are also excluded from the layered structure. For the excluded entities, a special container, labeled ‘‘not
attributed’’, is created as illustrated in Fig. 3(a).

The main problem of this approach is that, if a cycle involves a core entity (e.g. Kernel in the figure), most of the other
entities will end up outside the layered organization.

Lattix. The layer extraction approach used in Lattix is the concrete implementation of the work of Sangal et al. [42]. This
work considers a cycle as a feature, not as a modularization problem. It proposes to group each cycle in a separate layer.
Packages not involved in cyclical dependencies are placed in other layers either above or below the layer for each cycle,
depending on whether they provide or require services to/from them. Fig. 3(b) shows the layers discovered with Lattix
considering the example in Fig. 2. As the tool creates a single layer for all the entities in the same cycle, most of them are
placed in the same layer.

Problems in this approach are twofold: (i) if cycles exist between entities that should be in different layers, they will be
grouped in the same layer; and (ii) it is difficult to differentiate a layer built from a cycle and one built from dependencies
to a lower layer.

Minimum feedback arc set. The first two approaches deal with cycles in their entirety, either to put them aside or to put
them in their own layer. We now see an approach that tries to remove the cycles to be able to create layers.

In graph theory, a feedback arc set is a set of edges which, when removed from the graph, leaves an acyclic graph. The
Minimum Feedback Arc Set (MFAS) is the smallest such set. For the problem of extracting a layered architecture from a graph
of dependencies, finding and eliminating the Minimum Feedback Arc Set is a possible heuristic. In our example, the MFAS is
the singleton containing the dependency from UI to Pack A. Selecting this edge for removal leaves us with an acyclic graph
that produces the layered structure in Fig. 3(c) when layers are built following the process explained before. All cases are not
that easy, there are cases wheremultiple dependencies of the same size exist.When this happens tools such as Structure101
rely on dependencies weights, choosing the MFAS with the minimum weight.

3 http://www.ndepend.com.
4 http://www.headwaysoftware.com/products/structure101/.
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(a) NDepend’s algorithm: cycles out. (b) Lattix’s algorithm: cycles in one layer.

(c) MFAS algorithm.

Fig. 3. Layered organization obtained by different strategies when applied to the system described in Fig. 2.

This approach can produce good results because it guarantees to make minimal modifications to the software structure
to break cycles. However, it does not take into account the semantics of the software structure: what the entities mean,
or why they have these dependencies. Optimizing a graph is not equivalent to identifying the layered architecture of an
existing software system.

In our example, the resulting organization, see Fig. 3(c), places the user interface (UI package) at the bottom of
the layer organization, and the Kernel package in a higher layer, which does not fit the common understanding in
software engineering. Cycles should be broken such that the resulting organization would capture the software engineers’
understanding of the system. This implies interacting with the software engineers, as the tool cannot have a sufficiently
deep understanding of the system by itself.

3. Our solution: detecting dependencies hampering layer creation

In this section, we present an algorithm to build a layered organization of a system in the presence of cyclic dependencies.
As opposed to the existing solutions presented in the preceding section, we want a solution that can (i) propose to break
cyclic dependencies so as to be able to place the different entities in a cycle in different layers; (ii) do so considering more
information than just the weight of the dependencies; and finally (iii) allow the user to judge the proposed modifications
and possibly give instructions on whether they are well-founded or not. The approach, called oZone, tries to find the best
dependencies to remove so as to break cycles. The resulting graphof dependenciesmay thenbe organized in layers, following
the simple algorithm proposed in Section 3.4.

This section is organized as follows. First, we present a few definitions necessary to explain our solution; thenwe present
the oZone approach to find dependencies to break; finally we discuss how user input can be introduced in the process.

3.1. Definitions

Package. Apackage is a unit of reuse and deployment, it gathers together classes in a coherent unit. A package is built, tested,
and released as a whole as soon as one of its classes is changed, or used elsewhere [30]. A good organization of classes into
identifiable and collaborating packages eases the understanding, maintenance, testing and evolution of software systems
[13,36,48,40,39]. It is well accepted that packages should form layered structures [3,8].

Concretely, in Smalltalk, packages group class and method definitions. They serve as units of loading. In Java, packages
match directories that group class files. They can include other packages, this matches to the directory inclusion structure.
Our importer considers packages as explicitly defined by developers using the resources of the language.
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Fig. 4. (left) Sample graph representing a SCC. (right) Sample graph decomposed in three minimal cycles. Bold edges are the shared dependencies.

Package dependency. Package dependencies stem from references at the level of classes: package A depends on package B if
a class within A refers to a class within B. A dependency from package A to package B is the union of all static dependencies
from classes in package A to classes in package B. Consequently, a package dependency can be weighted with the number
of its class relationships. The following kinds of dependencies are considered: method invocation, class access or reference,
class inheritance, and class extension.

• Method invocation. There is a method invocation from class A to class B if there is at least one method in class A invoking
one method of class B. In dynamic typed languages (e.g. Smalltalk), one often cannot statically determine the class of
the invoked method. Our strategy consists in resolving candidate classes, i.e. every class within which there is a method
that has the invoked method signature. In real cases, invocations commonly have only one candidate, i.e. many method
signatures are unique in a system.

• Class access and reference. There is a class access going from class A to class B if class B is explicitly used in class A code as
an instance type, a class variable, or a variable/parameter type.

• Class inheritance. There is a class inheritance dependency between class A and class B if class A is a subclass of class B.
• Class extension.A class extension is amethod defined in a package, for which the class is defined in a different package [5].

Class extensions exist in Smalltalk, CLOS, Ruby, Python, Objective-C and C#. They offer a convenientway to incrementally
modify existing classes when subclassing is inappropriate. They support the layering of applications by grouping with a
package its extensions to classes in other packages. AspectJ inter-type declarations offer a similar mechanism.

The definition of a package dependency has multiple implications that we want to highlight. First, global variables
and exceptions are like a class reference because a global variable has a type and an exception is a class. Second, when
a dependency points to an external library, our system does not consider it. By construction, if the library is external to the
analyzed system, it is outside the scope of the current system and does not impact the layer structure of the system. Finally,
the parameter passing is considered as a class reference for statically typed languages like Java and C++. For dynamically
typed languages, the type cannot be found and the dependency cannot be built in our system.

Cycle. A cycle is a chain of dependencies between two or more packages such that there is a directed path which comes
back to its origin (each package in the cycle depends on itself). We distinguish two kinds of cycles:

• Direct cycle. It represents a cycle between two packages. In Fig. 4, UI and Pack A form a direct cycle.
• Indirect cycle. It represents a cycle betweenmore than two packages. In Fig. 4,UI, Pack A, and Kernel form an indirect cycle.

Minimal cycle. A minimal cycle is a cycle with no node appearing more than once. In graph theory, it is also named a
simple cycle. It is the minimal path from a node to return to it. In Fig. 4, UI→PackA→UI, Kernel→UI→PackA→Kernel
and PackB→Kernel→UI→PackA→PackB are three different minimal cycles. PackA→UI→ PackA→Kernel→PackA is not
a minimal cycle because PackA is present inside of it as well as at both ends. It can be reconstructed with the two minimal
cycles UI→PackA→UI and Kernel→UI→PackA→Kernel. To retrieve minimal cycles, some algorithms exist as [45,47]. We
use the algorithm proposed by Falleri et al. [19], which is the most recent and the most efficient.

Shared dependency. A dependency is shared if it is present in at least twominimal cycles. In Fig. 4 (right), the edge between
UI and PackA is shared by three minimal cycles. The edge between Kernel and UI is shared by two minimal cycles.

Strongly connected components. A SCC in a graph is the maximal set of nodes that depend on each other. It means for each
node of a SCC, there is a path within the SCC that comes back to this node. A SCC contains one or more cycles; specifically, if
there is a shared dependency, the SCC will include all the nodes of the cycles that share this dependency. In Fig. 4 (left), all
nodes are in a single SCC. We use the Tarjan SCC algorithm [44] to detect SCCs in a graph of dependencies.
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Fig. 5. The expected layered organization.

Undesired dependency. We assume that in legacy software some dependencies between packages fit the intended
architecture of the system whereas others don’t. The later are the undesired dependencies. They may occur from an
incomplete understanding of the intended architecture, from coding error, or from the impossibility of doing otherwise
without refactoring the source code to create a new architecture.

Layer-breaking dependency. A dependency which (i) is undesired, (ii) belongs to a cycle, and (iii) because of this cycle
impedes in finding a layered organization of the system.

3.2. Intuition to find layer-breaking dependencies

As we showed, the problem in building a layered architecture has to do with how to take into account cycles between
packages. Fig. 5 presents the layered organization that we would like to see for the package structure of our example
(see Fig. 2). We propose heuristics that are based on observations and experiments from our previous work [26,25]. The
cornerstone of our approach is to find layer-breaking dependencies. Ignoring them allows one to build a layered architecture
more easily, and removing them can be beneficial to the general organization of the system. Our approach is based on
two intuitions for finding dependencies that, once removed (we call them removable), will allow us to generate a layered
structure. We defined heuristics that try to ensure that the removable dependencies proposed by our approach are truly
layer-breaking dependencies.

Heuristic 1: direct cycles. In a cycle between twopackages (a direct cycle), we hypothesize that the lightest dependencymight
be inadvertently introduced in the system and might be a design defect or a programming error. Moreover, we hypothesize
that lightest dependencies require the least amount of work to be eliminated.

These hypotheses might not always hold true, but software engineers with knowledge on the system are given the
opportunity to overrule wrong decisions made by the tool (see Section 3.5).

Heuristic 2: shared dependencies. Our second intuition is based on the occurrence of shared dependencies in minimal cycles
involving three or more packages (indirect cycles). A shared dependency is a suitable candidate to be removed to break
cyclic dependencies between packages.

We hypothesize that shared dependencies have a strong impact on the system structure because removing them may
potentially break several cycles at the same time. Again, if this heuristic proves wrong, the user may overrule the decision
afterwards.

Therefore, the general idea of our approach is to decompose package cycles intominimal cycles. Among these cycles, first
we select the direct cycles and in eachdirect cyclewemark theweakest dependency as removable, that is to say a dependency
to be ignored by the layering algorithm. Then, among the rest of the cycles (i.e. indirect cycles), wemark shared dependencies
as removable dependencies. Then we build layers ignoring the removable dependencies: as mentioned previously we start
with packages not depending on any others, group them in layer 0, and successfully build the others.

There are two reasons to begin with direct cycles: (i) when a direct cycle is addressed, it could have an impact on other
indirect cycles that include it; and (ii) addressing a direct cycle is somehow simpler because there are only two solutions:
cutting one or the other of the two package dependencies.

For the packages of Fig. 5, removable dependencies are marked as follows:
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1. We decompose cycles among packages into minimal cycles. The cycles among packages PackA, PackB, Kernel, UI are de-
composed into three minimal cycles: UI→PackA→UI, UI→PackA→Kernel→UI, and UI→PackA→ PackB→Kernel→UI,
already shown in Fig. 4 (right).

2. To eliminate a direct cycle, the algorithm considers the weight of each dependency in the cycle and marks the lightest as
removable. The cycle UI→PackA→UI is the only direct cycle so we start with it. Applying our first heuristic, we mark as
removable the lightest dependency PackA→UI.

3. When all direct cycles are removed, the algorithm considers shared dependencies, it marks as removable the one shared
the most, because this is the one with the highest impact on minimal cycles. If multiple dependencies are shared by the
same number of cycles, the algorithm selects the lightest of them in terms of dependency weight. We repeat this action
as long as there are cycles.

In Fig. 5, there are twominimal cycleswhere the dependenciesKernel→UI andUI→Pack A appear. Therefore,we select
Kernel→UI (e.g. the lightest one) to break the cycle among the packages. Once these removable dependencies aremarked
(dotted in Fig. 5), all the package cycles are addressed and we can compute the package organization illustrated in Fig. 5.
Again, the software engineer can then decide that an undesirable dependency is not correct and rerun the algorithm.

3.3. The algorithm of oZone

Based on the definitions and heuristics previously explained, we present an algorithm to identify removable edges in a
package dependency graph. In this algorithm, the term removable is used (i) to remove an edge from the graph to make
it acyclic and (ii) to tag the dependency so that its status can be understood by the engineer evaluating the layers and
dependencies.
1: Model::getRemovedEdges(Graph graph): Collection {
2: graph.computeSharedEdges()
3: for (Cycle cycle: computeDirectCycles()) {
4: if (cycle.edgeOne.weight() > cycle.edgeTwo.weight() * 3)
5: graph.remove(cycle.edgeTwo)
6: elseif (cycle.edgeTwo.weight() > cycle.edgeOne.weight() * 3)
7: graph.remove(cycle.edgeOne)
8: else
9: graph.remove(max(cycle.edgeOne.sharedEdges(), cycle.edgeTwo.sharedEdges()))
10 or (graph.remove(min(cycle.edgeOne.weight(), cycle.edgeTwo.weight())))
11: or (graph.remove(cycle.edgeOne))
12: }
13: while (computeSCC().notEmpty()) {
14: graph.computeSharedEdges()
15: graph.remove(max(cycle.edges.sharedEdges()))
16: }
17: return graph.removedEdges
18: }

The algorithm works as follows: first the minimal cycles are created and shared dependencies are computed on line
2. Then, from line 3 to line 12, direct cycles are removed from the graph. It checks for large differences between the two
edges of the direct cycle (using a ratio of 1/3) and removes the lightest (lines 4 to 7). If the difference is not important
enough, the algorithm checks shared dependencies and removes the most shared (line 9). If the two edges have the same
number of shared dependencies, it removes the lightest edge (line 10). If none of these conditions is satisfied, the algorithm
removes the first edge (line 11). This last line is necessary to remove all cycles to make a layered architecture. It is akin to
removing a random dependency in the cycle, but the engineer can specify constraints to guide the tool by explicitly marking
a dependency as expected or not (see Section 3.5). Then from lines 13 to 16, the algorithm removes other cycles by removing
shared dependencies. It computes minimal cycles (line 14) and removes the most shared dependency (line 15). If there are
multiple dependencies with the same shared number, it selects the one with the lower weight. The algorithm returns a
collection of removable dependencies.

The computation ofminimal cycles is based on an algorithmpresented in [19], andwe do not detail it here. This algorithm
returns a collection of minimal cycles in a graph, from which we compute the shared dependencies as follows:
1: Graph::computeSharedEdges(): Collection {
2: graph.computeMinimalCycles()
3: for (Cycle cycle: graph.computeMinimalCycles()) {
4: for (Edge edge: cycle.edges()) {
5: edge.setShared(edges.getShared() + 1)
6: }
7: }
8: }
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Fig. 6. Possible evolution of package dependencies states.

Line 2 calls the minimal cycles algorithm. Then for each dependency in each minimal cycle (lines 3 to 7), we increment
a counter associated to the dependency.

3.4. Building layers from an acyclic graph

When the previous algorithm returns removable dependencies, we can ignore these dependencies to obtain an acyclic
graph. With this graph, we can build a layered organization of the packages. These specific dependencies are however, later
presented to the software engineer for further analysis. The layering algorithm is the same as intuitively presented at the
end of Section 2.1:

1: Model::buildLayers(Graph aCyclicGraph): Collection {
2: L := Collection
3: N := aCyclicGraph.nodes
4: while (N.notEmpty()) {
5: currentL = L.addNewLayer()
6: concernedNodes = N.selectNodesWithoutOutgoing(N)
7: currentL.add(concernedNodes)
8: N remove(concernedNodes)
9: }
10: return L
11: }

Lines 2 and 3 initialize variables: L is a collection of layers. Each layer is a collection of packages. N is the collection of all
packages of the system. Lines 4 to 9 build the layered architecture. Each layer (line 5) is filled by putting into it packages
without any outgoing dependencies to packages contained in N (lines 6 and 7). Finally, it removes the selected nodes from
N (line 8), and loops until N is empty.

3.5. Manually defining constraints

The algorithmmay provide results that do not completely match the expectations of engineers. Automatic computation
based on our heuristics provides a first shape of the system. From this, an engineer should be able to impart his knowledge
and impose constraints on cyclic dependencies removal. He can evaluate each dependency in the system and introduce
constraints. Then the tool recomputes the layer organization according to the provided constraints.

For this purpose, we design four possible marks for a dependency: (i) expected for dependencies that fit into the software
engineer’s understanding of the system architecture; (ii) undesired for dependencies that do not fit the software engineer’s
understanding of the system architecture; (iii) removable for dependencies that the algorithm propose to remove; and
(iv) not flagged for dependencies that the algorithm would leave untouched.

These constraints add a new dimension to the algorithm. Fig. 6 shows the possible states of a dependency after a first
run of the algorithm; then an evaluation-and-correction phase by the software engineer; and finally the possible impact of
these corrections after a second run of the algorithm. First, the algorithmmarks as removable the dependencies it proposes to
break. By default, all others are marked not flagged (i.e. valid). The user may change the mark of any dependency to expected
or undesired to clarify his understanding. He may also leave the algorithm’s mark untouched. In a new run, the algorithm
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Panel representing Layer View A layer removable  
graph dependencies

undesired  
dependencies

All dependencies  
of the system

Fig. 7. UI to build layered view based on constraints.

will not change the tagging by the user and will only consider the dependencies that are removable or not flagged. It is a new
fresh run and these dependencies are reevaluated independently of their previous mark. For example, if the user marked
some dependency in a cycle as undesired, this might end up breaking the cycle and other dependencies in the cycle that
were initially marked removable by the algorithm could now be considered not flagged. On the contrary, if the user puts an
expected mark on a dependency, this could force the algorithm to mark as removable another dependency in the cycle that
was initially not flagged. If all dependencies in a cycle are marked as expected, this cycle cannot be removed. In this case, all
involved packages are put together in a single layer. We only show one iteration in the figure, but after the second run of
the algorithm, the user could again change some dependencies, until he obtains a satisfying layer structure.

4. An interactive browser to build layers

We implemented a prototype tool to visualize and modify the results of the algorithm. This prototype allows users to
understand the status of the dependencies, change it and recompute the layers. This prototype is implemented on top of
the Moose software analysis platform [11] and it is based on the FAMIX language independent source codemetamodel [17].
Moose provides importers for Java, C#, C++ and Smalltalk. We experimented with two Smalltalk applications.

The user interface of the tool (Fig. 7) is composed of threemain panels: a visualization of layerswith polymetric views [24]
(left), a list of layer-breaking dependencies (center), and a list of all dependencies (right). The layer-breaking dependencies
are those marked as removable5 or undesired. They are ignored in the computation of layers.

We build the layer visualization to show our main concerns: relations between packages, packages forming Strongly
Connected Components (SCC), and some convenientmetrics about the size of packages to help the software engineer develop
a basic understanding of the system.

• In Fig. 7 (left part), a Layer is a row with colored boxes inside. The bottom box is Layer 0.
• A Package is representedwith polymetric views [24,7,20]. Each package is represented by its name and a box. The height,

the width, the fill color and the border color of the box have meanings (see also Fig. 8):
– The height represents the number of clients of the package (i.e. those depending on it). Taller packages have more

clients, so one would expect to find them in lower layers.
– The width represents the number of providers of the package (i.e. those it depends on). Wider packages have more

dependencies, one would expect to find them in higher layers.
– The fill color represents the number of classes in the package: the darker a package, the more classes it contains.
– The border color represents Strongly Connected Components (SCCs). If the color is gray, the package is not part of a SCC.

If it is another color, the package is in a SCC with all other packages with the same border color. In the figure, there is
only one SCC, which is marked by a red border (showing as dark gray).

5 In the prototype, flags are represented by numbers: −1 = undesired; 1 = expected; 0 = removable; and no number = not flagged.
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Fig. 8. The polymetric view used in Layer View.

Table 1
Characteristics of Moose 4.0 beta4 and Pharo 1.1.

Moose Pharo

Number of classes 594 1558
Number of packages 33 115
Number of packages in cycles 14 68
Number of SCC 1 1
Number of direct cycles 10 98
Number of package dependencies 106 1328
Number of package dependencies involved in SCC 56 922
Number of undesired dependencies in SCC 14 222

• A dependency is represented by an arrow from depending package (client) to depended one (provider). A dependency
can take one of four colors (see Fig. 8): red (showing as dark gray) for an undesired dependency (that the user wants
to exclude), green for an expected dependency (that the user wants to keep), black for a removable dependency (that
the tool suggests to exclude), and light gray for a not flagged dependency (not flagged by the algorithm nor the
user).

This kind of information allows the engineer to understand the dependencies of the packages in the system. It is also
possible to interact with the tool to add manual constraints on a dependency.

• On the two lists of the UI (center and right), users can flag dependencies as expected or undesired. When a dependency is
flagged manually, the algorithm recomputes the layered architecture and the UI (left part) is updated.

• On the layered view (left), users may select a package and force it to be placed in any layer. In response, the tool flags
as undesired all dependencies that would contradict this decision (i.e. dependencies coming from lower layers), and
recomputes the layered architecture.

The user interface was used for the first part of the validation of our approach.

5. Validation

We performed three distinct experiments and validation studies. The first study confirms that many of the dependencies
selected by our heuristics are layer-breaking dependencies and, as a result, the tool can build a layer organization
corresponding to the intended structure of the software. The second study shows that our algorithm can make use of user
input to improve its results. The third study compares our algorithm with theMinimum Feedback Arc Set (MFAS) algorithm.

We performed the first experiment on two open-source systems: the Moose software analysis platform [37] and the
Pharo Smalltalk development environment [6]. The second experiment considers only Moose and the third one Pharo.
We selected these two projects because they are large, contain realistic package dependencies, and are open-source and
available to other researchers. In addition, both systems are more than 10 years old. Most importantly, we selected them
because we could get feedback on our results from members of each project community.

In the three experiments, we compare the results of our algorithm (andMFAS) to amanual evaluation of all dependencies
by software engineers of both projects. In both case, software engineers, independent of the authors of this article, manually
checked and qualified all the package dependencies of the systems. The engineers were not confronted with the results of
our tools before the end of this evaluation. Characterization of the two systems is proposed in Table 1.

From this, we could compute recall and precision for our algorithm andMFAS. The precision and the recall are computed
from the number of true and false positives proposed by the algorithms. A true positive is a dependency marked removable
(by the algorithm evaluated) and undesired (by the human expert), a false positive is a dependency marked removable
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Table 2
Dependencies to remove as proposed by our tool on the Moose system.
Discrepancies with the user’s evaluation (last five) are discussed in the
text.

Removable dependencies User evaluation

DSMCore → DSMCycleTable Undesired
Fame → Moose-Core Undesired

Famix-Core → Famix-Implementation Undesired
Famix-Extensions → Moose-Finder Undesired
Famix-Extensions → DSMCore Undesired
Famix-Smalltalk → Famix-Extensions Undesired

Glamour-Browsers → Glamour-Scripting Undesired
Glamour-Helpers → Glamour-Core Undesired

Moose-Core → Famix-Extensions Undesired
Moose-Core → Famix-Implementation Undesired

Moose-Finder → Moose-Wizard Expected
Moose-SmalltalkImporter → Famix-Implementation Expected
Moose-SmalltalkImporter → MooseCore Expected
Moose-GenericImporter → Moose-Core Expected

Famix-Core → Moose-Core Expected

(by the algorithm evaluated) and expected (by the human expert), and a false negative in SCC is a dependency member
of a Strongly Connected Component marked not flagged (by the algorithm evaluated) and undesired (by the human expert).
tp, fp, and fnSCC are the total number of (respectively) true positives, false positives, and false negatives in SCC. The precision
of an algorithm is computed as:

Precision =
tp

tp + fp

and indicates the proportion of dependencies removable that are undesirable for the developer. The closer to 1, the better.
Recall is defined as:

Recall =
tp

tp + fnSCC

and indicates the proportion of layer-breaking dependencies (undesirable for the developer) found by the algorithm. Best
is closer to 1.

5.1. Study one: finding the dependencies to remove

We performed a first study to validate the relevance of the approach without any human input. The question is: does the
algorithm propose to break the same dependencies as a software engineer that knows the system well?

5.1.1. Protocol
The case study was realized on beta 4 of Moose 4.0. Moose contains 33 packages and 106 dependencies among these

packages. This version was chosen because it is known to be poorly modularized, and it contains many cyclic dependencies.
We provide some metrics for Moose in Table 1. It contains one Strongly Connected Component (SCC) with 14 packages and
56 dependencies. In this SCC, there are 10 direct cycles involving 14 packages. Note that the 10 direct cycles represent 20
dependencies among the 56 of the SCC (a direct cycle is composed of packages with 2 dependencies).

A developer from the Moose team (independent from this research) evaluated all the 106 package dependencies of the
system giving them two possible values: expected and undesired. 14 dependencies were considered undesired. We then ran
our algorithms on the system and compared the dependencies that the tool proposes to remove (i.e. removable) to the ones
the engineer considered inadequate. Results are provided in Table 2.

5.1.2. Results and discussion
For Moose, 15 dependencies were marked removable in a first run of the algorithm (see Table 2). Ten out of these 15 are

considered undesired by the engineer. The precision of our tool, on this example, is 66% and the recall is 71%. For Pharo, the
precision is similar (64%), but the recall is lower (44%). Results for Pharo are discussed in Section 5.3.

We now pay a closer look to the 5 false-positive dependencies for Moose. They are due to two issues:

• First, the two dependenciesMoose-Finder→Moose-Wizard andMoose-SmalltalkImporter→Famix-Implementation belong
to direct cycles for which both dependencies have similar weights. Selection of which dependency to break could not be
based on the weight difference. Furthermore, none of the dependencies in these two direct cycles is shared. Therefore,
the algorithmhas no reason for choosing one dependency over the other, and had to choose ‘‘randomly’’ (see Section 3.3).
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Fig. 9.Moose packages layer organization proposed by our tool in a first round. Moose-Core should be in a lower layer.

Table 3
Automatically corrected removable dependencies after adding
manual constraints on the Moose system.

Removable dependencies User evaluation

Moose-Core → Famix-Core Undesired
Moose-Core → Moose-GenericImporter Undesired
Moose-Core → Moose-SmalltalkImporter Undesired

Moose-Wizard → Moose-Finder Undesired

To correct this point, the tool would need more information about the system. This is achieved with the possibility for
the maintainer to indicate the undesired dependencies.

• Second, the last three false-positive results going to Moose-Core (Famix-Core→Moose-Core, Moose-Smalltalk-
Importer→MooseCore and Moose-GenericImporter→Moose-Core) are related to a choice of the algorithm to remove
the dependency Famix-Core→Moose-Core instead of Moose-Core→Famix-Core. This is another case of a difficult choice
between the two dependencies of a direct cycle in the absence of sufficient weight difference. In this case, Famix-
Core→Moose-Core is shared one more time than Moose-Core→Famix-Core and therefore was wrongly chosen. This is
a case where a heuristic based on information from the graph of dependencies shows its limit and where knowledge of
the system is required. Again, this knowledge can be provided by the user.

5.2. Study two: user input influence

The second study validates how well the approach can consider user input. The question is: does the algorithm find a
better solution with user constraints?

5.2.1. Protocol
This experiment can be seen as a follow-up on the previous onewith only theMoose project. In the previous experiment,

the tool proposes a layer organization with 11 layers shown in Fig. 9 (the rectangles are the packages, each row is a layer).
It highlights particularly the main problem revealed by previous results: Moose-Core is too high in the layer organization,
due to an incorrect decision to break dependency Famix-Core→Moose-Core.

Based on the manual evaluation of dependencies by the Moose engineer, we manually set as undesired the 10 correct
propositions of our algorithm and set as expected the five false-positive propositions. This corresponds to what a real user
might do when using our tool on a system he knows. Note that this means that the four remaining dependencies considered
undesired by the independent expert and not found by the algorithm, were not explicitly marked as such. After this input
from the user, we ran the tool again and compared the new result obtained to the previous one. We expect that the results
will be better now that we gave additional information on the system to the tool. Specifically, we expect it to find the four
layer breaking dependencies that we left not flagged.

5.2.2. Results and discussion
After the second run, the algorithm correctly marked as removable the four missing dependencies, shown in Table 3. So

it achieves perfect precision and recall.
In this new result, the layer organization has 8 layers (Fig. 10). We can see that Moose-Core is now on a lower layer than

that in Fig. 9. It is considered correctly placed now.
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Fig. 10. Moose packages layer organization proposed after providing manual constraints.

Table 4
Manual evaluation of dependencies in Pharo 1.1.
Expert evaluation % of all dependencies % of SCC dependencies

Undesired (%) 20 25
Expected (%) 78 73
Unknown (%) 2 2

Table 5
Number of dependencies removable with
oZone and/or MFAS.
Technique Number of dependencies

MFAS 150
oZone 151
oZone ∩ MFAS 90
oZone ∪ MFAS 211

This study shows that our algorithmwas able to improve its results after receiving some input from the user. It achieved
a better precision and proposed a layered organization that better fits the expectation of the expert.

5.3. Study three: comparative study withminimum feedback arc set (MFAS)

In this section, we compare the results of our algorithm to those of the MFAS algorithm proposed in [18].

5.3.1. Protocol
We perform this comparison on Pharo 1.1. looking at the precision and recall of both algorithms. Pharo is an open-source

Smalltalk-inspired environment. Table 1 summarizes some characteristics of Pharo. It has 1558 classes in 115 packages
in the version studied, 1.1. Pharo contains one Strongly Connected Component (SCC) composed of 68 packages and 922
dependencies. In this SCC, there are 98 direct cycles involving 68 packages (one package may be involved in several direct
cycles). The 98 direct cycles have 196 dependencies among the 922 involved in the SCC.

We asked engineers from the Pharo community to evaluate all the 1328 dependencies. To help them in this long and
tedious task, we developed a little tool to support their evaluation of the package dependencies. Table 4, middle column,
gives the proportion of dependencies evaluated by the Pharo experts. 20% of all the 1328 dependencies were considered
undesired. Since both approaches evaluated (MFAS and our tool) propose to remove dependencies that belong to SCCs, we
also give the percentage of undesired dependencies among the 922 SCC dependencies (right column). Only 25% of these
dependencies are marked undesired by the developers. It implies that in a typical SCC, only one out of four dependencies is
irrelevant.

5.3.2. Results and discussion
There are differences betweenoZone andMFAS results becauseMFAS analyzes thewhole graph and removes theminimal

number of dependencies, whereas oZone first removes the lightest in direct cycles, and second the shared dependencies in
the rest of the cycles. We provide in Table 5 the number of dependencies that each algorithm proposes to remove. We
also provide the union and the intersection of dependencies identified by each technique. Each of them found about 150
dependencies. There is no clear difference in the number of dependencies found. However, when computing the intersection
we see that only 90 dependencies are common. It means that 60 of the 150 dependencies are unique to MFAS and 61 of
the 151 dependencies are unique to oZone. We can conclude from these results that the two algorithms are proposing
a significant set of non-overlapping dependencies as removable in the system. It suggests that heuristics from the two
algorithms might be merged to try to produce better results.
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Table 6
Comparison of the accuracy: oZone and MFAS.
Technique Precision (%) Recall (%)

MFAS 61 41
oZone 64 44
oZone ∩ MFAS 77 31
oZone ∪ MFAS 56 53

Table 6 presents the results of oZone andMFAS precision and recall. Whereas 61% of the dependencies removed byMFAS
were undesired, precision is 64% for our approach (better precision). In addition, we could identify 44% of the undesired
dependencies in SCC, whereas MFAS finds only 41% of those (better recall). Hence, our approach performs better thanMFAS
on this example.

An added advantage is that our approach allows the reengineer to review the dependencies marked by the algorithm
and give his feedback (as shown in Section 5.2).

We finally compute the precision and the recall of the union and intersection of the two algorithms. The union of the
techniques augments the number of removable dependencies and logically improves recall (53%) at the expense of precision
(56%). On the contrary, taking only the dependencies identified by both techniques (intersection) reduces the size of the
result (decrease in recall to 31%), choosing mostly interesting ones (improved precision to 77%).

From these results, we can make two conclusions. (i) The approaches are complementary. They select different
dependencies, which used together provide a good precision. Using both heuristics could provide better results. (ii) Even
combined, the two approaches do not select all the undesired dependencies. As explained, the goal of the two algorithms is
to deal only with dependencies in cycles, dependencies judged uninteresting by the engineers, but not members of a cycle
which were not treated.

Although our approach produced better results, we believe it can be improved by adding semantics to the dependencies.
In our approach, after removing direct cycles and shared dependencies, the algorithm ignores light dependencies. We could
consider the nature of dependencies to improve this behavior. For example, we could treat differently dependencies arising
from inheritance or method call, or consider where the dependency occurs, e.g. type of a class attribute, type of a method
argument, type of a local variable. In addition, the approach could be extended to take into account design patterns such
as Model-View-Controller (MVC) that could provide semantic information. In this case, if a cycle is discovered between the
view and the model, we should remove the dependency frommodel to view. Another point to be taken into account for the
improvement is the notion of a sub-package (a sub-package is a package inside another package. This feature is available
for example in Java). For now, they have no different treatment but we could consider cycles between sub-packages less
important than a cycle between multiple different packages.

5.4. Threats to validity

We detail in this section the threats to validity related to the three previous studies.

• Construct validity. Each dependency was evaluated by only one expert. He may have made mistakes. In Moose, the
probability of a wrong evaluation is low, becausewe performed a ‘‘counter-evaluation’’ whenwemanually analyzed part
of the dependencies to discuss the results of the first study. In Pharo, there are more than 1300 dependencies evaluated,
which required several hours of concentration. This threat is difficult to reduce because of the costs involved inmanually
evaluating the dependencies.

Another threat is related to the size of the experiment. The number of studied software applications is too small to
provide statistically significant results. Again, dealing with this threat involves costs that we could not sustain in this
research.

Manually evaluating every dependency in a given software system is a very long and costly task.
• Internal validity. We do not have causal relations examined in this study. So, there is no internal validity threat.
• External validity. The study should work on object-oriented language. However, in this study, only Smalltalk software

applications were analyzed. Our analysis is based on the FAMIX language independent meta-model: the source code
model extracted from Smalltalk code is similar to the one of Java and the extracted dependencies between packages are
the same: class references, inheritances and accesses. To avoid this threat, wemust study other object-oriented systems.

• Reliability. We identify two reliability threats: the tool construction and the dependencies assessment.
The threat related to the tools can be due to the dependencies extractor and to the dependency validator. The threats

for the extractor are small because of the large testbed and the use of this extractor by an active community since 1996.
The threats to the validator are small too because it is a simple list that can be checked with values (undesired, expected,
unknown).

The threats related to the assessment is due to the validity of the human evaluation. We give to developers the sole
instruction that an undesired dependency is a dependency that should not exist in the system. This definition has a
semantic impact that can be interpreted differently by developers. This threat can be avoided by asking another developer
to analyze the dependencies and to confront the results of each developer. It is difficult to reduce this threat as it takes
several hours to analyze all dependencies.
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6. Related work

In this section, we present other approaches on the problem of package cycle identification and removal.

6.1. Heuristics

Some research work has been done on package dependencies and package layer computation. PASTA [21] is a tool for
analyzing the dependency graph of Java packages. It focuses on detecting layers in the graph and consequently provides
two heuristics to deal with cycles. The first heuristic is to consider packages in the same strongly connected component as
a single package. The other heuristic selectively ignores some undesirable dependencies until no more cycles are detected.
Thus, PASTA reports the undesirable dependencies which should be removed to break cycles. The undesirable dependencies
are selected by computing their weights and selecting the minimal ones. Our approach considers one more parameter: we
introduce shared dependencies and use it as a heuristic to remove package cycles.

In graph theory, a feedback arc set is a collection of edges which should be removed to obtain an acyclic graph. The
minimum feedback arc set is theminimal collection of edges to remove to obtain an acyclic graph. This theoretical approach
cannot be used for three main reasons. (i) It is a NP-complete problem (optimized by Kann [22] to become APX-hard). Some
approaches propose heuristics to compute the Feedback Arc Set Problem in reasonable time [18]. (ii) It does not take into
account the semantics of the software structure. Optimizing a graph is not equivalent to a possible solution at the software
level. (iii) The goal of breaking cycles in software applications is not to break a minimal set of links, but the more pertinent
ones.

JooJ [35] is an eclipse plugin (not released) to detect and remove as early as possible cyclic dependencies between classes.
The principle of JooJ is to highlight statements creating cyclic dependencies directly in the code editor. It computes the
strongly connected components to detect cycles among classes. It also computes an approximation of the minimal feedback
arc set. However, no studywas conducted to validate this approach for cycle removal. The dependencies it selects for removal
could be expected, i.e. valid given the system’s architecture. In another study, Melton and Tempero [34] propose an empirical
study of cycles among classes. They use the minimum feedback arc set to resolve cycles present in the software system.
They indicate that it is crucial to take into account the semantics of the software architecture. For this purpose, the authors
propose to add constraints to the minimum feedback arc set to keep the inheritance relationship while breaking cycles. We
also consider user input an essential feature to remove cycles. In our work, we include user validation to take into account
the semantics of the program.

Mudpie [46] is a tool to help the maintenance of a software system by bringing out Strongly Connected Components and
focusing on the dependencies in Strongly Connected Components. However, no algorithm is presented to break the cycles
present and the tool relies on the developer’s intuition to remove cycles.

Software clustering. Software clustering is another domain in relation to our work. The goal of clustering is to order entities
intomodules based on some criteria defined by the engineer [2,38]. This kind of approach can be useful tomanipulate classes
and redesign packages. In our work, we manipulate packages and we consider that a package has a meaning for engineers,
so it should not be broken automatically.

Bunch [31] is a tool that uses hill-climbing clustering algorithms for automatic remodularization of software. It proposes
to decompose and to show an architectural view of the system structure based on classes and function calls. It helps
maintainers understanding relations between classes. This tool ignores the package structure and does not provide the
information we need to make a layered organization of a system. Our work is based on package architecture.

The Kleinberg algorithm [23] defines authority and hub values for each class in a system. A high authoritymeans the class
is used by a big part of the system, and the hub value means the class uses multiple other classes in the system. Scanniello
et al. [41] propose an approach to build layers of classes based on this algorithm. They identify relations between classes
and use the Kleinberg algorithm to group them into layers where the classes with a high authority value are placed on the
bottom layers and the classes with a high hub value are placed on the top layers. They propose a semi-automatic approach
which allows themaintainer tomanipulate the architecture and add its propermeaning of the system. This kind of algorithm
could be applied at package level and compared with our algorithm.

Multiple works [1] exist to decompose a system by using genetic heuristics. Lutz [29] proposes a hierarchical
decomposition of a software system. It uses a genetic algorithm to find the best way to group classes of the system into
coarse-grained packages. Our work is not in this domain, as our goal is to discover dependencies which break the system
architecture, in particular, the layered organization of the system.

6.2. Visualization

Several approaches propose to recover software structure, visualize classes and file organizations [46]. Only a fewprovide
a layered organization for packages and in particular consider cycles. Some help determine information on packages and
their relationships, with visualizations and metrics [16]. In these approaches, it is not easy to understand the place of
a package in a system, particularly when large systems are analyzed. Others propose to recover software structure and
visualize the organization of classes and files [31]. To understand the complexity of large object-oriented software systems
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and particularly the package structure, there are some visualization tools [10,14,4,28]. Package Blueprint [16] shows the
communications between packages; eDSM [26] and CycleTable [25] highlight the cycle problems in a system. However,
these approaches do not identify layers for packages present in a software system.

Dong and Godfrey [9] propose an approach to study dependencies between packages and to give a new meaning to
packages with (i) characterization of external properties of components, (ii) usage of resource and (iii) connectors. It helps
themaintainers to understand the nature of package dependencies. This kind of tool is useful to understand a global system.

Lungu et al. [27] propose a collection of package patterns to help reengineers understand large software systems. They
propose to recover architecture based on package information and an automatic process to recover defined patterns. Then
they propose a user interface to interact with the package structure. This approach is useful to understand the behavior
of a package in the system. It can provide information about the position of a package in a layered organization. This kind
of pattern could be used to add more information on a package and to propose more information about the breaking of a
dependency, for example knowing that a package is autonomous is valuable information.

6.3. Tools

There are other tools like JDepend6 or Classycles7 which allow software engineers to see package dependencies and
cycles. However, these tools donot provide a layered organization of the package structure. JDepend is a toolwhich computes
designmetrics on Java class directories to generate a quality viewof packages. Classycle is a tool to see cycles between classes
and shows package dependencies and cycles based on class information. It uses the same algorithm as JDepend. NDepend
is a tool to help engineers to maintain software with the help of visualization and metrics. It provides a UI to manage large
software maintenance. However, the tool does not support the removal of package cycles.

Deissenboeck et al. [12] propose the tool named ConQAT that allows developers to define manually a policy for
conformance assessment of the architecture. This tools highlights undesired dependencies between dependencies after
the policy is defined. Our approach can be complementary to ConQAT in the policy defining step by proposing undesired
dependencies between components.

Murphy et al. [32,33] propose a reflexion model that provides a better integration of the design in the implementation.
The reflexion model approach supports the checking of architectural dependencies by comparing a high-level model (i.e.
static architecture) with information extracted from the source code. During the comparison between the source code and
the architectural model, a violation is when a high-level dependency is not found in the code, called an absence, or when the
source code produces an unexpected dependency in the high-level model, called a divergence. This work is complementary
to ours: it needs a predefined high-level model for the comparison. It would be possible to implement our approach on top
of a reflexion model to produce the architectural model.

7. Conclusion

Building a layer organization for software entities in the presence of cyclic dependencies is not trivial. Existing approaches
either do not treat the problem of cycles or do not allow user constraints to input semantics of program. In this paper,
we propose an algorithm to organize software entities having cyclic dependencies in layers. We compute layer-breaking
dependencieswith our approach andprovide a user interface to addmanual constraints to correct the results of the algorithm.
Instead of limiting the approach to weakest dependencies, we also consider shared dependencies among cycles. Hence,
our approach selects removable dependencies based on three characteristics: shared dependencies, light dependencies, and
possible input by the user. We study our approach on package cycles: we identify a layered organization for software
packages. The study shows that the strategy provides better results than the previously existing approaches. It performs
better in terms of accuracy and interactivity: it contains less false-positive and false-negative results, and it supports human
inputs and constraints.

Our approach cannot act as an oracle to compute layered organization, i.e. it tries to improve the existing structure only,
and cannot be guaranteed to create a good structure from scratch. In addition, the algorithm is based on shared dependencies,
it depends on the analysis of the complete system to have all shared dependencies. In the case of computing the algorithm
on only a part of a system, shared dependencies are less and the algorithm could give more false positives.

The algorithm can be improved by introducing more flexibility. First, for manual verification, the user interface and the
visualization provided in Section 4 should be improved to bemore usable. Second, architectural semantics can be introduced
to improve the results.

Future work concerns the improvement of the algorithm to detect layer-breaking dependencies. The results of the MFAS
algorithm and oZone are improvable in term of precision and recall. New heuristics have to be proposed. Another future
work is to analyze other algorithms such as the Kleinberg algorithm [23] which seems to be a good perspective for evolving
heuristics.

6 http://www.clarkware.com/software/JDepend.html.
7 http://classycle.sourceforge.net/.
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