
Identifying cycle causes with Enriched Dependency Structural Matrix
Accepted to WCRE 2009

Jannik Laval, Simon Denier, Stéphane Ducasse, Alexandre Bergel
RMoD Team

INRIA - Lille Nord Europe - USTL - CNRS UMR 8022
Lille, France

{jannik.laval, simon.denier, stephane.ducasse, alexandre.bergel}@inria.fr

Note for the reader: this paper makes heavy use of colors in the
figures. Please obtain and read an online (colored) version of this
paper to better understand the ideas presented in this paper.

Abstract—Dependency Structure Matrix (DSM) has been
successfully applied to identify software dependencies among
packages and subsystems. A number of algorithms were
proposed to compute the matrix so that it highlights patterns
and problematic dependencies between subsystems. However,
existing DSM implementations often miss important informa-
tion to fully support reengineering effort. For example, they
do not clearly qualify and quantify problematic relationships,
information which is crucial to support remediation tasks.

In this paper we present enriched DSM (eDSM) where
cells are enriched with contextual information about (i) the
type of dependencies (inheritance, class reference . . .), (ii) the
proportion of referencing entities, (iii) the proportion of ref-
erenced entities. We distinguish independent cycles and stress
potentially simple fixes for cycles using coloring information.
This work is language independent and has been implemented
on top of the Moose reengineering environment. It has been
applied to non-trivial case studies among which ArgoUML,
and Morphic the UI framework available in two open-source
Smalltalks, Squeak and Pharo. Solution to problems identified
by eDSM have been performed and retrofitted in Pharo main
distribution.

Keywords-software visualization; reengineering; dependency
structural matrix; package; dependency

I. INTRODUCTION

Understanding the package organization of an application
is a challenging and critical task since it reflects the applica-
tion structure. Many approaches have flourished to provide
information on packages and their relationships, by visu-
alizing software artefacts [22], metrics, their structure and
their evolution. Distribution Map [5] shows how properties
are spread over an application. Lanza et al. [8] propose
to recover high-level views by visualizing relationships.
Package Surface Blueprint [10] reveals the package internal
structure and relationships among other packages – surface
represents relations between the analyzed package and its
provider packages. Dong and Godfrey [4] propose high-level
object dependency graphs to represent and understand the
system package structure.

Dependency Structure Matrix (DSM) is a well-know
technique to identify cycles [16]. Originally it has been
developed for process optimization to identify dependencies
between tasks. This method has been applied with success

to identify software component dependencies [17], [18].
MacCormack et. al. [14] have applied DSM to analyze
modularity of the architecture of Mozilla and Linux.

While DSM is a robust solution to reveal software struc-
ture, DSMs have weaknesses too. DSM current implemen-
tations allow one to perform high-level inventory of a situ-
ation, but they are limited for fine-grained understanding—
tools just offer drop-down lists to show classes and methods
creating dependencies between packages.

For example, current DSM implementations do not pro-
vide detailed information about interpackage dependencies.
Cycles, which constitute a special target for dependency
resolution, are commonly identified using the adjacency
matrix power method [23]. Unfortunately, this algorithm
inaccurately identifies cycles since independent cycles are
merged.

Our contribution is two-fold: first, we identify weaknesses
of current DSM; second, we address these weaknesses. We
propose, eDSM, a DSM with enriched cells1. eDSM cells
contain contextual information which shows (i) the nature
of dependencies (inheritance, class reference, invocation,
and class extension), (ii) the referencing entities, (iii) the
referenced entities, (iv) the spread of the dependency. We
distinguish independent cycles and differentiate cycles using
colors. We applied eDSM on several large systems, Ar-
goUML, Morphic an UI framework and Seaside a dynamic
web framework. The results of the analysis of Morphic
were proposed to Pharo implementors (including two of the
contributors) and integrated in Pharo 2, a new open-source
version of Squeak 3. Squeak is an open-source implementa-
tion of Smalltalk programming language and environment.
Our approach is language independent since it is based on
the language independent FAMIX metamodel [3], [6].

The paper is organized as follows: Section II intro-
duces DSM and its limitations in existing implementations.
Sections III and IV present eDSM specifications and its
usage, from overview of an application to detailed view of
interpackage dependencies. Section V reports an experiment
on Morphic and identifies some patterns and solutions found
in the study. Section VI discusses about our solution and

1a DSM cell represents the intersection of two packages
2http://www.pharo-project.org
3http://www.squeak.org

future work.

II. DSM LIMITATIONS

DSMs are effective for detecting cycles between software
components. The use of DSMs gives pertinent results for
the verification of the independence of software components
[16]. However, in their current form, DSMs must be coupled
with other tools to offer fine-grained information and support
corrective actions.

Figure 1(a) shows a sample dependency graph and its
corresponding binary DSM. A binary DSM shows the ex-
istence/lack of a dependency (or reference) by a mark or
“1/0”. The rule for reading the matrix is: element in column
header references element in row header if there is a mark.
In our context, A, B, C, and D are packages. The element
in column header is also called the source and the one in
row header the target. In Figure 1(a), A references B and C,
B references A, C references D and D references C.

We applied DSM on a couple large case studies and
we identified two limitations with current DSM implemen-
tations: inaccurate merging of independent cycles by the
adjacency matrix power method (Section II-A), lack of fine
grained-overview of the dependency cause (Section II-B).

A. Problem with the adjacency matrix power method

A simple way to identify cycles in DSM is to use
the adjacency matrix power method. The principle of this
approach is to raise the binary DSM to its nth power to find
elements which link back to themselves in n edges, thus
making a cycle [23]. A non-zero mark in the diagonal of
the power matrix points to elements involved in a cycle of
length n.

Figure 1(a) shows two distinct direct cycles (a cycle
between two entities): one between A and B and one be-
tween C and D. However, the adjacency matrix power does
not separately identify these different cycles, resulting in a
single and inaccurate merged cycle. Figure 1(b) shows the
partitioned matrix with a unique wrong cycle—a single gray
zone representing the cycle. On the contrary, Figure 1(c)
shows a correctly partitioned matrix with two distinct cycles.

The adjacency matrix power method produces inaccurate
results when used to identify independent cycles because it
computes the number of edges to come back to an element
without considering the cycling path [11]. Instead, path
searching algorithms have also been used to detect cycles
in DSM and should be systematically preferred when the
problem of identifying independent cycles is important.

B. Lack of fine-grained information

A traditional DSM offers an easily readable general
overview but does not provide details about the situation it
describes. We identify two weaknesses: lack of information
on dependency causes and lack of information on depen-
dency distribution.

A B C D
A X
B X
C X X
D X

A B

C D

(a) A simple DSM

A B C D
A X
B X
C X X
D X

(b) Adjacency ma-
trix power method

A B C D
A X
B X
C X X
D X

(c) Independent cy-
cles distinguished

Figure 1. Limitation of the adjacency matrix power method. Cycles are
shown in gray.

A B C D
A X
B X
C X
D

(a) DSM with marks

A B C D
A 5
B 3
C 1
D

(b) DSM with numbers

Figure 2. Examples of references in a DSM.

Dependency causes.: Fixing a cycle often means
changing some dependencies involved in the cycle. However,
the cost of fixing a cycle may vary with the cause of
dependency e.g., changing a reference to a class is often eas-
ier than changing an inheritance relationship. Dependencies
are of different natures (class reference, method invocation,
inheritance relationship, and class extension) and a binary
matrix (Figure 2(a)) or a matrix providing the number of
dependencies in each cell (Figure 2(b)) do not provide such
information.

Annotating a DSM with the types of dependencies can
give more fine-grained information and it supports a better
understanding of the situation. However, a challenge with
this solution is that the matrix should remain readable and
should not be overloaded [1].

Dependency distribution.: Knowing that a package has
78 dependencies to another one (package Morphic-Widgets
on Morphic-Basic in Figure 6) is a valuable but insufficient
information.

The ratio of concerned classes in a package is important
since it allows one to quantify the effort to fix a cycle. The
intuition is that it is easier to target few classes with some
dependencies rather than a lot of classes with few depen-
dencies. For example in Figure 6, 16 classes of package
Morphic-Widgets reference 10 classes of package Morphic-
Basic, while only two classes of Morphic-Basic reference
one class of Morphic-Widgets. Consequently, it should be
faster to target the dependencies from Morphic-Basic to

Morphic-Widgets rather than the ones in the opposite di-
rection.

III. ENRICHED DSM (EDSM)
To address the problems previously mentioned, we en-

hance DSM with functionalities that are not present in cur-
rent DSM implementation such as Lattix [16]. Our solution
(i) isolates independent cycles using colors (Section III-A),
(ii) enriches contextual cell information (Section III-B) and
(iii) supports class extensions (Section III-B).

In particular, enriched cells act as small multiples [20]
where similar looking side by side little visualizations pro-
vide a differentiating effect (see Figure 5). An important
design feature is the use of color to focus on packages where
it is easier to resolve a cyclic dependency. Therefore we
use brighter colors for places having fewer dependencies.
The tool is implemented on top of the Moose open-source
reengineering environment. Since it is based on the FAMIX
meta-model [3], our eDSM works for mainstream object-
oriented programming languages [6].

A. Enhanced cycle detection
Our approach enhances the traditional matrix by providing

a number of new features: cycle distinctions, direct and
indirect cycle identification, and hints for fixing cycles.

Cycle distinctions.: eDSM distinguishes independent
cycles using a path searching algorithm [11]. With this
method, two independent cycles are detected separately and
remain isolated from each other in the DSM (Figure 1(c)).

Direct and indirect cycles.: We use color in DSM cells
to identify cycles. DSM cells involved in a cycle have a
yellow or red color (Figure 3). The red color means that
the two concerned packages reference each other and thus
create a direct cycle. Two packages in a direct cycle have two
red cells symmetric against the diagonal. The yellow color
means that the dependencies from one package to the other
participate in an indirect cycle (a cycle with more than two
elements). The pale blue background color frame all cells
involved in a indirect cycle (visible in Figure 5). Its area is
a visual indication of the number of packages in the cycle.
On the contrary, rows and columns with white or gray colors
indicate packages not involved in any cycle. The diagonal of
the matrix, where a package may reference itself, is colored
in gray to highlight the symmetry axis but is not used in the
current version.

Color hint for targeting cycle.: We define a special rule
to highlight cells of primary focus when resolving cyclic
dependencies. The intuition is that it will be easier to fix a
cycle by focusing on the side with fewer dependencies. A
cell with much fewer dependencies is displayed with a bright
red color whereas its symmetric cell is displayed with a light
red/pink color (Figure 3). The ratio we currently use is 1 to
3. This rule only applies to direct cycles as it is easier to
compare two packages side by side than an arbitrary number
of packages involved in an indirect cycle.

Figure 3 illustrates the rules for cycle colors in cells. It
shows two direct cycles with the red color, one between A

G

1

F

12G
4F

E

E

A B C D
A 5
B 3
C 25
D 2

Direct cycle

Indirect cycle

Direct cycle with
a large difference
between number

of references

Cyan color frames
an indirect cycle

Figure 3. Cell color definition.

and B and one between C and D. The bright red color in
the C-D enables one to quickly focus on the dependencies
from C to D, since there are only two of them instead of 25
in the opposite direction. Finally, E, F, and G are involved
in the same indirect cycle highlighted by the yellow and
pale blue cells. The cycle color is in fact one among other
pieces of information displayed in a cell, as we explain in
the following section.

B. Enriched contextual cell information
eDSM enriches cell contents to give a detailed overview

of dependencies from a source package to a target package.
Thus each cell is the intersection between a source and a
target. The objective is to create small multiples [20] as
shown in Figure 5.

The principle of small multiples is that “once viewers
decode and comprehend the design for one slice of data,
they have familiar access to data in all the other slices”
[20]. In eDSM, each cell represents a small context, which
enforces comparison with others. Each cell represents a
small dashboard with indicators about the situation between
the source and the target. This section focuses on the cell
contents.

It should be noted that an earlier version of this work did
not use small multiples and only showed a summary of the
cell contents [1]. The results were limited: It was difficult to
see where to begin for resolving issues. To circumvent these
limits, we designed enriched cells, which provide visual
patterns.

Overall structure of an enriched cell.: An enriched cell
is composed of four parts (see Figure 4). The top row gives
an overview of the strength and nature of the dependencies.
The bottom row presents cycle information as explained in
the previous subsection. The two large boxes in the middle
detail dependencies going from the top box to the bottom
box i.e., from the source package to the target package.
Each box contains squares that represent involved classes:
referencing classes in the source package and referenced
classes in the target package. Edges between squares link
each source class (in top box) to its target classes (in bottom
box) (Figure 4).

Colored information.: Enriched cells make use of
colors to convey more information about the context in
which dependencies occur. Our goal is to use preattentive

Source package

Target package

Ratio of concerned
classes

in each package

Background color: cycle

Thick border:
class with
dependencies in
both directions

Thin border: class
with dependencies
in a unique direction

Tot Inh Ref Msg Ext

Green fill: no
dependency to other
packages Red fill:

dependencies in
both directions with
other packages

P3

P4

Orange fill:
dependencies
from or to other
packages

Dependency
number and nature

C

Z X Y

BA D'

D

Colored link based on:
- Red: references (+invocations)
- Blue: inheritance
- Green: invocations
- Cyan: class extensions
- Black: inheritance+others

P2

YX Z D

P1

B A C D'

Dotted border: class
Extension

Figure 4. Enriched cell structural information.

visualization4 as much as possible to help spotting impor-
tant information [19], [12], [13], [21]. An enriched cell is
composed of parts and shapes with different color schemas.

Cycle color (bottom row).: It is the first information to
see in a cell. The bottom row represents cycle information
using color as explained in Section III-A. The red/pink
indicates a direct cycle between the two packages, yellow
and cyan an indirect cycle, and gray an unidirectional access
from the source package to the target package—which
means that there is no cycle.

Dependency overview.: An enriched cell shows an
overview of the strength, nature, and distribution of the
dependencies from the source to the target.

• Dependency strength and nature (top row). The top
row gives a summary of the number and nature of
dependencies to get an idea of their strength. We
show the total number of dependencies (Tot) in black,
inheritance dependencies (Inh) in blue, references to
classes (Ref) in red, invocations (Msg) in green, and
class extensions (Ext) made by the source package to
the target one in cyan5. A brighter color highlights the
strongest dependency type. The colors are used to rein-
force the comprehension of links between classes (see
below). In Figure 6 there are 78 directed dependencies

4Researchers in psychology and vision have discovered a number of
visual properties that are preattentively processed [12]. They are detected
immediately by the visual system: viewers do not have to focus their
attention on a specific region in an image to determine whether elements
with the given property are present or absent. An example of a preattentive
task is detecting a filled circle in a group of empty circles. Commonly
used preattentive features include hue, curvature, size, intensity, orientation,
length, motion, and depth of field. However, combining them can destroy
their preattentive ability (in a context of filled squares and empty circles,
a filled circle is usually not detected preattentively).

5A class extension is a method defined in a package, for which the class
is defined in a different package [2]. Class extensions exist in Smalltalk,
CLOS, Ruby, Python, Objective-C and C#3. They offer a convenient way
to incrementally modify existing classes when subclassing is inappropriate.
They support the layering of applications by grouping with a package its
extensions to other packages. AspectJ inter-type declarations offer a similar
mechanism.

from Morphic-Widgets to Morphic-Basic. There are 12
inheritances, 24 references and 42 invocations (in bright
green).

• Dependency distribution (left bars). For each package,
we are interested in the ratio of classes involved in
dependencies with the other package. We map the
height of the left bar of each package box to the
percentage of classes involved in the package. The bar
color is also mapped to this percentage to reinforce
its impact (from green for low values to red for 100%
involvement). A package showing a red bar is fully
involved with the other package.
Class color (middle boxes).: Each square represents a

class and displays two types of information using its fill
color as well as its border (Figure 4).

• Border color and thickness: Internal usage. A gray
thin border means that the class has a unidirectional
dependency with the other package i.e., it either uses
or is used by classes in the other package. In Figure 4,
class B (resp. Z) has a thin border because it refers
to X but is not referred in the target package (resp. is
referred by A but does not refer to source package).
A black thick border means that the class has a bidirec-
tional dependency with the other package: it both uses
and is used by classes in the other package of the cell
(not necessarily the same classes). In Figure 4, class A
has a thick border because it is referred by class X of
the target package and because it refers to class Z.
A dotted border represents a class extension as ex-
plained below.

• Color fill: Total usage. A class may be in dependency
with other packages than the two represented by the
cell, such as classes B or C in Figure 4. The color
fill uses the colors of the traffic lights (green, orange,
red) to qualify the relationships the class has with
packages other than the two concerned. A class which
has no dependency with external packages other than
the concerned packages is displayed as green. A class
which has dependencies in only one direction (i.e., ei-
ther incoming dependencies or outgoing dependencies)
is displayed as orange. A class which has dependencies
in both directions is displayed as red. A class which
only has internal dependencies is never displayed in
a DSM. Thus, moving a green class between the two
concerned packages does not have any impact on their
external dependencies, whereas moving a red or orange
class can change their respective external dependencies.
Edge color.: Edges are the smallest details displayed

by the eDSM. They give information on the nature and
spread of dependencies between the classes in the cell
(Figure 4). There are four basic natures, each one mapped
to a primary color (synchronized with colors of information
in top row of the cell): reference in red, inheritance in
blue, invocation in green and class extension in cyan. When
dependencies between two classes are of different natures,
colors are mixed as follows: red is used for a dependency

with both references and invocations because a reference is
often following by invocations (a new color would make
it more difficult to understand the figure). Black is used for
any dependency involving inheritance with references and/or
invocations. Indeed, an inheritance dependency mixed with
other dependencies can be quite complex and we choose not
to focus on such a combination.

Representation of class extension.: A class extension
represents a method which is in another package than
its class. In a cell, a class extension is represented by a
square with dotted border linked to the original class by a
cyan link and the same color information than the original
class (Figure 4). This convention exists because a class
extension is not a class. In addition if class extensions are
not handled adequately, they can be considered as wrong
cyclic dependencies.

C. Interaction and detailed view
While the eDSM offers on overview at the package level

as shown by Figure 5, extracting all the information from a
cell is sometimes difficult. There is a clear tension between
getting a small multiple effect and details readability. We
offer zoom and fly-by-help to improve usability.

Zooming on two packages.: Each cell in a DSM repre-
sents a single direction of dependency. To get the full picture
of interactions between two packages, we compare two cells,
one for each direction. Despite DSM intrinsic symmetry, it
is not always easy to focus on the two concerned cells. We
provide a selective zoom with a detailed view on the two
concerned cells, as shown in Figure 6. Thus, we focus on a
direct cycle which seems interesting from the overview, and
analyze the details with the zooming view.

Classes in Morphic-Widgets
use classes in Morphic-Basic

Classes in Morphic-Basic
use classes in Morphic-Widgets

Figure 6. Zoom on two packages in cycle.

Fly-by help.: Complementary to the overview and the
zooming facility, fly-by-help includes the full name of con-
cerned packages, the name of classes and the name of each
concerned method. Figure 7 shows the pop-up information
of the cell linking Morphic-Worlds to Morphic-Widget: there
is one reference to the class HaloMorph from the method
PasteUpMorph.acceptDroppingMorph:event:.

D. Fixing a cycle with eDSM

We now detail a first example of cycle resolution through
the analysis of zoomed cells.

In Figure 6, there is a direct cycle between Morphic-
Widgets and Morphic-Basic (named Widgets and Basic be-
low). We can see that Widgets have lots of dependencies to
Basic (pink cell) while only two classes in Basic use one
class of Widgets (red cell). Moreover, there are only red
edges (class references) in the red cell, whereas in the pink
cell they are of multiple colors.

At first glance, it is thus easier to investigate the depen-
dencies of the red cell, from Basic to Widgets. Let us look
at the red cell. There are two referencing classes and one
referenced class. All three are colored in red, which means
they use and are used in other packages. Thus, it would be
difficult to move these classes without further investigation.
Instead, we focus on the dependencies between classes in the
red cell, which are only class references. The fly-by help
displays for each class in the cell the concerned methods
(methods in the source package making class references in
the target package). There are three such methods: Poly-
gonMorph.customizeArrows:, TextMorph.setCurveBaseline:,
TextMorph.changeMargins:. This provides entry points in
the source code to find precisely where the target class
HandleMorph is referenced.

It appears that each of these methods contains the line
HandleMorph new to create an instance of HandleMorph. A
possible solution is to create class extensions for TextMorph
and PolygonMorph in the package Widgets and to put the
three referencing methods in it. Then the dependencies
would be reversed effectively breaking the cycle.

IV. SMALL MULTIPLES AT WORK

eDSM supports the understanding of the general structure
of complex programs using structural element position.
Since it is based on the idea of small multiples [20], the cell
visual aspect generates visual patterns. While performing
our Morphic experiment, we have detected some patterns
stressing characteristic situations.

We applied eDSM to the Morphic framework of Squeak.
Morphic is composed of 46 packages and 325 classes. It was
never packaged in a modular way, hence showing a lot of
cyclic dependencies. We use this case study to show eDSM
in practice (Figure 5).

The first use of the eDSM is to get a system overview to
scan packages not involved in cycles (not shown in Figure 5)
and how they interact with other packages. Subsequently, we
spot packages involved in direct and indirect cycles. Figure 5

D: two classes referring
each other
F: candidate for direct
cycle fix

I: incoming funnel

A: indirect cycle

E: high % of target
impacted

G: invocations

H: inheritance
+ otherC: references

F: candidate for
direct cycle

fix

B: heavy communicationB: complex cycle

C: references

E: high % of source

J: outgoing funnel

Figure 5. An overview of a Morphic subset: Enriched cells in DSM provide a small multiple effect.

shows a large indirect cycle delimited by the pale blue area.
At first glance, the bright red cells are good starting points
for investigation of simple cyclic dependencies to resolve.
In Figure 5 we can spot:
A Packages in indirect cycles (yellow bottom bar). In a

first step, it is not really interesting to fix them because
the cycle probably comes from a direct cycle between
two other packages.

B Packages communicating heavily. There, the two pack-
ages interacts a lot, so intuitively it seems to be difficult
to fix, the symmetric cell is probably less complex. A
clear example of such situation was shown in Figure 6
where the symmetric cell is much simpler.

C Packages referencing a lot of external classes (a lot
of red links and header with bright red number). This
pattern shows direct references to classes between the
two packages in cycle. The symmetrical may be easier
to fix, we can assess it rapidly, since it can be marked in
red. Figure 8 shows an example of such situation.

D Packages where only two classes are referring to each

other (Thick border). Such pattern represents a direct
cycle between two classes. In Figure 7, only one class
of Morphic-Worlds is in cycle with only one class of
Morphic-Widgets. In addition, they both have a thick
border so it is clearly a direct cycle between these two
classes. This pattern allows us to focus our attention on
just two classes of the two packages.

E Packages having a large percentage of classes involved
in the dependency (left bar in red). When this pattern
shows a high ratio in the referencing package (top),
changing it can be complex since many classes should
be modified. In the case of a high ratio in referenced
(bottom) package, a first interpretation is that this package
is highly necessary to the good working of the referencing
package.

F Packages with direct cycles which seem easy to fix
(red bottom bar - low ratio of references). This pattern
shows cycle created by a single class in one package. In
Figure 8, the class labelled Pa is the only one appearing
in Morphic-Worlds and both uses and is used by classes

Figure 7. A twin-class cycle, with fine-grained information.

in Morphic-Kernel (as indicated by its thick border).
Actually, there is a single class in Morphic-Kernel which
links back to the Pa class. eDSM stresses that one class
is the center of the cycle; in such a case we can focus
on this class and its dependencies.

G Packages containing classes performing a lot of invo-
cations to other classes (a lot of green links and header
with the number in bright green).

H Packages containing classes performing inheritance
and invocation to other classes. It means that the
referencing package is highly dependent of the referenced
package. Looking at the symmetric cell is good practice.

I Packages in which a lot of classes refer to one
class (incoming funnel). This patterns shows that the
dependency is not dispersed in the referenced package.
It can be that the referenced class is either an important
class (facade, entry point) or also simply packaged in
the wrong package. If the color of the class is red, it
is a central class because it is used by and it uses other
packages. In Figure 9, a lot of classes reference one class
which is essential for the referencing package.

J Packages in which a lot of classes are referred by one
class (outgoing funnel). This pattern is the counterpart of
the previous one. Therefore, it helps spotting important
referencing classes. It is useful to check whether such a
class in addition is referenced by other. In Figure 8, one
class references a lot of classes.

V. EXPERIMENTAL VALIDATION

We experimented and validated our approach with non-
trivial case studies: ArgoUML 6, Seaside 7 and Morphic 8.

6http://argouml.tigris.org/
7http://www.seaside.st/
8http://wiki.squeak.org/squeak/30

Pa

Pa

Figure 8. A one-hotspot cycle.

Figure 9. A funnelled cycle.

We applied DSM on ArgoUML, a Java project which had
been imported in Famix3.0 with the tool iPlasma 9.

Seaside is a framework for dynamic web application
development which matured over 8 years. Between version
2.8 and 2.9 the developers goal was to offer a more modular
structure. They asked us to apply eDSM on the different
versions. We reported the large improvement between the
two versions: Seaside 2.9 contains 10 cycles when 2.8
contains 23 direct cycles. The work to fix residual cycles
is underway.

9http://loose.upt.ro/iplasma/

ArgoUML is an open source UML modeling
tool. We applied eDSM on the version 0.28 and
the results include 90 direct cycles between 71
packages among the 97 imported packages. A
visualization sample is available on http://www.jannik-
laval.eu/assets/files/softAnalysis/argoUml. It shows that
ArgoUML has one big indirect cycle (in blue) with 77
packages.

Morphic is a large Swing-like graphic framework com-
prising 46 packages and 325 classes. It supports complex
interface building. It was not designed in a modular fashion
and has a 12 years long history of evolution and extension,
making it complex to analyze by exhibiting an abnormal
number of dependencies between packages. It contains 45
direct cycles between 28 packages in the studied version.
Based on the eDSM output, we proposed solutions to
fix cycles. Pharo developers performed and integrated the
simple fixes and acknowledged the more complex problems
we identified.

In this section, we present a global analysis of Morphic
UI. First, we explain the process to analyze the identified
cycles and subsequently, we give their possible resolutions,
our results as well as the validation (in terms of feedback) by
the Pharo maintainers. One goal of the Morphic refactoring
is to reorganize classes in simpler, conceptually cleaner
packages to make its maintenance easier. Cycles are then
primary targets to resolve to get layers of packages.

A. Experiment Protocol

We followed the following protocol: we analyzed each
cycle found with eDSM and tried to quickly identify the
opportunity to fix them. For each direct cycle, we looked for
one simple solution or marked the cycle as too complex to be
easily fixed. To assess the aid provided by eDSM we took
as a criterion to find a solution in five minutes. Solutions
include: moving a class between two packages, converting
a method into a class extension, removing a useless class or
method, merging packages. The solutions found were sent
as fix propositions to Pharo developers for review.

We make a classification of direct cycles according to
the perceived complexity. We consider that it is easier to
break a cycle when there are 10 dependencies on one
class instead of 10 classes with one dependency on each.
Thus the classification is based on the number and type of
dependencies. Note that this classification is presented here
just as an indication of the situation we found. We may
refine it and use it in future work for refactoring assistance.

• Monotype (Mn) cycle: a direct cycle where a cell has
only a single edge between two classes, representing
either reference, inheritance, or invocation. There are
21 of them in Morphic UI: all are class references.

• Simple (S) cycle: a direct cycle where a cell has only a
single edge between two classes, representing multiple
types of dependencies (reference and invocation or in-
heritance and others). There are 12 of them in Morphic
UI.

• Direct cycle with two edges (2L). There are five of
them in Morphic UI.

• Complex direct cycles—with more than two edges
(CC). There are seven of them in Morphic UI.

Table I
RESULTS OF MORPHIC ANALYSIS

Cycle btw packages Type Proposition
Worlds Xt-Flaps S merge packages
Worlds Xt-Books CC merge packages
Worlds Windows S delete method
Kernel Xt-Flaps S create class extension
Kernel Xt-Books 2L move class to other package
Kernel Worls Mn create class extension
Xt-SqueakPage Xt-Books S merge packages
Xt-SqueakPage Worlds S create class extension
Xt-SqueakPage Kernel S create class extension
Widgets Worlds Mn create class extension
FileList Windows S merge packages
FileList Kernel 2L merge packages
Xt-Additional
Widgets

Kernel 2L move class to other package

Xt-Additional
Widgets

Widgets S move class to other package

Xt-Support Kernel Mn move class to other package
Xt-Demo Kernel Mn move class to other package
Xt-Demo Menus Mn delete method
Xt-PartsBin Worlds Mn create class extension
Basic Widgets 2L create class extension
Basic Menus Mn create class extension
Basic Xt-Support Mn create class extension
Basic Xt-PartsBin Mn create class extension
Balloon Support Mn create class extension
Xt-Additionnal
Support

Kernel Mn move method in a subclass

Xt-Additionnal
Support

FileList Mn merge classes

Xt-Postscript
Canvases

Kernel Mn create class extension

B. Results

We applied the previously described process on the 45
direct cycles identified in Morphic UI using eDSM. We
proposed 25 cycle resolutions presented in Table I. Among
the 20 cycles left, five cycles are judged visually too complex
(with many dependencies on each side) and immediately left
out; 15 cycles require a deeper exploration of the internals
of Morphic UI, since we were not able to find a solution in
five minutes. We checked our 25 proposals with one Pharo
maintainer who commented, implemented or rejected them.

Among the 25 propositions, 18 have been accepted and
integrated in the current Pharo release. The others are good
propositions but have been replaced by merging large pack-
ages or by registration mechanisms. The propositions that
were not integrated were also acknowledged as problems.
However, their resolution requires more development. Here
is a list of problems: missing menu registration mechanism
in main tool bar, badly design button hierarchy and callback
system.

Pharo developers acknowledge that the 20 cycles left out
are real architectural problems: Kernel UI elements scattered
over several packages with no particular reasons and left
over of the monolithic architecture of Squeak.

VI. DISCUSSION

Language Independent Approach.: eDSM has been im-
plemented on top of the Moose reengineering environment
[6] and it is based on the FAMIX language independent
source code metamodel [3]. We applied eDSM on a Java
case study and we expect it to work on C#, and C++ as
well. Therefore while implemented in Smalltalk, eDSM can
be applied to mainstream object-oriented languages.

A. Limits
There are still some limitations which we would like to

overcome, with the objective to make eDSM more effective
for reengineers.

When validating our proposals, the maintainer sometimes
asked what was the impact of a merge or move between
packages. He also asked to see other external references
to packages in the cell before taking a decision. Currently
we cannot show such valuable information. We plan to use
a specific visualization, such as Package Blueprint [10],
showing all dependencies from/to one single package in a
pop-up view.

Another problem is screen space limitation. A DSM uses
a lot of useless space when there are empty cells. An
interactive filter on packages may be useful with respect
to this.

Professional DSMs such as Lattix support layer specifica-
tion and violation detection. This is orthogonal to our work
but definitively relevant to add to our approach.

B. Impact and cost of small multiples
One critic about eDSM is that it loses the simplicity

of the original DSM. Our experience on real and complex
software showed that DSM is powerful but limited. We were
constantly losing time browsing code to understand to what
exact situation a number in a cell was referring to. eDSM
gives such information in a glance.

A related critic about eDSM is that it looks too complex
as it needs one page to describe cell design. Cells have
been especially designed to work as small multiples and
micro-macro reading [20] i.e., that variations of the same
structure reveal information. The presented eDSM is already
the second large iteration of this work. We developed a first
version of eDSM with only header informations (type and
number of dependencies) and simple cell colors [1]. A fly-
by-help text then gave the same information as the current
cell design. However, it was cluttered: text was clearly
not as efficient as little pictures. Then, it did not support
small multiple effects or patterns. Comparing situations was
tedious and understanding the problems too.

So, eDSM provides contextual information: in a global
view, eDSM could be read similarly as the original DSM
by looking the header for number of links and the bottom
to see cycle context, it shows the global structure of the
application. However, eDSM provides more information
about the context of a dependency by displaying in a cell
the complexity of the relation.

C. Comparison with other approaches

Package blueprint.: It takes the focus of a package
and shows how such package uses and is used by the
other package [10]. It provides a fine-grained view, however
package blueprint lacks (1) the identification of cycles at
system level and (2) the detailed focus on classes actually
doing the cycles.

Distribution Map.: It is a visualization that can be
applied to packages [7]. However, even if it removes the
clutter due to edge representation Distribution Map is a
generic visualization that focuses on how properties spread
in a population of entities.

Oriented-graph.: Often graph-oriented visualizations
are used to show dependencies among software entities.
Several tools such as dotty/GraphViz, Walrus or Guess can
be used. Using graph is intuitive and has a fast learning
curve. One problem with oriented graph visualization is
finding a good layout scaling well on large sets of nodes
and edges: such a layout needs to preserve the readability
of nodes, the ease of navigation following edges, and to
minimize edge crossing. Even then, cycle identification is
not trivial.

With DSM the visualization structure is preserved what-
ever the data size is, which enables the user to dive fast
into the representation using the normal process. Cycles
remain clearly identified by colored cells, there are no edges
between packages, so this reduces clutter in the visualization.
Moreover, eDSM enables fine-grained information about
dependencies between packages. Classes in source package
as well as in target package are shown in the cells of the
DSM.

Dependence Clusters.: Brinkley and Harman proposed
two visualizations for assessing program dependencies, both
from a qualitative and quantitative point of view [?]. They
identify global variables and formal parameters in soft-
ware source-code. Subsequently, they visualize the effect
dependencies. Additionally, the MSG visualization [?] helps
finding dependence clusters and locating avoidable depen-
dencies. Some aspects of their work is similar to our own.
Granularity and the methodology employed differ: they
operate on source-code and use slicing method, while we
focused on coarse grained entities and use model analysis.

VII. CONCLUSION

This paper enhances Dependency Structure Matrix (DSM)
using small multiples. First, colors are used to distinguish
direct and indirect cycles. Second, cell contents are enriched
with the nature and strength of the dependencies as well as
with the classes involved. Such enhancements are based on
small multiples [20] and preattentive visualization principles
[19], [12], [13], [21]. Thanks to these improvements, pack-
age organization and cycles are made explicit. We applied
the eDSM on a complex system and systematically checked
and tried to fix the cycles. Out of 45 direct cycles, we could
propose 25 solutions to break the cycles. 18 got accepted and

implemented by the maintainers of the Pharo open-source
Smalltalk.

We believe this paper provides an appealing approach for
identifying cycles. The experiment we conducted gave us
the feeling that indirect cycles were more difficult to analyze
than direct ones. This makes our future work focuses on
getting better visualizations for indirect cycles. Currently,
eDSM provides relevant indications for reengineers, but it
appears that visualizing impact of changes in the matrix
would greatly enhances reengineering tasks.

Acknowledgements: We gratefully acknowledge the
sponsoring of ESUG (the European Smalltalk User Group)
http://www.esug.org/.

REFERENCES

[1] A. Bergel, S. Ducasse, J. Laval, and R. Peirs. Enhanced
dependency structure matrix for moose. In Proceedings of
FAMOOSr 2008, 2008.

[2] A. Bergel, S. Ducasse, and O. Nierstrasz. Analyzing module
diversity. Jour. of Universal Computer Science, 11(10):1613–
1644, 2005.

[3] S. Demeyer, S. Tichelaar, and S. Ducasse. FAMIX 2.1 — The
FAMOOS Information Exchange Model. Technical report,
University of Bern, 2001.

[4] X. Dong and M. Godfrey. System-level usage dependency
analysis of object-oriented systems. In ICSM 2007. IEEE
Comp. Society, 2007.

[5] S. Ducasse, T. Gı̂rba, and A. Kuhn. Distribution map. In
ICSM 2006. IEEE Comp. Society, 2006.

[6] S. Ducasse, T. Gı̂rba, M. Lanza, and S. Demeyer. Moose:
a collaborative and extensible reengineering environment. In
Tools for Software Maintenance and Reengineering, pages
55–71. 2005.

[7] S. Ducasse, T. Gı̂rba, and R. Wuyts. Object-oriented legacy
system trace-based logic testing. In CSMR’06, pages 35–44.
IEEE Comp. Society Press, 2006.

[8] S. Ducasse and M. Lanza. The class blueprint: Visually
supporting the understanding of classes. Transactions on
Software Engineering (TSE), 31(1):75–90, 2005.

[9] S. Ducasse, A. Lienhard, and L. Renggli. Seaside: A flexible
environment for building dynamic web applications. IEEE
Software, 24(5):56–63, 2007.

[10] S. Ducasse, D. Pollet, M. Suen, H. Abdeen, and I. Al-
loui. Package surface blueprints: Visually supporting the
understanding of package relationships. pages 94–103. IEEE
Comp. Society, 2007.

[11] D. Gebala, S. Eppinger, and M. Cambridge. Methods for an-
alyzing design procedures. Design Theory and Methodology,
1991.

[12] C. G. Healey. Visualization of multivariate data using preat-
tentive processing. Master’s thesis, Department of Computer
Science, University of Bristish Columbia, 1992.

[13] C. G. Healey, K. S. Booth, and E. J. T. Harnessing preattentive
processes for multivariate data visualization. In GI ’93:
Proceedings of Graphics Interface, 1993.

[14] A. MacCormack, J. Rusnak, and C. Y. Baldwin. Exploring
the structure of complex software designs: An empirical study
of open source and proprietary code. Management Science,
52(7):1015–1030, 2006.

[15] J. Michaud, M.-A. Storey, and H. Muller. Integrating infor-
mation sources for visualizing Java programs. In ICSM’01,
pages 250–259. IEEE, 2001.

[16] N. Sangal, E. Jordan, V. Sinha, and D. Jackson. Using
dependency models to manage complex software architecture.
In OOPSLA’05, pages 167–176, 2005.

[17] D. Steward. The design structure matrix: A method for
managing the design of complex systems. IEEE Transactions
on Engineering Management, 28(3):71–74, 1981.

[18] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen. The
structure and value of modularity in software design. In
ESEC/FSE 2001, 2001.

[19] A. Treisman. Preattentive processing in vision. Computer Vi-
sion, Graphics, and Image Processing, 31(2):156–177, 1985.

[20] E. R. Tufte. Visual Explanations. Graphics Press, 1997.

[21] C. Ware. Information Visualization. Morgan Kaufmann, 2000.

[22] J. Wu and M.-A. D. Storey. A multi-perspective software
visualization environment. In CASCON ’00, page 15. IBM
Press, 2000.

[23] A. Yassine, D. Falkenburg, and K. Chelst. Engineering design
management: an information structure approach. Interna-
tional Journal of Production Research, 37(13):2957–2975,
1999.

