
Identifying cycle causes with CycleTable

Jannik Laval, Simon Denier, Stéphane Ducasse
RMoD Team, INRIA, Lille, France

firstname.lastname@inria.fr

Abstract

Identifying and understanding cycles in large applica-
tions is a challenging task. In this paper we present Cy-
cleTable which displays both direct and indirect references.
It shows how minimal cycles are intertwined through shared
edges and allows the reengineer to devise simple strategies
to remove them.

1 Introduction

Understanding the structure of large applications is a
challenging but important task. Several approaches provide
information on packages and their relationships, by visu-
alizing software artifacts, metrics, their structure and their
evolution. Software metrics can be somehow difficult to un-
derstand since they are dependent on projects. Distribution
Map [1] alleviates this problem by showing how properties
are spread over an application. Lanza et al. [2] propose to
recover high level views by visualizing relationships. Pack-
age Surface Blueprint [3] reveals the package internal struc-
ture and relationships among other packages.

In previous work, we enhanced Dependency Struc-
ture Matrix (eDSM) [4] to visualize dependencies be-
tween packages, showing in each matrix cell information
about the dependencies at the fine grain of classes (inheri-
tance, class references, invocations, referencing and refer-
enced classes/methods). eDSM proved useful to provide
an overview of dependencies, detect direct cycles (a cycle
between two packages) and provide information to remove
them. However, removing all direct cycles does not neces-
sarily remove all cyclic dependencies because there could
be indirect cycles (between more than two packages). Al-
though indirect cycles are also displayed by eDSM, they are
hard to read in the eDSM layout, making the task inefficient.

In this paper, we present a new visualization, called Cy-
cleTable, entirely dedicated to cyclic dependencies assess-
ment. CycleTable layout displays both direct and indi-
rect cycles and shows how minimal cycles are intertwined
through shared edges. CycleTable combines this layout

with the enriched cells of eDSM to provide the details of
dependencies at class level.

Next section introduces the challenges of cycle analy-
sis with graph layout and eDSM. Section 3 explains Cy-
cleTable layout and enriched cells. Section 4 presents a
sample of cyclic dependencies displayed with CycleTable
and discusses the criteria to break cycles as highlighted by
the visualization.

2 Cycle Visualization

Figure 2 shows a sample graph with five nodes and three
minimal cycles. Each edge is weighted. Notice that cycle
A-B-C and A-B-E share a common edge (in yellow) from
A to B. This shared edge is interesting to spot since it joins
two cycles and by removing it we would break those cycles.

Graph layouts offer an intuitive representation of graphs,
and some handle cyclic graph better than others. On large
graphs, complex layouts may reduce the clutter but this is
often not simple to achieve. In addition, in the context of
DSM we enhanced the DSM cells to convey much more
information about the strength, the nature and consequences
of a cycle. Now it is difficult to combine a graph layout
with enriched cells (see Figure 4 for a cell sample), as an
enriched cell represents an edge in a graph. Enriched cell
is an important asset of our work with eDSM as it provides
fine-grained details of a dependency between two packages,
and enables small multiples as well as micro-macro reading
effects [5].

In eDSM we used a matrix, the traditional support of
DSM. It provides a regular structure which is the same at
any scale: it handles the repetitive arrangement of enriched
cells, enabling the above effects. It is a fundamental ele-
ment of eDSM design. In Figure 1, four packages belonging
to Pharo kernel (an open-source Smalltalk) are presented
in a eDSM. It shows edges involved in direct cycles in red
and pink cells, indirect cycles in yellow. More explanations
about the design and usage of eDSM are available in [4].

While eDSM allows us to analyze direct cycles comfort-
ably, we could not address the problem of indirect cycles
left over after removal of direct cycles. The main reason

1

Figure 1. Some Pharo core packages in a
eDSM (with cycles overlayed)

for this problem is that it is difficult to read an indirect cy-
cle in the matrix, i.e., to follow the sequence of cells repre-
senting the sequence of edges in the cycle. The order can
appear quite arbitrary as one has to jump between different
columns and rows (this problem does not exist with direct
cycles as there is only two cells, mirroring each other along
the diagonal). Cycles have been overlayed in Figure 1 to
show the complexity of reading indirect cycles, intertwined
with direct cycles.

3 CycleTable

We have built the CycleTable design with the single pur-
pose of visualizing cycles. As a consequence, CycleTable
does not show a complete overview of dependencies be-
tween packages as eDSM does. It complements eDSM.
CycleTable is a rectangular matrix where nodes are placed
in rows and cycles in columns. CycleTable (i) shows each
minimal cycle clearly and independently, (ii) highlights
shared edges between minimal cycles, and (iii) uses en-
riched cells [4] to provide information about edge internals,
enabling small multiples and micro-macro reading [5] i.e.,
variations of the same structure to reveal information. We
detail each of these points now.

3.1 Minimal Cycle

A minimal cycle is a cycle with no repeated nodes other
than the starting and ending nodes. For example, in Fig-
ure 2, A-B-E and A-B-C are two different minimal cycles,
but A-B-C-D-C is not because C is present twice. With min-
imal cycles, the visualization provides all edges contains in
cycles. Therefore it is not necessary to show complex (in-
tertwined) cycles. In the CycleTable layout, each minimal
cycle is represented directly and independently in its own
column.

3.2 CycleTable Layout

The CycleTable layout is presented in Figure 3. This
figure shows a sample CycleTable layout for the graph in
Figure 2. The first column (header) contains the name of
packages involved in cycles, then all minimal cycles are rep-
resented column by column. A box at the intersection of a
row and a column indicates that the package is involved in
the cycle.

One package per row. Each row contains dependencies
(as boxes) from the package in the header. Number in each
box represents the weight of the edge. In Figure 3, first row
represents package A, which depends on package B with
a weight of 10. Second row represents package B, which
depends on E (weight 9) and C (weight 4).

One cycle per column. In the right part of the table, each
column represents a cycle. In Figure 3, the first column
involves packages A, B and E in a cycle. Each minimal
cycle is represented independently.

Shared edges. Cells with the same background color rep-
resent the same edge between two packages, shared by mul-
tiple cycles. In Figure 3, first row contains two boxes with a
yellow background color. It represents the same edge from
A to B, involved in the two distinct cycles A-B-E and A-
B-C. It is a valuable information for reengineering cycles.
Indeed, removing or reversing A-B would solve two cycles.

3.3 CycleTable Cell

Box content is customized to display enriched cells as
in eDSM [4]. An enriched cell displays all dependencies at
class level from one package to the other. A CycleTable cell
is structured in three parts: (i) on top, position in the cycle,
(ii) in center, an enriched cell as in DSM, and (iii) on right,
a colored frame if the edge is shared by multiple cycles.

2

A B

E

D

C

1

9

10

43

1

1

Figure 2. Sample graph with three cycles.

A

B

E

C

D

B-10

E-9

A-1

A-3

C-4

B-10

C-1

D-1

A-B-E Cycle

Shared edge A-BSource node B

Edge A-B
Edge B-C

Edges
from C

packages
involved
in cycles

each column is a cycle

Figure 3. CycleTable for sample graph.

Position in the cycle. The position in the cycle represents
a relative order between edges. This number is sometimes
necessary to retrieve the exact order of edges in indirect cy-
cles. In Figure 5, numbers allow one to read indirect cycles
in third and fifth columns.

Enriched cell. Cell contents gives a detailed overview of
dependencies from the package in the header of the row
(source package) to the next package in the cycle (target
package). Each cell represents a small context, which en-
forces comparison with others. The objective is to create
small multiples [5].

An enriched cell is composed of three parts. The top
row gives an overview of the strength and nature of the de-
pendencies. The two large boxes detail dependencies going
from the top box to the bottom box i.e., from the source
package to the target package. Each box contains squares

that represent involved classes: referencing classes in the
source package and referenced classes in the target pack-
age. Edges between squares links each source class (in top
box) to its target classes (in bottom box). As this structure
is the same as in eDSM [4], we give no more explanation in
this paper.

Number

Source package

Target package

Ratio of concerned
classes

in each package

Tot Inh Ref Msg Ext

Green fill: no
dependency to other
packages

Red fill:
dependencies in
both directions with
other packages

Orange fill:
dependencies
from or to other
packages

Dependency
number and nature

C

Z X Y

BA

Colored link based on:
- Red: references (+invocations)
- Blue: inheritance
- Green: invocations
- Black: inheritance+others

Position in the cycle

Color: shared edge

Figure 4. Information in CycleTable cell.

4 Breaking Cycles with CycleTable

Figure 5 shows a CycleTable with the sample four pack-
ages of Pharo core presented in Figure 1. Five minimal cy-
cles are immediately made visible. It also appears that three
edges are each involved in multiple cycles (with the red,
blue, and orange frames).

An important asset of CycleTable is that it does not focus
on a single solution to break cyclic dependencies. It rather
highlights different options as there are many ways to re-
solve such cyclic dependencies. Only the reengineer can
select what he thinks is the best solution based on a matter
of criteria. We now discuss how CycleTable allows one to
consider solutions for solving cycles in Figure 5.

First things to consider in CycleTable are the shared
edges, the number of cycles they are involved in,
and their weight. For example, the blue cell linking
System-FileRegistry to Kernel is in the two in-
direct cycles. Yet it has a weight of six dependencies
and involves six classes as well, which can require some
work to remove. Finally, from a semantic point of view,
Kernel is at the root of many functions in the system
so it seems difficult to remove such dependencies from
System-FileRegistry.

Instead, we turn our focus to the red cells, linking
Kernel to System-FilePackage. It has a very low
weight and involves only two classes. This is the minimal
dependency we can get between two packages and seems as
a prime candidate for removal. Removing this dependency
(by moving a class, changing the method, or making a class

3

Figure 5. Pharo core from Figure 1 in CycleTable.

extension) would break the first two cycles from the left.
The third cycle links directly System-FilePackage

and System-Support and is not intertwined with others.
There is a weak link from the second package to the first
which seems easy enough to remove.

Finally, the orange edge links the last two cy-
cles. However, it is obvious that it is too com-
plex to be removed. The fourth cycle seems solvable
by removing its last edge (from System-Support to
System-FileRegistry). The last cycle, linking di-
rectly Kernel and System-Support is too complex
so that a simple removal strategy can be devised with Cy-
cleTable. Both packages are at the very core of Pharo sys-
tem and are highly coupled together.

5 Conclusion

In this paper we presented CycleTable. This visualiza-
tion shows cycles between packages in a system. Each cy-
cle is presented in a separated column. A colored frame
show which edge is shared by several cycles. To complete
the visualization, enriched cells (proposed in [4]) have been
adapted and integrated to represent each edge.

This visualization is for now a good complement of a

DSM visualization. This visualization allows us to solve
cycles separately or conjointly.

Future work will focus on computing heuristics for high-
lighting interesting edges in cycles (either because of their
low weight or because they are shared by many cycles),
prone to removal by the reengineer.

References

[1] S. Ducasse, T. Gı̂rba, and A. Kuhn. Distribution map. In Pro-
ceedings of 22nd IEEE International Conference on Software
Maintenance (ICSM ’06), pages 203–212, Los Alamitos CA,
2006. IEEE Computer Society.

[2] S. Ducasse and M. Lanza. The class blueprint: Visually sup-
porting the understanding of classes. Transactions on Soft-
ware Engineering (TSE), 31(1):75–90, Jan. 2005.

[3] S. Ducasse, D. Pollet, M. Suen, H. Abdeen, and I. Alloui.
Package surface blueprints: Visually supporting the under-
standing of package relationships. In ICSM ’07: Proceed-
ings of the IEEE International Conference on Software Main-
tenance, pages 94–103, 2007.

[4] J. Laval, S. Denier, S. Ducasse, and A. Bergel. Identifying
cycle causes with enriched dependency structural matrix. In
WCRE ’09: Proceedings of the 2009 16th Working Confer-
ence on Reverse Engineering, 2009.

[5] E. R. Tufte. Visual Explanations. Graphics Press, 1997.

4

	Introduction
	Cycle Visualization
	CycleTable
	Minimal Cycle
	CycleTable Layout
	CycleTable Cell

	Breaking Cycles with CycleTable
	Conclusion

