

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
SIGPLAN’05 June 12–15, 2005, Location, State, Country.
Copyright © 2004 ACM 1-59593-XXX-X/0X/000X…$5.00.

Meteoroid
Towards a real MVC for the Web

Juan Lautaro
Fernández1

lfernandez@

lifia.info.unlp.edu.ar

Santiago Robles1

srobles@

lifia.info.unlp.edu.ar

Andrés Fortier1,2,3

andres@

lifia.info.unlp.edu.ar

Stéphane Ducasse4

stephane.ducasse@

inria.fr

Gustavo Rossi1,3

gustavo@

lifia.info.unlp.edu.ar

Silvia Gordillo1,5

gordillo@

lifia.info.unlp.edu.ar

1
 LIFIA. Facultad de Informática. Universidad Nacional de La Plata, Argentina.

2
 DSIC. Universidad Politécnica de Valencia, Valencia, España.

3
 Also at CONICET

4
 RMod, INRIA Lille Nord Europe - LIFL - CNRS UMR 8022.

5
 Also at CICPBA

Abstract

Web development has moved from simple static pages to
complex web applications, some of them resembling desktop
ones. In most of these applications the web browser acts as thin-
client (or a view) of the model that sits on the server. Despite the
technological evolution of the web, there is still no standard
mechanism to send data or events from the server to the client
without an explicit request from the later, thus forcing the web
browser to constantly poll the server for updates. To solve this
problem a set of techniques under the name of Comet were
proposed, allowing to send information from the server to the
web browser without an explicit client request. In this paper we
introduce Meteoroid, a Comet approach to make “live” Seaside
applications. Our framework exploits the Model-View-Controller
(MVC) paradigm for building simple yet scalable web
applications, requiring very little programming effort.

Categories and Subject Descriptors D.1.5 [Object-
oriented Programming]: Language; D.3.2
[Programming Languages]: Smalltalk; D.3.3 [Language
Constructs and Features]: Frameworks.

General Terms Design, Languages.

Keywords Comet, Seaside, Web, MVC, Push vs. Pull.

1. Introduction
In its “standard” conception, the HTTP protocol uses a
request/response pattern to achieve stateless, client-server
communications. Each time the client (i.e. the Web
browser) needs to receive (or send) new information from
(to) the server, a request is created and sent to the server.
As a result of that request a response is returned by the
server, ending the transaction.

This kind of communication has proven to be effective
for many years and for millions of sites, especially where
changes on the server are not usual or don’t happen at all
(e.g. sites displaying static html). This kind of sites are
usually referred as static websites [1]. However, as
websites evolved new requirements appeared, like the need
for an underlying domain model, data persistence and
better interaction with the client. This evolution continued
until Web applications appeared (i.e. full-fledged
applications that are accessed by means of a Web browser
[2]) taking all the complexities of software development to
the World Wide Web. Compared to the “old” static Web
pages, in these applications the interaction with the client
and the content updates (which tend to be quicker than
before) play a central role. This last statement is especially
important for those applications where changes in the
model (i.e. in the server) are useless if not seen on time.

As an example consider an on-line newspaper that
keeps track of a tennis match or a Web messenger that can
be used to chat and share files. If the information is not
delivered on time (i.e. correctly updated in the client) the
whole point of the application is lost. In the Web2.0 [3]
this issue takes more relevance, since the users are the
content creators and the Web becomes the supporting

platform for their activities. Web2.0 users need to share
information and collaborate in real time. In this scenario
the information displayed in a Web page must not only be
updated according to the action taken by the client (or by
an editor), but according to the changes made by many on-
line users. In this kind of websites the old request/response
communication becomes insufficient, since the Web
browser does not know when the model has changed. As a
result, the view in the browser may show an old version of
the model.

To cope with this problem a simple (and rather
primitive) solution is widely used, based on the update of
the Web page (or parts of it) based on timeouts, which will
be further explained in Section 2). The basic idea is that
the web browser has a threaded script which constantly
asks the server for updates. To illustrate this approach (and
the problems related to it) consider a chat application with
a simple domain model, comprising a chat room and a
collection of registered users. To have a coherent
conversation not only the order of the messages arrival
must be reflected correctly in all the clients, but also the
updates must be done as soon as the model changes. If we
fail to provide these basic properties, the application may
become sluggish, causing a negative effect on the final
user.

In a pull-like approach we must define a timeout to
refresh the client content, which means anticipating the
application’s change rate. This is not a simple task, since
in a chat application the change rate in the middle of a
conversation may be in order of a second, whereas on idle
times the rate may slow down to minutes or even hours.
The bottom line here is that in certain application domains
it is not possible to establish a definitive change rate and a
compromise must be achieved between final user
experience and resource consumption (like bandwidth and
server processing).

The problems presented earlier are not new and there
have been many attempts to use web-based technology to
update time-critical information. There are two main
streams to solve the above, a Client Pull [4] or a Server
Push [4] technology, which will be further explained in
Section 2.

In this paper we will present a framework for sending
server events and data to the client as an extension to
Seaside. In particular we will show:

• A Server Push implementation on top of Seaside [5]
that runs efficiently on most Web browsers.

• How this implementation allows a developer to
implement client (view) updates without any Server
push specific knowledge.

• How to create widgets that are automatically
updated whenever the model changes. With these
widgets the developer can build desktop-like
applications in an easy and scalable way.

2. Pull vs. Push: History of Comet
In the HTTP protocol, the communication between the
server and the browser was conceived (and it still is
thought in that way accordingly to RFC 2616 [6]) to
deliver a response if and only if the client has previously
made a request. This means that the server does not have
the ability to send new data to the client if it was not
explicitly instructed to do so.

In 1995 Netscape acknowledge this as a drawback and
presented “The Great Idea” [4] to solve the pushing
disability from HTTP by proposing the Client Pull and
Server Push approaches. The Client Pull mechanism is
based on requests made by the browser in order to obtain
novel data from the server. Each time the Web browser
wants to refresh information within the page, it must do a
request to obtain the desired resource from the server and
update its contents accordingly. On the other hand the
Server Push technique leaves an open connection between
both sides, enabling the server to send new data when
required. In the next sections we will review both
approaches, describing some techniques to achieve them

2.1 Client Pull

In this section we will present three different techniques to
update data in the Web browsers using Client Pull. The
first is based on refreshing the whole page while the
second and third are based on updating only portions of it.
For an overview of how the Client Pull technique works
see Figure 1.

Meta Refresh Tag. This technique is achieved by
inserting a meta-tag in the head element of the HTML in
order to force a full refresh of the page. Along with the
meta-tag a timeout is defined, which means that the whole
page will be refreshed whenever the time expires. If the
timeout is set accordingly to the changes in the model, the
page will be effectively reflecting the server contents.

Ajax and Javascript’s Timers. Another approach to do
Client Pull is by combining Ajax [7] and JavaScript’s
timers [8]. Ajax allows the Web browser to perform
“silent” calls to the server, meaning that the browser can
send an asynchronous request to the server to query for
changes. With the help of Javascripts’ timeout functions
(setTimeout or setInterval) an infinite loop can be written
to periodically query the server for new data, analyze it
and decide if any part of the Web page should be changed
(e.g. manipulating the DOM [9][10] tree). The request to
the server is performed by using an XMLHttpRequest [11],
which basically retrieves the data from the server to the
calling script, which can later process the data.

The second approach has some advantages over the

Figure 1. Client Pull diagram

previous method, since an XMLHttpRequest is done
asynchronously and “behind the scenes” by the browser.
This means that the page is always responsive to the user
(this would not happen if it was a synchronous call,
because the browser’s Javascript engine will be blocked)
and that there is no visible change to the user (of course,
unless the script that receives the response decides to alter
the page). Besides being transparent, an Ajax call allows
the Web browser to only ask for the desired data instead of
requesting the full page (which is the case of doing a full
refresh). Once the response has been sent by the server, the
browser can work with the new data (e.g. to update the
page). This leads to a better user experience, avoiding
flickering, reducing network traffic (for a case study see
[12]) and processing load both at the client and the server.

Long Polling. This proposal is a technique [13, page 41]
which consists on making a request to the server, but
instead of returning a complete response, the server leaves
the connection open. Then, when the server needs to send
data to the browser the response is sent and the connection
is closed. After that, the client makes another request to
enable receiving data from the server asynchronically. By
constantly opening a new connection after the previous has
been closed a persistent channel between the server and
the client is emulated. This technique is similar to Ajax
and Javascript’s timers, but works different at the request
level: Long Polling will do a request once, and until the
answer is not delivered by the server it will not make
another request. On the other hand Ajax and Javascript’s
timers are constantly sending new requests to query the
server for changes.

2.2 Server Push

A completely different approach for server updates is to
implement a Sever Push mechanism, where the server
sends new information (events or data) to the client. This
approach has the advantage of sending information only
when needed, avoiding late data arrival and unnecessary
pushes. However, this means that the server must have a
constant connection (generally an open socket) per client,
which (depending on the server capabilities) can lead to a
server crash. To avoid this problem, different approaches
can be taken, such as using grids of computers or load
balancing between servers.

This difference between Client Pull and Server Push
becomes more important when developing Web
applications whose change rates can not be anticipated, or
in those cases where bursts of changes are followed by
poor activity. In those cases using a Client Pull technique
with a very short timeout will give a responsive application
but will cause unnecessary network traffic and CPU
processing. On the other hand, setting a long timeout will
make the user miss changes, especially when they arrive in
bursts. A clear example of the later are Web based chats or
tweets, where many short lines of text can be exchanged in
seconds, while later on minutes or even hours can pass
until a new change is posted in the server. In this situation
using a Server Push technique would deliver the messages
in time, without unnecessary processing or network traffic
(see Figure 2 to clarify how Server Push works).

By combining the Server Push approach (i.e. sending
data from the server to the browser) with Ajax (i.e.

creating asynchronous requests from the browser to the
server) the concept of Comet [13, page 7] was born. Comet
is basically a way to exchange information between server
and browser, specially focused on changes triggered by the
server. Unfortunately, Comet (which is actually an
umbrella for a set of possible techniques for server-browser
communication) is not a standard one yet, and the
developer has to deal with intricate browser-specific
techniques to achieve it. In the current state of the art there
are two main trends to achieve server push: using a plug-
in-based implementation or combining HTML and
Javascript.

2.2.1 Plug-in-Based Implementations

Plug-in-based implementations were the first ones to
achieve this kind of connection. Maybe the best known in
this area are the Java Applets, which use a persistent TCP
connection between the server and the client. Other
examples of plug-in-based approaches are Flash [13],
Silverlight [15] and OpenLaszlo [16].

The main problem with all of these approaches is that
they are not part of a standard browser product, requiring a
specific installation in the client, restricting to vendors
requirements (e.g. Silverlight only works for Windows OS)
and, in some cases, the use of proprietary software. On the
other hand if a Comet implementation only uses standard
components (e.g. Javascript), the application would work
out-of-the-box in all browsers that are W3C-compliant
[17].

2.2.2 Comet with HTML and Javascript

An alternative approach is to combine HTML and
Javascript, thus avoiding any special requirements on the
client. In fact, by using the standard protocols and
specifications the Comet implementation works also in
smaller Web browsers (e.g. those which run on mobile
devices). In this area we can mention four main
techniques:

Streaming Servers. A possible approach for Comet
implementations based on HTML and Javascript is using
streaming [18]. In the old days, when a server received a
request a response was created, converted to text and sent
back to the client. As web servers evolved they started to

Figure 2. Server Push diagram

support streaming, which means that they can send the
response to the client in chunks as the different parts of the
page are created. Streaming greatly improves the user
experience, since the information in the page can appear
faster, thus giving the idea that the page itself is loaded
faster. The streaming facility is also useful to retrieve long
responses, such as multimedia resources (big images,
videos, audio, etc.) which would otherwise take a lot of
time to download. In this scenario the streaming
capabilities can be exploited to implement server-client
communication. The trick is done by forcing the server to
leave the response always open (i.e. never closing the
response) and use that response as a communication
channel. When new data must be passed to the client it is
encoded and appended to the open response. The client in
turn can incrementally process the response with
Javascript, updating its contents as needed.

Gifs: a Limited Workaround. In 1999 a different
approach was used to implement streaming, based on the
approach used by the Web browsers to load gif images.
Ka-Ping Yee created at that year a chat application using a
gif image [19]. The basic idea is to deliver an endless gif
where the messages posted by the users are rendered. Each
time a chat user sends a new message the server completes
a new image row with the message and delivers it to all the
browsers. Even though it is quite limited (since there is no
DOM manipulation through Javascript and the changes
are only reflected inside the gif) it is also a way of doing
streaming.

Generic Solution: Forever IFrames. To accomplish the
DOM manipulation via streaming an approach called
forever IFrames was developed. This Comet technique
uses an IFrame element in the page, which will load a
“special” URL where the streaming response will be
delivered. This approach is quite interesting since it works
in most browsers because the IFrame is a standard tag.
However this approach has many usability problems when
it comes to user interfaces, since all Web browsers have
different ways of showing that a page is still being loaded.
In some browsers while a page is being processed the
mouse pointer is rendered with hourglass icon, throbbers
are shown [20] (small icon which loops if the page is not
fully downloaded) or the status bar displays a text cue
indicating that the page is incomplete (like “loading...”).
Given that this approach is based on a page that is never
fully loaded those notifications will be constantly displayed
(and depending on the browser, all of them may appear at
the same time). Even though this has no effect in the
website logic, it does give the user semantically wrong
cues about the page, since the contents have already been
loaded and are the events from the server what the browser
is waiting for.

Browser-Specific Solutions. Since Comet is not a
standard yet (at least not in the W3C sense) different Web
browsers require different techniques. In particular we
have found the following approaches to work well in each
browser:

• Opera. Uses Server-Sent events [21], which allows
sending events from the server to the client. These
events are handled in the client with Javascript.

• Internet Explorer. Uses a combination of ActiveX
and IFrame [22].The ActiveX object creates an in-
memory page, which has an IFrame that is
dynamically loading the page. With this technique
the loading bar and the throbber are not seen.

• Mozilla-based Browsers. The client uses the
XMLHttpRequest [11] and uses its interactive state
to parse the upcoming data which came from the
server in the browser

In case a browser-agnostic approach is required (e.g. to

handle old browsers) the forever IFrame technique must be
used, even though the disadvantages discussed earlier will
be shown.

3. Comet the Smalltalk Way
Seaside is a Web application framework written in Small-
talk, which has lately gained a lot of attention. The frame-
work combines an object-oriented approach with
continuations [23], allowing multiple control flows on a
single page, one for each component. Seaside is also a
component-oriented framework, which means that modu-
lar components can be developed and later reused in many
different applications. A great advantage of the framework
is that the applications are written in Smalltalk itself,
avoiding most of the html and Javascript coding and ena-
bling the developer to use the same environment for web
development that was used to build the domain model. As
a simple example of the above, the following code

renderContentOn: html

 html heading level: 1;

 with: ‘Header’.

 html div id: ‘divID’;

 with: [html strong: ‘bold’].

will render

<html>

 <body>

 <h1>Header</h1>

 <div id=‘divID’>

 bold

 </div>

 </body>

</html>

In the rest of the paper we will describe Meteoroid [24],

a Comet implementation built on top of Seaside. The aim
of Meteoroid is to allow Seaside developers to build Web
applications that exploit the Comet idea of sending events
from the server to the client. Special care has been put in
the implementation of Meteoroid to fit the Seaside style of
coding, integrating Comet in a natural way to the Seaside
developer.

3.1 Basic Usage

In our approach we decided to create the Comet
communication by means of a small Javascript script. This
script is inserted as part of the processing phase of a
Meteoroid page in the server side and is executed when the
page is loaded in the web browser. When the script is
executed a new channel between the client and the server

is opened. In this channel the server will send the new
information to the browser when required.

To add Comet behavior to a Seaside application only
two tasks must be performed:

• Use the Meteoroid abstract class as an
application superclass instead of the standard
WAComponent.

• Change the session class to MeteoroidSession
instead of WASession.

These two requirements will be further explained in
Section 4.

The core behavior added by the Meteoroid class is the
#pushScript: message, which takes as a parameter a
javascript function encoded in a string. This message
allows the server to send the script to the browser, which
will then be executed. As an example of its usage consider
a Meteoroid page (MeteoroidExampleAlert class) that has
a #showDialog message used to trigger an alert dialog
within the Web browser. This can be achieved by using the
following code:

MeteoroidExampleAlert>>showDialog

 self pushScript: ‘alert(“Hello Meteoroid!”);’

It is important to note that the #showDialog message

doesn’t have to be initiated by a browser request, but by
any object in the server image.

To illustrate Meteoroid’s real aims consider now the
Seaside counter example [25], which is a simple page that
can increase or decrease the value of a counter. In this
example each counter page holds its own counter model
and thus there is nothing shared between different
instances of the same Web application. A slight variation
of that example that shows Meteoroid’s power would be to
have a shared counter model between all the pages. In this
case all the pages will have as domain model a
SharedCounterModel, which is a singleton [26, Singleton
pattern] of a counter model. Each time a web browser
increases or decreases the counter’s value, it will modify
the unique shared counter and that new value will be
displayed on all Web browsers. To make it possible, we use
the Observer pattern [26, Observer pattern] in which the
subject is the SharedCounterModel and the views
(observers) are the MetCounter pages (see Figure 3). For
each new change in the value of SharedCounterModel, a
#change is sent to update all the views which depend on
the collaborative model.

MeteoroidExample>> updateCounter: aValue

 self pushScript: ‘

 document.getElementById(“counter”).innerHTML

 = ’ , aValue printString , ‘;’

Where the DOM element under the “counter” ID, is a

div element that holds the value of the
SharedCounterModel.

A slightly more elaborated application would be to
implement a chat room using Meteoroid. To do so we
assume that the application model is composed by the
classes:

• MessageMessageMessageMessage. It holds a text and the user who
wrote it.

• UserUserUserUser. An object which can post new messages
into the Room.

• RoomRoomRoomRoom. It has a collection of users and
messages. Each time a user makes a post, the
Room is the responsible of create a Message
from that post and replicate it into all the
users.

 Besides the model, a Seaside component named
MetChat was created to be the view of the chat room,
which will show all the chat changes. The Observer
pattern is used again to show the chat changes, where each
User is the subject of the MetChat view. Each time a user
writes a new message and sends it (e.g. through the
MetChat view), the Room model will receive it and it will
replicate that message to the rest of the User instances.
The #message:from: message is in charge of doing so by
creating an instance of the Message class. When the new
Message arrives to each concrete User instance, it will
trigger a #change: that is going to be listened by his
MetChat instance, which will later trigger the #update:
message. That instance will push the new message through
the Comet connection in order to show it, by using the
already mentioned #pushScript: message:

MetChat>>update: aMessage

 self pushScript: (‘insertMessage(“ ’

 aMessage user, ‘ ”, “ ’

 aMessage body,

 , ‘ ”);’)

Where the Javascript function insertMessage(user,

message) will print the new message within the browser
using DOM techniques (i.e. mostly using Javascript
libraries like Prototype [27, page 7] or similar).

In order to clarify the example we next show a small
sequence diagram (see Figure 4) where two users are
logged (User1 and User2). In the diagram User1 has just
posted a new message.

3.2 Meteoroid at a Higher Level

In Seaside, the rendering process is described by using
Smalltalk objects and avoiding, as much as possible, the
direct coding of html and Javascript. Since our aim is to fit
Meteoroid in Seaside in a seamless way we created a
protocol that works in a more abstract way than the
#pushScript: one.

Figure 3. Chat Instance diagram

The first step to improve our implementation was to
create helper methods to automate repetitive tasks that
should be otherwise hardcoded in Javascript. The second
improvement was achieved by adding an Observer-like
protocol, so that the Web browser can be considered as a
view of the model that resides in a Smalltalk image.

Historically the MVC [28] architecture has been used to
decouple the underlying model from the GUIs build on top
of it. This architecture heavily relies on the Observer
pattern, which has many different implementations in the
different Smalltalk dialects (note that even the same
Smalltalk flavor can have many observer
implementations). One of the most widespread
implementation of the observer pattern was the one based
on the #change: family of messages, where a symbol was
passed as a parameter indicating the aspect of the object
that had changed. Even though this implementation has
proven to be useful, it has its drawbacks and different
alternatives to the #change: mechanism were later
introduced (such as triggers or announcements). In this
area, Announcements [29] offer a very interesting
approach, since they allow the developer to express events
as objects and to handle them using an exception-like
mechanism.

In our framework the benefits obtained by the use of an
observer mechanism are combined with a set of common
actions performed in Web applications exposed by
script.aculo.us [27, page 11]. As a result, a general
Meteoroid protocol is provided, allowing either to update
or insert new information when the model changes. To
establish the dependency between the Meteoroid
components and the model the Announcements framework
is used.

As an example, consider again the Counter example
explained in Section 3.1. By combining announcements
with high-level messages to handle script.aculo.us
functions we can express the dependency and update code
in a very simple way. For this example we assume that the
shared counter triggers a ValueChangedAnnouncement each
time its value is increased or decreased. Thus, in the
Meteoroid component initialization we should write:

self on: ValueChangedAnnouncement

 of: self counterModel

 update: 'value'

 callback: [:html |

 html text: self counterModel value

]

 Notice that in the example the update code is
performed by means of a block that gets evaluated each
time the counter changes. The block can receive up to two
more arguments, which are the announcement received
and the announcer that triggered the event. The previous
example can also be coded by using the announcer
parameter, since it is the counter itself the one who
triggers the change event.

self on: ValueChangedAnnouncement

 of: self counterModel

 update: 'value'

 callback: [:html :announcement :announcer|

 html text: announcer value

]

However, blocks are not the only way to implement an

update. As an alternative, a selector can be used instead of
the rendering block, which can also receive the same
parameters that the block receives. To see this in action,
consider the chat example described in the Section 3.1, but
now implemented with announcements. In this example
when a new message arrives, an announcement is
triggered by the chat room. With the protocol provided by
the Meteoroid class, the developer only needs to specify
the announcement and the selector required to update the
Web page.

self on: NewMessageAnnouncement

 of: self chatRoom

 insertIn: 'messages'

 at: #bottom

 sending: #renderNewMessageOn:

Figure 4. Sending a new message

As a result each time a new message arrives to the chat
room it will be inserted at the bottom of the ‘messages’
div. The rendering of the message is performed by the
#renderNewMessageOn: selector.

Another important thing that is provided by the
Meteoroid class is the automatic management of the
dependencies. Every time a dependency is requested using
Meteoroid protocol, the information is kept in a collection
owned by the Meteoroid component. With this information
the component creates the dependency after the rendering
process is finished and breaks it automatically when the
page is closed. Therefore, the developer can focus on the
functionality of the application and forget about
implementation issues related to the Announcements
framework.

3.3 WebValueModels (WVM)

The desktop GUI widgets in VisualWorks [30] rely on an
underlying framework called ValueModels [31]. The idea
behind a value model is that it represents a single value for
a widget that can be accessed by means of the #value /
#value: messages. Also, when its value is changed, the
ValueModel triggers an event so that any interested party
can receive a notification. By using this approach widgets
can be programmed assuming that their target will respond
to the #value family of messages, independently of the
real underlying model (e.g. a concrete subclass of
ValueModel abstract class is an adaptor that converts the
#value / #value: messages into domain-specific
messages).

We found the value model approach to be well suited
for developing GUIs and decided to take it to web
development in our framework, in what we called
WebValueModels. Even though the underlying idea
remains the same as in the standard value models, some
technical issues are different. In particular the
announcements framework is used instead of the old
dependents protocol, thus allowing a straightforward
integration with the Meteoroid protocol presented earlier.
Also, to be backward-compatible, the web value models are
able to wrap almost all the existing value models and thus
use them in a Meteoroid application.

Having the WebValueModels hierarchy in place, we
implemented a set of Web GUI widgets that work in the
same way that their desktop counterparts. These widgets
are a normal HTML controls (i.e. input, text areas, lists,
etc.) with the difference that they have an associated
source of information that is a WebValueModel. The
connection between the widget and the WebValueModel
lets the widget access its model in a simple way and to get
a change notification when the model has changed its
value, so that it can be automatically updated. In our
current implementation we support divs, inputs, text areas,
selects, radio buttons, check boxes, ordered lists and
unordered lists as Web widgets. A schema of the layers
and the updating process is shown in Figure 5.

In order to show how the value models work we will
next present two examples. The first one shows the value
of a shared counter in a div tag. The model used for the
counter is the same that was presented in the previous
section, the change in this case is how the view is
implemented. Recall that when using the

#on:of:update:callback: approach, the Meteoroid
component had to explicitly synchronize the model and the
view. This behavior now has been moved to the web value
model, thus we only need to create the value model:

MetCounter>>initialize

 self

 count: (WebValueModel

 with: self counter

 aspect: #count)

and connect the div tag with it:

MetCounter>>renderContentOn: html

 ...

 html divUpdateableFor: self count

Notice that in the example the web value model just

acts as an adapter [26, Adapter pattern] between the
counter interface and the protocol expected by the web
widget (in this case the div tag).

As a second example we will return to the chat example
(see Section 3.1) and show how to keep the list of logged
users of a chat room. To do so, two simple things have to
be done: bind the model to a component and display that
component in a browser.

The binding between the model and the component is
generally done in the #initialize method of the parent
component (i.e. the component that renders the list). Since
we are working with a dynamic list, a SelectionInList
[31] (a special type of value model) is created:

Room>>initialize

 self usersList:

 (WebSelectionInList

 model: self chatRoom

 listAspect: #users

 selectionIndexsApect: #selectionIndex)

In this code a WebSelectionInList is created. Every
time a user logs in, the room triggers a change event,

Figure 5. Meteoroid WebValueModel layers

which is converted by the WebSelectionInList into an
announcement (ListChangedAnnouncement). Once the
value model is created, we only need to connect it to the
widget. Therefore the code of the #renderContenOn:
message should look like:

ChatRoom>>renderContentOn: html
 | select |
 ...
 select := html
 selectUpdateableFor: self usersList.
 select
 labels: [:user | ‘User: ’ , user name];
 size: 5

These are the only two things required to show the user
list, which will be automatically updated every time a new
user arrives to or leaves the chat room. Thus, creating Web
pages that are automatically updated is pretty
straightforward.

4. Meteoroid Under the Hood
In Section 3 we had shown how to use the Meteoroid API
at different levels, starting with the basic #pushScript:
message. In this section we will focus in the technical
details of the work done to achieve the functionality
mentioned in Section 3.

Inheriting from Meteoroid. One of the requirements
presented in the Section 3.1 was the fact that each
component must inherit from the Meteoroid class. Besides
adding a handler (at the end of this section we will explain
it a bit more) and a couple of helper methods, the core
behavior added by the Meteoroid class is the #pushScript:
message, which receives a Javascript script as a string
object. When sending this message the script passed as a
parameter is sent from the server to the client and executed
by the browser afterwards.

Even though this basic behavior requires low level
programming (since we have to code Javascript by hand) is
very powerful, because we can send any script from the
server to the browser.

Choosing the Best Communication Technique for Each
Browser. The Internet community is characterized for
using different flavors of browsers. Each one has its own
way to communicate with the server, which is a major
issue when it comes to Comet. In order to handle each
browser in a specific way, a new kind of session is
required. For this reason the second requirement (as
specified in the Section 3.1) is changing WASession for
MeteoroidSession.
When the client asks for a new Comet connection, the
session is the one in charge of creating it and finding an
appropriate technique (which is basically a handler) for the
specific browser. For example, if the browser requesting
the Comet connection is Opera the server will use Server-
Sent events, whereas if the browser is a Mozilla-based one
the XMLHttpRequest technique will be used. Thus, our
session knows which is the “best” Comet technique based
on the user agent [32] reported by the client. To achieve
this we have modeled a hierarchy of classes to encapsulate
each specific technique (for Mozilla-based
XMLHttpRequest, for Internet Explorer based ActiveX

and forever IFrames, etc.), allowing us to handle the
streamed response in a better and cleaner way.

Handling the Browser. At the internal level, the handler
represents the channel between the server and the client.
Therefore, each time the page sends Javascript to the client
using #pushScript: it is actually the handler which sends
it. The handler also has a state to identify the status of the
connection with the browser. The different states of a
Meteoroid connection are modeled as a state machine,
using the State pattern [26, State Pattern]. A Meteoroid
handler may be in three different states:

Beginning. This state is set when the handler is not
ready for pushing scripts from the server (e.g. while
the page is being loaded). This state is mainly used to
avoid sending data to an early connection, which
would otherwise cause a disconnection.
Running. Set when the handler is able to push data to
the browser. If the data can not be sent (e.g. because
the browser has been closed), the handler changes to
the Waiting state.
Waiting. Used when the server is not able to send data
to the browser. It models the fact that the connection is
unable to send data, but that can be later reestablished.
It is triggered in two different situations: when the web
browser has been closed or when the client has left the
Meteoroid page by navigating to another one.

 The context provided by those states give Meteoroid
developers the possibility to have more control over the
flow of the browser, because the handler can be accessed
by a Meteoroid component. Thus, custom actions can be
taken upon state changes. For instance, if the handler is set
to Running, the page is capable of sending new events to
the browser, but if at some moment the connection breaks,
the state becomes Waiting. Then the page can advice that,
by checking the state and using it in its domain model (for
instance, to log how people uses the page).

Meteoroid Connection Everywhere. We mentioned
previously that the browser is responsible for making the
Comet connection by means of a small Javascript. This
approach was chosen due to a problem regarding the back
and forward buttons present in any web browser. The idea
of the back/forward button is to allow the user to navigate
through an already rendered page. When navigating by
means of the back and forward buttons the pages already
rendered do not generate new requests to the server, since
they are cached in the client. This generates a big problem
in some Comet implementations, since when the user
moves between pages the persistent connection is lost and
cannot be re-established later. By performing the Comet
connection in a Javascript script, when the page is loaded
the script is executed [17], even if the page is cached in the
client browser.

Nesting Meteoroid Components. Subclassing from
Meteoroid and using the Meteoroid session has a major
importance in the flow of how Seaside renders pages.
Seaside is a web framework based on components, where
developers can add, compose and tweak them as they want.
In our approach developers can work in Seaside using the
“normal way”, and then just add Meteoroid. The major
improvement of Meteoroid is in the way the component’s

rendering is done, managing the handler creation and the
details required to even work with children components.
The handler, which is present in each Meteoroid page, is
an object bound to the session which is later (inside the
rendering phase) delivered into the components that need
it. Notice that Meteoroid will only create one handler per
session, and therefore the same handler will be used across
the entire page, meaning that each component will use the
same handler. This is quite important, because having one
handler across the application will greatly reduce resource
consumption.
We can now depict how a standard chat could be shown
using Seaside components: a first component
(MessagesContainer) will be on charge of rendering the
text (chat room) for new messages. Another component
(UserList) will be in charge of rendering the list of users,
whereas an input field (UserInput) is used to send
messages from each user to the server. Finally all those
components are grouped by a root (ChatRoom), being
MessagesContainer, UserList and UserInput their children
(see Figure 6).
To reproduce the already mentioned requirements (inherit
and changing the default session), MessagesContainer,
UserList and ChatRoom must inherit from the Meteoroid
class, and change the WASession session to
MeteoroidSession. Notice that it is not necessary to
inherit the input component UserInput from Meteoroid,
because this component does not need to be “updated”
from the server.

5. Conclusions and Further Work
In this paper we presented Meteoroid, a Comet
implementation in Smalltalk that works on top of Seaside.
Our implementation of Comet is based on the early work
of Lukas Renggli [33], a core developer of Seaside. This
initial work only covered a way to send data from the
server to each client. In our approach not only we
modularized the implementation, but enhanced it to
effectively support different techniques according to the
target browser. On top of that layer we created the required
abstractions to easily connect a domain model to a live web
interface, effectively maintaining the information on the
browser always updated.

Meteoroid can be used in three different levels of
abstraction:

• At a very low level, by means of the
#pushScript: message.

• In a medium level, by combining Ajax,
Announcements and script.aculo.us.

• By using Web widgets associated to Web value
models.

The above three layers allows the developer to
effectively create web applications using the web browser
as a renderer and web pages as views, inside the MVC
paradigm.

As a result of our design an interesting feature emerged:
since Meteoroid is compatible with the value model
approach for MVC creating a Web application for a model
which was used in desktop applications is almost
straightforward, since only the visual part must be written
again.

The next planned steps of the project are:
• Create a complete set of widgets, managing all

their associated events.
• Define a tool to pack Seaside with Mozilla

Prism [34], so that a Smalltalk desktop
application can be delivered as a single
package containing a web server and a client.

• Take the Meteoroid approach to mobile clients.

References

[1] Hale French, Deanie French, Charles Hale, Charles Johnson,
Gerald Farr “Internet Based Learning”.

[2] James Duncan Davidson, Danny Coward “Java Servlet
Specification (“Specification”) Version: 2.2 Final Release.
Sun Microsystems” (1999) (pages: 43 - 46).

[3] Anderson, P. “What is Web2.0? Ideas, technologies and
implications for education” (2007).

[4] Technical report, Netscape Communications “An
Exploration of Dynamic Documents” (1995).

Dead link:

http://www.netscape.com/assist/net_sites/pushpull.html

Chached reference:

http://web.archive.org/web/*/www.netscape.com/assist/net_
sites/pushpull.html

[5] Stephane Ducasse, Adrian Lienhard and Lukas Renggli
“Seaside - A Multiple Control Flow Web Application
Framework”.

[6] Hypertext Transfer Protocol – HTTP/1.1
http://www.w3.org/Protocols/rfc2616/rfc2616-
sec1.html#sec1.4.

[7] Jesse James Garrett “Ajax: A New Approach to Web
Applications”
(http://www.adaptivepath.com/ideas/essays/archives/000385
.php).

[8] David Flanagan “JavaScript:The Definitive Guide” (section
14.1. Timers) (2006).

[9] Jonathan Snook, Aaron Gustafson, Stuart Langridge, Dan
Webb “Accelerated DOM Scripting with Ajax, APIs, and
Libraries” (2007).

[10] Document Object Model (DOM) http://www.w3.org/DOM.

[11] The XMLHttpRequest Object,
http://www.w3.org/TR/XMLHttpRequest

[12] Engin Bozdag, Ali Mesbah and Arie van Deursen “A
comparison of Push and Pull Techniques for Ajax” (2007).

[13] Dave Crane and Phil McCarthy “Comet and Reverse Ajax”
(2008) (page 7).

Figure 6. Chat components diagram

[14] Official Site, http://www.adobe.com/es/products/flashplayer

[15] Official Site, http://silverlight.net

[16] Official Site, http://www.openlaszlo.org

[17] Scripts, http://www.w3.org/TR/REC-
html40/interact/scripts.html

[18] Michael Mahemoff “Ajax Design pattern” (2006) (page
113).

[19] Ka-Ping Yee, Chat Using Dynamic Animated Images,
http://zesty.ca/chat

[20] Shawn M. Lauriat “Advanced Ajax Architecture and Best
Practices” (page 17 section 1.3).

[21] Server-sent events, http://labs.opera.com/news/2006/09/01

http://www.w3.org/TR/html5/comms.html

[22] ActiveXObject Object, http://msdn.microsoft.com/en-
us/library/7sw4ddf8(VS.85).aspx

[23] Stéphane Ducasse, Adrian Lienhard, Lukas Renggli
“Seaside - A Multiple Control Flow Web Application
Framework”.

[24] Meteoroid Official site,
http://cag.lifia.info.unlp.edu.ar/cag/Wiki/01.+Projects/Meteo
roid

[25] Seaside counter example,
 http://www.seaside.st/about/examples/counter.

[26] Erich Gamma, Richard Helm, Ralph Johnson, John M.
Vlissides “Design Patterns: Elements of Reusable Object-
Oriented Software”.

[27] Dave Crane, Bear Bibeault, Tom Locke “Prototype and
Scriptaculous in Action”.

[28] Glenn E. Krasner and Stephen T. Pope “A Description of
the Model-View-Controller User Interface Paradigm in the
Smalltalk-80 System”.

[29] Cincom Smalltalk “Application Developer's Guide”
(Chapter 11).

[30]Cincom VisualWorks official site,
 http://www.cincomsmalltalk.com

[31] James O. Coplien , Douglas C. Schmidt “Pattern languages
of program design” (pages: 467 - 494).

[32] UserAgent specification, http://www.w3.org/TR/WAI-
USERAGENT

[33] Seaside’s core developer,
http://www.seaside.st/community/contributors

[34] Mozilla Prism official site,
http://labs.mozilla.com/2007/10/prism

