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Abstract

CodeCrawler is an extensible and language independent software visualiza-
tion tool. It has been validated in several industrial case studies over the past
years. CodeCrawler enables the fast exploration of new visualization ideas. It
implements and visualizes polymetric views, visualizations of software enriched
with information such as software metrics and other source code semantics. It
provides a rich set of views that can be customized using a large set of metrics.
While CodeCrawler is mainly targeted at visualizing object-oriented software,
in its latest implementation it has become a general information visualization
tool.

1. Introduction

CodeCrawler is a software and information visualization tool (Stasko et al.
1998, Ware 2000) which implements polymetric views, lightweight 2D- and
3D- visualizations enriched with semantic information such as metrics or in-
formation extracted from various code analyzers.

It relies on the FAMIX metamodel (Demeyer et al., 2001) which models
object-oriented languages such as C++, Java, Smalltalk, but also procedural
languages like COBOL. FAMIX has been implemented in the Moose reengi-
neering environment that offers a wide range of functionalities like metrics,
query engines, navigation, etc. (Ducasse et al., 2004).

We shortly introduce the principles of polymetric views and then give
some examples of the visualizations that CodeCrawler enables the user to
achieve. The proposed visualizations support both program comprehension
and problem detection, and target three different aspects of software systems,
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namely coarse-grained, fine-grained, and evolutionary aspects. We apply
CodeCrawler on itself and hightlight some of the implementation
characteristics.

2. The Principles of a Polymetric View

The visualizations implemented in CodeCrawler are based on the polymet-
ric views described by Lanza (Lanza 2004, Lanza and Ducasse 2003). The
principle is to represent source code entities as nodes and their relationships as
edges between the nodes, but to use figure shapes to convey semantics about
the source code entities they represent.

Figure 1 - The Principles of a Polymetric View.

In Fig. 1 we see that, given two-dimensional nodes representing entities
and edges representing relationships, we enrich these simple visualizations
with up to 5 metrics on the node characteristics and 2 metrics on the edge
characteristics:

• Node Size. The width and height of a node can render two meas-
urements. We follow the convention that the wider and the higher
the node, the bigger the measurements its size is reflecting.

• Node Color. The color interval between white and black can dis-
play a measurement. Here the convention is that the higher the
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measurement the darker the node is. Thus light gray represents a
smaller metric measurement than dark gray (Tufte 2001).

• Node Position. The X and Y coordinates of the position of a node
can reflect two other measurements. This requires the presence of
an absolute origin within a fixed coordinate system therefore, not
all views can exploit such metrics (e.g., in a tree view, the position
is given by the tree layout and cannot be set by the user).

• Edge Width. The width of an edge can render a measurement: the
wider the edge, the higher the measurement.

• Edge Color. The color interval between white and black can dis-
play a measurement. Here the convention is that the higher the
measurement the darker the edge is.

Figure 2 - A screenshot of CodeCrawler visualizing itself with a System
Complexity view. This view uses the following metrics: Width metric = number
of attributes, Height metric = number of methods, Color Metric = number of
lines of code.

Example. In Fig. 2 we see CodeCrawler visualizing itself with a polymet-
ric view called System Complexity. The metrics used in this view are the num-
ber of attributes for the width, the number of methods for the height, and the
number of lines of code for the color of the displayed class nodes.
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The polymetric views in CodeCrawler can be created either programmati-
cally in Smalltalk by constructing the view objects, or over an easy-to-use View
Editor, where each view can be composed using drag & drop.

Figure 3 - CodeCrawler's View Editor.

In Fig. 3 we see CodeCrawler’s View Editor with the specification of the
System Complexity view: the user can freely compose and specify the types
of items  that will be displayed in a view and also define the way the
visualization will be performed: for every node and edge the user can choose
from a selection of metrics.

3. Polymetric View Examples

CodeCrawler visualizes three different types of polymetric views: coarse-
grained, fine-grained, and evolutionary views.

3.1 Coarse-grained Polymetric Views

Such views are targeted at visualizing very large systems (from several
tens of thousands to several millions of lines of code).
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Figure 4 - A System Hotspots view of 1.2 million lines of C++ code. The nodes
represent classes. This view uses the following metrics: Width = height = number
of methods, color = hierarchy nesting level.

Example. In Fig. 4 we see a System Hotspots view of a 1.2 million lines of
C++ industrial application. The view uses the number of methods for the
width and height of the class nodes. We gather for example from this view
that there are classes with several hundreds of methods (at the bottom), while
at the top we see a large number of C++ structs, identifiable by the fact that
most of them do not implement any methods. We spot large classes deeply
located deep in hierarchy as large dark nodes.

3.2 Fine-grained Polymetric Views

The most prominent fine-grained view is the Class Blueprint view, a
visualization of the internal structure of classes and class hierarchies (Lanza
and Ducasse, 2001). A class blueprint is a visualization of a semantically
augmented call graph and its specific semantics-based layout. The objective
of this view is to help a programmer to develop a mental model of the classes
he browses and to offer support for reconstructing the logical flow of method
calls and attribute accesses. It is augmented in various aspects:

• A class blueprint is structured according to layers that group the
methods and attributes.

• The nodes representing a class’ methods and attributes are colored
according to semantic information, e.g., whether a method is
abstract, overriding other methods, returning constant values, etc.
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• The nodes vary in size depending on source code metrics
information.

A Class Blueprint divides each class into 5 layers, as we can see in Fig. 5.

Figure 5 - The layered structure of a class blueprint view.

We distinguish the following layers:
1. Initialization Layer. The methods contained in this first layer are

responsible for creating an object and initializing the values of the
attributes of the object.

2. External Interface Layer. The methods contained in this layer
represent the interface of a class to the outside world, i.e., it
contains all methods of a class which are not called by other
methods of the same class.

3. Internal Implementation Layer. The methods contained in this
layer represent the core of a class and are not supposed to be
visible to the outside world, i.e., this layer contains all methods
which are at least called by another method of the same class.

4. Accessor Layer. This layer is composed of accessor (getters and
setters) methods.

5. Attribute Layer. The attribute layer contains all attributes of the
class. The attributes are connected to the methods in the other
layers by means of access relationships.
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Moreover we use nominal colors denote semantic information such as
whether a method is abstract, and accessor a getter or a setter, whether a
method is returning a constant value, whether it is overriding or extending
methods in the superclasses, etc.

Figure 6 - A Class Blueprint view of a small hierarchy of 4 classes written in
Smalltalk.

Example. In Fig. 6 we see a class blueprint view of a small hierarchy of 4
classes. We use the class blueprint view to develop a pattern language for
reverse engineering (Lanza and Ducasse, 2001). In the present example we
see the following patterns:

• Pure overrider: The three subclasses implement only overriding
methods (denoted by the brown color).

• Siamese Twin: The two subclasses on the left and the right are
structurally identical, not only do they implement exactly the same
methods (the methods differ within their body), their static invocation
structure is also the same.

• Template Method: The method node in the superclass annotated as A
is a concrete method which only invokes abstract methods (denoted
by their cyan color). This is known as the template method design
pattern (Gamma et al., 1995).
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• Inconsistent Accessor Use: The superclass defines only two accessors
(positioned in the second layer from the right), while it defines three
attributes (last layer to the right). These two accessors do not have
ingoing edges: at least in the context of this hierarchy they are not
used at all.

• Direct Attribute Access: We see that the attribute nodes of the
superclass are directly accessed by several methods.

• T he methods annotated as B and C seem to play an important role in
these classes: They are invoked by many methods (several ingoing
edges) and they invoke several methods (numerous outgoing edges).

3.3 Evolutionary Polymetric Views

The most prominent view is the Evolution Matrix view, a visualization of
the evolution of complete software systems (Lanza and Ducasse, 2002). The
idea is to represent all the system versions as columns and all the classes (all
versions) as rows of the Evolution Matrix and  to add semantic information on
the visualization.

In Fig. 7 we see an example of such a visualization, which again allows us
to develop a pattern language applicable in the context of software evolution.
The view is enriched with the metrics ‘number of methods’ for the width and
‘number of attributes’ for the height of the class nodes. Other combinations of
metrics are also possible and yield different evolutionary views.

We can recognize the following patterns:
• The set of classes which survived the complete evolution of the

system since the beginning is annotated as persistent classes.
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Figure 7 - An Evolution Matrix view of 38 versions of an application written in
Smalltalk.

• The dayfly classes denote classes which have existed during one
version of the system and have then be removed. Probably the
developer tried out something and removed this 'experiment' right
away.

• The pulsar class denotes a class whose size in terms of number of
methods and attributes varies, making it thus an expensive class of
this system.

• A long stable phase where the system did not grow in terms of
number of classes, and two major leaps where the system rapidly
grew between two versions.

4. CodeCrawler at Work

In this section we shortly illustrate how CodeCrawler can be used to
reverse engineer a software system. Due to space limitations we only show
excerpts of the whole process. However, polymetric views as implemented in
CodeCrawler are intrinsically interactive and only of limited use when used in
a static way, i.e., only looking at them is not enough.
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Figure 8 - CodeCrawler at Work. Every item has its own menu.

Example. An example of interactivity (See Fig. 8) is that when the user
passes with the mouse pointer over a node or an edge, the item is highlighted
and information about the subject item is displayed in CodeCrawler’s top
input field, e.g., metric values and other semantic information whether the
class is abstract, etc. Moreover, using a context menu the viewer can interact
with the item in focus.

The Case Study. As case study we have chosen CodeCrawler itself
(Version 4.510) to also explain its architecture and design on-the-fly.
CodeCrawler is a small system consisting of slightly less than 9000 lines of
Smalltalk code (including its 80 unit tests) in 122 classes. CodeCrawler uses
Moose as metamodel and repository for entities and the HotDraw framework
for visualizing.

Approaching the System. First of all we need to model the source code of
a software system. This task is completely delegated to the Moose
reengineering environment (see corresponding chapter in this book), since
CodeCrawler is tied to it at an implementation level (both systems are written
in Smalltalk). CodeCrawler can thus visualize systems written in different
languages such as C++, Java, COBOL, etc.

Once the system is parsed, CodeCrawler can directly generate the needed
nodes and edges representing the software entities and relationships.
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In Fig. 2 we see CodeCrawler displaying itself with a System Complexity
view. We gather that it consists mainly of 2 inheritance hiearchies.
CodeCrawler greatly relies on interactivity, and a first  approach to
understanding such a system consists in a combination of selecting and
grouping, with optional use of coloring. The goal is basically to “tear the
system apart”. We have done so and show the results in Fig. 9.

Figure 9 - CodeCrawler after being torn apart in subsystems using grouping
facilities.

Fig. 9 shows that CodeCrawler consists of:
• A main application framework (the largest hierarchy with a root class

named CCRoot) which seems to contain two subhierarchies.
• A graphical user interface hiearchy consisting of classes providing

dialogs and windows.
• Some classes which are subclasses of the HotDraw framework classes

(= an extension of the visualization framework, since HotDraw does
not provide all functionalities needed by CodeCrawler).

• Some classes which are subclasses of the Moose environment (= an
extension of the metamodel).

• The main CodeCrawler class itself with a small subclass for the
purpose of visualizing software evolution.

In Fig. 10 we take a closer look at the largest hierarchy with yet another
System Complexity view. We have first removed the root class (CCRoot)
which is basically empty (denoted by its tiny size as we see in Fig. 2) and
have annotated the resulting subhierarchies.

We see in Fig. 10 the following information:
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• A major hierarchy is dedicated to the layouts implemented in
CodeCrawler.

• A small hierarchy consisting of three classes: CCItem, CCNode, and
CCEdge. They represent the actual core of CodeCrawler’s design,
since it is mainly based on the notion of graphs containing items:
nodes and arcs (edges).

Figure 10 - CodeCrawler's main application framework.

• A small hierarchy consisting of 4 classes named CCItemFigureModel
(the top class node), CCNodeFigureModel, CCEdgeFigureModel, and
CCCompositeFigureModel (the smallest node). We have named this
hierarchy a visualization engine bridge and provide a more detailed
explanation below using a Class Blueprint view.

• A major hierarchy which we have named Plugin hierarchy. It actually
mimics the hierarchies of entities of entities and relationships defined
in the FAMIX metamodel, and there are classes named
CCFAMIXClassNodePlugin, CCFAMIXInheritanceEdgePlugin, etc.
A good portion of CodeCrawler’s functionality is contained in this
hierarchy: everything which is accessible from the context menus of
the respective nodes and edges.

We want to take a closer look at the visualization bridge hierarchy using a
Class Blueprint view. We display the root class named CCItemFigureModel
to see if we can infer information about the complete hierarchy.

From Fig. 11 we gather that this class has been built according to the
Facade design pattern (Gamma et al., 1995): in the public interface layer there
is a very heavy use of delegation (this is denoted by the yellow method
nodes). Moreover the class implements some abstract methods (cyan nodes)
and has practically no internal implementation. Actually this class acts as a
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bridge between the item hierarchy and the hierarchy of the figures. We also
see that the accessors do not have a perfect read/write (red/orange) pattern,
thus indicating that at least some accessors were not generated, but created by
hand.

Figure 11 - On the left side a regular Class Blueprint view of the class
CCItemFigureModel, on the right side the same blueprint, but displaying names
instead of metrics. This class is built according to the Facade design pattern.

The Class Blueprint view delivers its full potential only if the viewer looks
carefully at what he sees and pays attention to irregularities and particularities
in the visualizations.

In the remainder of the chapter we show some more polymetric views that
CodeCrawler delivers about itself.

Method Efficiency Correlation View. This view makes use of position
metrics and visualizes methods. It uses a simple scatterplot layout enhanced
with metrics: the horizontal position represents the number of lines of code,
while the vertical position represent the number of statements of each method.
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Figure 12 - Method Efficiency Correlation View of CodeCrawler's 1351 methods.

In Fig. 12 we have displayed all 1351 methods of CodeCrawler. We see
that most methods align themselves along a 45 degree correlation axis,
meaning that most methods contain on the average 1 statement per line. We
have annotated to methods which spring to the eye: one has 56 lines but no
statement: upon closer inspection it reveals that its method body is completely
commented. This view can also be used for system quality assessment: to the
right of the vertical line there are all methods longer than 7 lines, which is the
average length of a Smalltalk method. By interacting with the items in the
view one can easily filter out overlong methods that perhaps could be split.

Direct Attribute Access View. This view visualizes attributes with a
simple layout and uses as size metric for both width and height the number of
direct accesses on each attribute. Moreover, we colorized the attributes for
whom accessor methods have been defined with a gray color.
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Figure 13 - A Direct Attribute Access view on the attributes defined in
CodeCrawler's classes.

In Fig. 13 we see all attributes defined in the classes of CodeCrawler. We
see that some attributes are heavily accessed (the largest attribute node is
directly accessed 61 times (not using accessor methods)), but we also see that
for this attribute there are no accessor methods. The other annotated attribute
node reveals a possible problem: this attribute is directly accessed 32 times,
but evidently there are accessor methods defined for it which do not get used
consistently.

3D Polymetric Views. Recently CodeCrawler has been extended to enable
3D visualizations. In Fig. 14 we see that the tool has not changed its
functionality in 3D, but offers the same context functionality as in the 2D
version. The user can also freely switch between 2D and 3D views. The
authors still have to assess which are the benefits of having an additional
dimension at disposition and how to best exploit it in terms of functionality,
navigability, and usability.
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Figure 14 - CodeCrawler 3D visualizing the System Complexity view in 3D. The
functionality offered by the context menus is the same as in the 2D version.

6. Extending CodeCrawler

During the case studies we have performed we have learned that the
extensibility and the flexibility of a tool is key to successful reverse
engineering: every case study comes with its own particularities, and being
able to adapt to contexts such as the implementation language, naming
conventions, structural particularities, etc. is crucial.

CodeCrawler can be extended in the following ways:
• defining new views: new views can be composed using the view

editor or by programmatically composing them using Smalltalk code.
• defining new entities to visualize: if we want to visualize a new kind

of entity, such as package, we need to write a small plugin class
which inherits a lot of behavior and we have to override 4 small
methods which are mainly used for display purposes. If we then want
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to add more intelligence to a plugin we can do so by implementing
menu items

• defining new metrics: if we want to add a new metric, we can write a
new PropertyOperator which takes care of computing the value and
assigns it to the entity or its plugin. The framework for computing
metrics is implemented in the Moose reengineering environment.

• Visualizing systems in different languages. CodeCrawler is based on
Moose regarding fact extraction and acquisition from software
systems (see chapter on the Moose environment in this book). The
problem of visualizing other languages can thus be delegated to
extending the Moose reengineering environment: Since CodeCrawler
has a well-defined interface to the FAMIX metamodel implemented
in Moose, there are usually no changes to be made in CodeCrawler.
However, if a language supports new types of constructs that need to
be visualized, we need to define new plugin classes.

7. Industrial Validation

CodeCrawler has been used to reverse engineer industrial systems several
times and is also used in conjunction with Moose by consultants to assess
software systems. Due to non-disclosure agreements with the industrial
partners we cannot provide detailed descriptions of our experiences, but limit
ourselves to provide a list of case studies (industrial and non-industrial) that
we have performed.

System Language Lines of Code Classes

Z (Network Switch) C++ 1’200’000 ~2300

Y (Network Switch) C++/Java 140’000 ~400

X (Multimedia) Smalltalk 600’000 ~2500

W (Payroll) COBOL 40’000 -

SORTIE (Forest Management) C/C++ 28’000 ~70

Duploc (Research Prototype) Smalltalk 32’000 ~230

Jun (Multimedia and 3D Framework) Smalltalk 135’000 ~700

JBoss (Application Server) Java 300’000 ~4900

V (Logistics) C++ 120’000 ~300

Tab. 1 – A Selection of the Case Studies performed with CodeCrawler.

In Tab. 1 we see that the systems were written in different programming
languages and have sizes quite different from each other. The point in
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common of all case studies were the narrow time constraints imposed on us:
we never had more than one week to reverse engineer the systems.

Figure 15 - A System Complexity view of a large C++ hierarchy consisting of
more than 200 classes.

Example .  In Fig. 15 we see what we have termed a flying saucer
hierarchy: it is composed of more than 200 classes with a root class that has
ca. 100 direct subclasses. A recommendation to the developers was to try to
introduce a ‘middle layer’ of classes and to push up functionality from all
sibling classes.

8. Conclusion

We presented CodeCrawler, a visualization tool that enriches software
visualizations with metrics and other semantic information. We call these
enriched visualizations polymetric views. The polymetric views are
customizable and can be easily adapted to different contexts. We used the
polymetric views in three different reverse engineering contexts, namely (1)
coarse-grained software visualization, (2) fine-grained software visualization,
and (3) evolutionary software visualization.
We claim that polymetric views can help to greatly reduce the complexity of a
reverse engineering process. Moreover, the added metrics and semantic
information increase the amount of information that is visually transmitted to
the viewer. The polymetric views support opportunistic code reading, i.e.,  the
goal of the polymetric views is not to replace code reading, but to point the
viewer to locations of interest. To validate our claim we applied different
polymetric views on several case studies, one of which are presented here,
with the goal of understanding the subject systems.
Closing Words. All too often research conducted in the field of software
visualization, a descendant of information visualization, is ignoring the great
insights obtained by people like Bertin and more recently Tufte, Ware, and
Stasko and others. This generated in the last few years dozens of software
visualization tools that mainly offer the same functionalities and introduce
little new insights. We believe that in order for software visualization to
become a respected, serious, and established research field, software
visualization researchers should settle on a common benchmark which would
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allow one to accept and/or reject new/old ideas and to discuss these ideas
more critically.
Moreover, to have an impact on software industry, the tools must be
integrated with existing IDEs, since developers are reluctant to change their
working habits.

9. Tool Information

CodeCrawler's implementation started in 1998 as part of Michele Lanza's
Master and Ph.D. work, as part of the European FAMOOS ESPRIT Project. It
has been used for various industrial consultancy projects since its first imple-
mentation and has been re-implemented 4 times since then. In its newest im-
plementation it has become a general information visualization tool (e.g.,
visualization of concept lattices (Arévalo et al., 2003) and websites) and also
supports 3D-Visualizations (Wysseier, 2004).

CodeCrawler uses currently the HotDraw framework for the 2D visual
output and the Jun framework for the 3D visual output. It uses the Moose re-
engineering environment for the data input. In Fig. 16 we see a schematic de-
scription of CodeCrawler’s general architecture.

Figure 16 - The general architecture of CodeCrawler, composed of 3 main

subsystems: the core, the metamodel, and the visualization engine.

9.1 Tool Availability

CodeCrawler is implemented in Smalltalk under the BSD license: it is free
and open source software. It runs on every major platform (Windows, Mac
OS, Linux, Unix) and is freely available for download. Currently the webpage
is located at:

http://www.iam.unibe.ch/~scg/Research/CodeCrawler/.
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Moreover, CodeCrawler is also available as free goodie on the Visual-
Works Smalltalk CD, a professional, commercial development environment
developed and sold by the company Cincom which however also exists in a
non-commercial version freely available for download at:

http://www.cincomsmalltalk.com/
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