
The Class Blueprint
A Visualization of the Internal Structure of Classes

Michele Lanza
Software Composition Group

University Of Bern
Bern, Switzerland

lanza@iam.unibe.ch

Stéphane Ducasse
Software Composition Group

University Of Bern
Bern, Switzerland

ducasse@iam.unibe.ch

Note for the reader: this paper makes use of colors in the figures.
Please read an online (colored) version of this paper in order to
better understand the ideas presented.

ABSTRACT
Understanding classes is a key activity in object-oriented program-
ming, since classes represent the primary abstractions from which
applications are built. The main problem of this task is to quickly
grasp the purpose and inner structure of a class. In this paper we
discuss the class blueprint, a visualization of the inner structure of
classes, first presented in [15].

Keywords
Reverse Engineering, Program Understanding, Software Visualiza-
tion, Visual Patterns, Smalltalk

1. INTRODUCTION
In object-oriented programming, understanding a certain class can
be the key to a wider understanding of the system, which is needed
by developers and/or system maintainers to be able to make changes
to the system without breaking other parts. In this paper we present
the class blueprint, a visualization of the inner structure of one or
several classes, first presented at OOPSLA 2001 [15]. For an in-
depth discussion of the concepts of the class blueprint, the intro-
duction of a categorization of classes based on it, and especially for
a validation of the approach on case studies please refer to [15], as
this is out of scope for such a short paper.

This paper first introduces the concept of the class blueprint. We
then present a few examples of actual visualizations and discuss
the tools we developed before concluding with a discussion of the
benefits and limits of the class blueprint.

2. THE CLASS BLUEPRINT
In this section we present the class blueprint, a way to visualize
the internal structure of classes. First we present the layered struc-

ture of the blueprint. We then discuss the way we display meth-
ods and attributes, including the color schema we use. We shortly
discuss the layout algorithm we use, before finally displaying and
discussing a first class blueprint visualization.

2.1 The Layers of a Class Blueprint
In Figure 1 we present a template class blueprint. From left to right
we have the following layers: initialization, interface, implemen-
tation, accessor and attribute. The first three layers and the meth-
ods contained therein are placed from left to right according to the
method invocation sequence, i.e., if method a invokes method b, b
is placed to the right of a.

Initialization AccessorInterface Implementation Attributes

CLASS NAME

INVOCATION SEQUENCE 

Figure 1: The decomposition of a class into layers.

Every concrete class can be mapped on this “template” class blue-
print which has the layers described below. For each layer we
list some conditions which must be fulfilled to be assigned to a
layer. Note that the layers are not mutually exclusive except the
attribute layer. Note also that the conditions listed below follow
a lightweight approach and are not to be considered as complete.
However, we’ve seen that they are sufficient for our purposes.

1. Creation/Initialization Layer. The methods contained in
this first layer are responsible for creating an object and ini-
tializing the values of the attributes of the object. We con-
sider a method as belonging to the initialization layer, if one
of the following conditions holds:

� The method name contains the substring “initialize” or
“init”.

� The method is a constructor.

� In the case of Smalltalk, where methods can be clus-
tered in so-called method protocols, if the methods are



placed within protocols whose name contains the sub-
string “initialize”.

In our current approach we do not take into account static
initializers [8] for Java, as they are not covered by our meta-
model [4].

2. (External) Interface Layer. The methods of this layer can
be considered as the entry points to the functionality pro-
vided by the class. A method belongs to this layer if one the
following holds:

� It is invoked by methods of the initialization layer.

� In languages like Java and C++ it is declared as public
or protected.

� It is not invoked by other methods within the same class,
i.e., it is a method invoked from outside of the class, ei-
ther by methods of collaborator classes or subclasses.
Should the method be invoked both inside and outside
the class, it is placed within the implementation layer.

We do not count accessor methods to this layer, but to a layer
of its own, as we show later on.

3. (Internal) Implementation Layer. The methods within this
layer are the ones doing the main work of the class, by assur-
ing that the class can provide the functionality promised by
the interface layer. A method belongs to this layer if one of
the following holds:

� In languages like Java and C++ if is declared as private.

� The method is invoked by at least one method within
the same class.

4. Accessor Layer. This layer is composed of accessor meth-
ods, i.e., methods whose sole task is to get and set the values
of attributes.

5. Attribute Layer. The attribute layer contains all attributes of
the class. The attributes are connected to the other layers by
means of access relationships, i.e., the attributes are accessed
by methods.

2.2 Representing Methods and Attributes in a
Class Blueprint

Within the layers of each class we represent methods and attributes
using colored boxes of various size and shape.

Width Metric

METHOD
or

ATTRIBUTE

Height
Metric

Figure 2: A graphical representation of methods and attributes
using metrics.

2.2.1 Size and Shape of Methods and Attributes
We use the width and height of the boxes to reflect metric measure-
ments of the entities which are represented by the boxes, as we see
in Figure 2. This approach has been presented in [14] and [3]. For
the method boxes we use the metric lines of code (LOC = number
of non-blank lines in a method body) for the height and the num-
ber of invocations (NI = number of static call sites) for the width

[16, 9]. For the attribute boxes we use the metrics number of direct
accesses from within the class (NLA) for the width and number of
direct accesses from outside of the class (NGA) for the height [14].
Note that the total number of accesses on an attribute is the sum
of NGA and NLA. For further explanations on the metrics please
refer to [14].

2.2.2 The Use of Colors in a Class Blueprint
We make use of colors to display supplementary information in a
class blueprint. In Table 1 we present a list of the colors we use in
the figures of this paper.

Description Color
Attribute blue
Abstract method cyan
Extending method. A method with the same
name in the superclass which performs a super
invocation

orange

Overriding method. A method which completely
redefines the behavior of a method in the super-
class with the same name without invoking the
superclass method

brown

Delegating method. A method which delegates
the functionality it is supposed to provide, by for-
warding the method call to another object

yellow

Constant method. A method which returns a con-
stant value

grey

Initialization layer method green
Interface and Implementation layer method white
Accessor layer method red
Invocation of a method black line
Invocation of an accessor. Semantically it is the
same as a direct access

cyan line

Access of an attribute cyan line

Table 1: A color schema for class blueprints.

2.3 The Layout Algorithm of a Class Blueprint
The placement of the methods and attributes within the layers is
based on their context, e.g., if a method is an initialization method
it is placed within the initialization layer. To further enhance the
placement, we use a simple tree layout algorithm from left to right:
if method A invokes method B, B is placed to the right of A and
both are connected by an edge which represents the invocation re-
lationship. In the case of a method which accesses an attribute, the
edge represents an access relationship.

Initialization AccessorInterface Implementation Attributes

CLASS NAME

A

INVOCATION SEQUENCE

Figure 3: The basic filled structure of a class blueprint.

In Figure 3 we see a template blueprint. We see that there are 2
initialization methods and 3 interface methods. We also see that



some of its accessors (the ones in the ellipse) are not invoked and
therefore unused and that one of the attributes (A) is not accessed.

2.4 A First Visualization of a Class Blueprint
Using the ideas described in this section Figure 4 presents a blueprint
visualization of a real class. We can see that the class has 3 initial-
ize layer methods, two of which are invoked by the leftmost one.
We see that the class has a wide external interface composed of 12
methods. The class has 6 attributes and an empty accessor layer.
We also see, according to the color scheme of Table 1, that the
class does not contain overriding, extending, delegating or constant
methods.

Figure 4: An actual blueprint visualization of a class.

3. CLASS BLUEPRINT EXAMPLES
In this section we give a few examples of class blueprint visualiza-
tions taken from the case studies discussed in [15]. For many more
examples and an in-depth discussion please refer to [15].

Single Entry. We define a single entry class as one which has very
few or only one entry point to the interface layer. It then has a
large implementation layer with several levels of invocation rela-
tionships. Such classes are designed to deliver only one yet com-
plex functionality. Classes which implement a specific algorithm
belong to this type. In Figure 5 we see an actual single entry class.

Figure 5: The blueprint of a single entry class without accessors.

Data Storage. We define a data storage class as a class which
mainly contains attributes whose values can be read and written by
using accessor methods. Such a class does not implement any com-
plex behavior, but merely stores and retrieves data for other classes.
The implementation layer is often empty, as the class functionality
does not need complex mechanisms to be delivered. The attribute
layer often contains several attributes which are accessed directly
or through accessor methods. In Figure 6 we see an example of a
data storage class.

3.1 Class Blueprints and Inheritance
If we apply class blueprints in the context of inheritance we can
visualize how sub- and superclasses are tied to each other. This
perspective adds considerable meaning to a class blueprint, as the
functionality which can be provided by a class is in fact distributed
across the inheritance chain the class belongs to. We visualize ev-
ery class blueprint separately and put the subclasses below the su-
perclasses, similar to a inheritance tree layout, as we see in Fig-
ure 7.

Figure 6: The blueprint of a data storage class. We see that
there are many accessors to the many attributes. The internal
implementation layer is empty.

Figure 7: The visualization of class blueprints in the context of
inheritance.

Siamese Twins. Figure 8 shows three class blueprints. The blueprint
of the superclass shows a wide interface layer with many methods
which return constant values and two subclasses which look very
similar. We use the term siamese twins for such cases. Note that the
superclass has some abstract methods which are then overridden in
the subclasses.

Figure 8: The blueprints of classes from a case study show a
superclass which is a constant definer class with a wide interface
and two subclasses which override some methods and look very
similar: siamese twins.

Inheritance policies. In Figure 9 we see six class blueprints which
compose a small inheritance hierarchy of three levels. Within this
hierarchy we can see that the subclasses make heavy use of exten-
sion (indicated by the orange color of the methods). The only class
which has few extending methods, the one marked as A, has long
methods (shown by the size of the method rectangles). We deduce
from that that this class has been implemented rapidly and without



a deep knowledge of the inheritance policy used in this inheritance
hierarchy. We can also see, marked as B, a very small class which
does not define any attribute. In the case of the root class, we de-
fine it first of all as a large implementation class (4 sublayers in
the implementation layer) and also as an attribute definer, i.e., the
class defines many attributes which are inherited by the subclasses.
We also see that the attributes in that class are heavily accessed (di-
rectly, because the superclass does not have any accessor methods)
by the subclasses.

Figure 9: The blueprints of the classes of a small inheritance hi-
erarchy: The inheritance policy is based on method extension.
All subclasses comply, except the one marked as A.

4. CODECRAWLER AND MOOSE
CodeCrawler is the tool used in this paper to visualize the class
blueprints. CodeCrawler supports reverse engineering through the
combination of metrics and software visualization [14, 3, 5]. Its
power and flexibility, based on simplicity and scalability, has been
repeatedly proven in several large scale industrial case studies, some
of which we list in Table 2.

XXZ C++ 1.2 MLOC (>2300 classes)
XXY C++/Java 120 kLOC (>400 classes)
XXX Smalltalk 600 kLOC (>2100 classes)
XXW COBOL 40 kLOC

Table 2: A list of some of the industrial case studies Code-
Crawler was applied upon.

CodeCrawler is implemented on top of Moose. Moose is a lan-
guage independent reengineering environment written in Smalltalk.
It is based on the FAMIX metamodel [4], which provides for a lan-
guage independent representation of object-oriented sources and
contains the required information for the reengineering tasks per-
formed by our tools. It is language independent, because we need
to work with legacy systems written in different implementation

languages. It is extensible, since we cannot know in advance all in-
formation that is needed in future tools, and since for some reengi-
neering problems tools might need to work with language-specific
information, we allow for language plug-ins that extend the model
with language-specific features. Next to that, we allow tool plug-
ins to extend as well the model with tool-specific information.

Figure 10: A simplified view of the FAMIX metamodel.

A simplified view of the FAMIX metamodel comprises the main
object-oriented concepts - namely Class, Method, Attribute and In-
heritance - plus the necessary associations between them - namely
Invocation and Access (see Figure 10).

5. RELATED WORK
Software Visualization. Among the various approaches to sup-
port reverse engineering that have been proposed in the literature,
graphical representations of software have long been accepted as
comprehension aids.

Many tools make use of static information to visualize software like
Rigi [17], Hy+ [1], SeeSoft [6], ShrimpViews [22], TANGO [21] as
well as commercial tools like Imagix (see http://www.imagix.com)
to name but a few of the more prominent examples. However, most
publications and tools that address the problem of large-scale static
software visualization treat classes as the smallest unit in their vi-
sualizations. There are some tools, for instance the FIELD pro-
gramming environment [20] which have visualized the internals
of classes, but usually they limited themselves to showing method
names, attributes, etc. Some of them also make use of color codes:
the Classification Browser [2] uses colors to denote abstract meth-
ods, etc.

Substantial research has also been conducted on runtime informa-
tion visualization, like in Various tools and approaches make use of
dynamic (trace-based) information such as Program Explorer [13],
Jinsight and its ancestors [18, 19], Graphtrace [12]. Various ap-
proaches have been discussed like in [11] or [10] where interactions
in program executions are being visualized, to name but a few.

We provide a visualization of the internal structure of the classes
in terms of its implementation, static behaviour, as well as in the
context of their inheritance relationships with other classes. In this
sense our approach proposes a new dimension in the understanding
of systems.

Metrics. Metrics have long been studied as a way to assess the
quality and complexity of software [7], and recently this has been
applied to object-oriented software as well [16, 9]. Metrics profit
from their scalability and, in the case of simple ones, from their re-
liable definition. Metrics are often used to assess the internal com-
plexity of classes, for example by counting the number of methods
or attributes. However, metrics do not provide a combined view of



a class and its internal structure.

6. CONCLUSION
The main benefits of class blueprints are a considerable reduction
of complexity when it comes to the understanding a classes. Class
blueprints can quickly transmit the “taste” of a class to the viewer.
Especially in the context of inheritance class our approached has
proved to be useful, as the complexity the use of inheritance rela-
tionships can be visually perceived by the viewer. Furthermore we
were able [15] to establish a categorization of classes based on the
blueprints.

Limits of the approach. The visualization algorithm presented
here, although provably useful, is ad hoc and shows little connec-
tion with research from the field of cognitive science. However,
a considerable number of choices taken during the development
of the class blueprints, especially regarding the use of colors and
shapes, has found a confirmation in [23]. Furthermore the blueprint
visualization is not able to reveal the actual functionality a class
provides, and is therefore complementary to other approaches used
to understand classes.

6.1 Future Work
In the future we plan to enhance the visualization part, as the use-
fulness of the blueprints heavily depends on it. We plan to make
some empirical analysis regarding the efficiency (are there types of
classes where the blueprint is meaning less?) and usability (how
great is the help blueprints can provide in the process of under-
standing classes?) of class blueprints.

7. REFERENCES
[1] M. Consens and A. Mendelzon. Hy+: A hygraph-based

query and visualisation system. In Proceeding of the 1993
ACM SIGMOD International Conference on Management
Data, SIGMOD Record Volume 22, No. 2, pages 511–516,
1993.

[2] K. DeHondt. A Novel Approach to Architectural Recovery in
Evolving Object-Oriented Systems. PhD thesis, Vrije
Universiteit Brussel, 1998.

[3] S. Demeyer, S. Ducasse, and M. Lanza. A hybrid reverse
engineering platform combining metrics and program
visualization. In F. Balmas, M. Blaha, and S. Rugaber,
editors, Proceedings WCRE’99 (6th Working Conference on
Reverse Engineering). IEEE, Oct. 1999.

[4] S. Demeyer, S. Tichelaar, and S. Ducasse. FAMIX 2.1 - the
FAMOOS information exchange model. Technical report,
University of Berne, 2001. to appear.

[5] S. Ducasse and M. Lanza. Towards a methodology for the
understanding of object-oriented systems. Technique et
science informatiques, 20(4):539–566, 2001.

[6] S. G. Eick, J. L. Steffen, and E. E. S. Jr. SeeSoft—A Tool for
Visualizing Line Oriented Software Statistics. IEEE
Transactions on Software Engineering, 18(11):957–968,
November 1992.

[7] N. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous
and Practical Approach. International Thomson Computer
Press, London, UK, second edition, 1997.

[8] D. Flanagan. Java In a Nutshell: 3rd Edition. O’Reilly, 3rd
edition, 1999.

[9] B. Henderson-Sellers. Object-Oriented Metrics: Measures of
Complexity. Prentice-Hall, 1996.

[10] D. J. Jerding, J. T. Stansko, and T. Ball. Visualizing
interactions in program executions. In Proceedings of
ICSE’97, pages 360–370, 1997.

[11] R. Kazman and M. Burth. Assessing architectural
complexity. Technical report, University of Waterloo, 1995.

[12] M. F. Kleyn and P. C. Gingrich. Graphtrace – understanding
object-oriented systems using concurrently animated views.
In Proceedings OOPSLA ’88, ACM SIGPLAN Notices, pages
191–205, Nov. 1988. Published as Proceedings OOPSLA
’88, ACM SIGPLAN Notices, volume 23, number 11.

[13] D. B. Lange and Y. Nakamura. Interactive visualization of
design patterns can help in framework understanding. In
Proceedings of OOPSLA’95, pages 342–357. ACM Press,
1995.

[14] M. Lanza. Combining metrics and graphs for object oriented
reverse engineering. Diploma thesis, University of Bern, Oct.
1999.

[15] M. Lanza and S. Ducasse. A categorization of classes based
on the visualization of their internal structure: the class
blueprint. In Proceedings of OOPSLA 2001, page to be
published, 2001.

[16] M. Lorenz and J. Kidd. Object-Oriented Software Metrics: A
Practical Guide. Prentice-Hall, 1994.

[17] H. Müller. Rigi - A Model for Software System Construction,
Integration, and Evaluation based on Module Interface
Specifications. PhD thesis, Rice University, 1986.

[18] W. D. Pauw, R. Helm, D. Kimelman, and J. Vlissides.
Visualizing the behavior of object-oriented systems. In
Proceedings OOPSLA ’93, ACM SIGPLAN Notices, pages
326–337, Oct. 1993.

[19] W. D. Pauw and G. Sevitsky. Visualizing reference patterns
for solving memory leaks in Java. In R. Guerraoui, editor,
Proceedings ECOOP’99, LCNS 1628, pages 116–134,
Lisbon, Portugal, June 1999. Springer-Verlag.

[20] S. P. Reiss. Interacting with the field environment. Software -
Practice and Experience, 20:89–115, 1990.

[21] J. T. Stasko. Tango: A framework and system for algorithm
animation. IEEE Computer, 23(9):27–39, September 1990.

[22] M.-A. D. Storey and H. A. Müller. Manipulating and
documenting software structures using shrimp views. In
Proceedings of the 1995 International Conference on
Software Maintenance, 1995.

[23] C. Ware. Information Visualization. Morgan Kaufmann,
2000.


