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ABSTRACT
The reengineering and reverse engineering of software systems is
gaining importance in software industry, because the accelerated
turnover in software companies creates legacy systems in a shorter
period of time. Especially understanding classes is a key activity in
object-oriented programming, since classes represent the primary
abstractions from which applications are built. The main problem
of this task is to quickly grasp the purpose of a class and its inner
structure. To help the reverse engineers in their first contact with
a foreign system, we propose a categorization of classes based on
the visualization of their internal structure. The contributions of
this paper are a novel categorization of classes and a visualization
of the classes which we call theclass blueprint. We have validated
the categorization on several case studies, two of which we present
here.
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1. INTRODUCTION
In object-oriented programming, understanding a certain class can
be the key to a wider understanding of the system the class is con-
tained in. Especially in the industrial context, where the turnover
of developers is accelerating, reverse engineering of code is becom-
ing more and more important. However, the basic approach to class
understanding has basically not changed during the past decades(!)
independently from the implementation language and/or develop-
ment environment and still is mainly based on source code reading.
One can argue that reading source code one has written poses no
problem. However, in the current state of software industry one-

man projects have become rare, and even in those cases one has
to reuse, i.e., understand foreign code in the form of frameworks,
APIs and class libraries. As Chikofksy and Cross [1] put it:Usu-
ally, the system’s maintainers were not its designers, so they must
expend many resources to examine and learn about the system.

The benefit of high level languages is that source code can be read
like a text written in English. Thus, the names the developers use
for the classes, methods and attributes can already convey a sub-
stantial understanding without requiring an in-depth analysis of the
source code. Apart from the obvious difficulties which stem from
the use of acronyms and domain specific terminology, it is the use
of inheritance in object-oriented software which can make code
hard-to-read: Inheritance represents a form ofincremental defini-
tion of classes [28]. To fully understand a class one must therefore
understand its super- and subclasses as well. Another problem is
represented by the dynamic ofself calls, whose meaning can com-
pletely change if a superclass is changed or a new superclass is
inserted in the inheritance hierarchy.

In the first contact with a foreign software system there is a need
for a quick and intuitive understanding of the classes. Note that
to understanda class you do not need to read every line of its code
and you do not need to understand every piece of functionality con-
tained therein.

In this paper we propose a simple approach to ease the understand-
ing of classes by visualizing the static structure of a class. The
goal of our visualization is to gain a certain quality of comprehen-
sion, a “taste” of the class: an intuitive and quick understanding
of its internal structure and the way it interacts with its super- and
subclasses. Our approach does not strive to understand the exact
functionality of a class, as this still requires the reading of the code.
We do not take into account dynamic or run-time aspects, as in the
context of reverse engineering they become relevant only at a later
point in time. We focus on the static structure of classes and the
way they make use of inheritance and leave out other collaboration
aspects. We have coined the termclass blueprintfor the visualiza-
tion presented in this paper. Based on the obtained insights we es-
tablish a vocabulary of class blueprints to ease understanding and to
have a common language which reverse engineers can use to com-
municate with each other. We would like to stress that the approach
presented here does not depend on a particular language, as our un-
derlying metamodel is language-independent [7, 5]. However we
present results obtained on Smalltalk case studies and make also
use of some of the features of this language. The contributions of
this paper are a novel categorization of classes and a visualization
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of the classes which we call theclass blueprint.

This paper is structured as follows: In the next section we present
the concept of the class blueprint, based on which we build our cat-
egorization presented in the section afterwards. We then present a
validation of the categorization applied on two case studies. We fi-
nally present our reengineering environment before concluding the
paper with a discussion on the obtained results and give an outlook
on future work on this topic.

2. THE BLUEPRINT OF A CLASS
In this section we present theclass blueprint, a way to visualize
the internal structure of classes. First we present the layered struc-
ture of the blueprint. We then discuss the way we display meth-
ods and attributes, including the color schema we use. We shortly
discuss the layout algorithm we use, before finally displaying and
discussing a first class blueprint visualization.

2.1 The Layers of a Class Blueprint
In Figure 1 we present a template class blueprint. From left to right
we have the following layers:initialization, interface, implemen-
tation, accessor and attribute. The first three layers and the meth-
ods contained therein are placed from left to right according to the
method invocation sequence, i.e., if methoda invokes methodb, b
is placed to the right ofa.

Initialization AccessorInterface Implementation Attributes

CLASS NAME

INVOCATION SEQUENCE 

Figure 1: The decomposition of a class into layers.

Every concrete class can be mapped on this “template” class blue-
print which has the layers described below. For each layer we
list some conditions which must be fulfilled to be assigned to a
layer. Note that the layers are not mutually exclusive except the
attribute layer. Note also that the conditions listed below follow
a lightweight approach and are not to be considered as complete.
However, we’ve seen that they are sufficient for our purposes.

1. Creation/Initialization Layer . The methods contained in
this first layer are responsible for creating an object and ini-
tializing the values of the attributes of the object. We con-
sider a method as belonging to the initialization layer, if one
of the following conditions holds:

• The method name contains the substring “initialize” or
“init”.

• The method is a constructor.

• In the case of Smalltalk, where methods can be clus-
tered in so-called method protocols, if the methods are
placed within protocols whose name contains the sub-
string “initialize”.

In our current approach we do not take into account static
initializers [10] for Java, as they are not covered by our meta-
model [5].

2. (External) Interface Layer . The methods of this layer can
be considered as theentry pointsto the functionality pro-
vided by the class. A method belongs to this layer if one the
following holds:

• It is invoked by methods of the initialization layer.

• In languages like Java and C++ it is declared aspublic
or protected.

• It is not invoked by other methods within the same class,
i.e., it is a method invoked fromoutsideof the class, ei-
ther by methods of collaborator classes or subclasses.
Should the method be invoked both inside and outside
the class, it is placed within the implementation layer.

We do not count accessor methods to this layer, but to a layer
of its own, as we show later on.

3. (Internal) Implementation Layer . The methods within this
layer are the ones doing the main work of the class, by assur-
ing that the class can provide the functionality promised by
the interface layer. A method belongs to this layer if one of
the following holds:

• In languages like Java and C++ if is declared asprivate.

• The method is invoked by at least one method within
the same class.

4. Accessor Layer. This layer is composed of accessor meth-
ods, i.e., methods whosesoletask is to get and set the values
of attributes.

5. Attribute Layer . The attribute layer contains all attributes of
the class. The attributes are connected to the other layers by
means ofaccess relationships, i.e., the attributes are accessed
by methods.

2.2 Representing Methods and Attributes in a
Class Blueprint

Within the layers of each class we represent methods and attributes
using colored boxes of various size and shape.

Width Metric

METHOD
or

ATTRIBUTE

Height
Metric

Figure 2: A graphical representation of methods and attributes
using metrics.

2.2.1 Size and Shape of Methods and Attributes
We use the width and height of the boxes to reflect metric measure-
ments of the entities which are represented by the boxes, as we see
in Figure 2. This approach has been presented in [18] and [4]. For
the method boxes we use the metriclines of code (LOC = number
of non-blank lines in a method body)for the height and thenumber
of invocations (NI = number of static call sites)for the width [19,
13]. For the attribute boxes we use the metricsnumber of direct
accesses from within the class (NLA)for the width andnumber of
direct accesses from outside of the class (NGA)for the height [18].
Note that the total number of accesses on an attribute is the sum
of NGA and NLA. For further explanations on the metrics please
refer to [18].
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2.2.2 The Use of Colors in a Class Blueprint
We make use of colors to display supplementary information in a
class blueprint. In Table 1 we present a list of the colors we use
in the figures of this paper.Note that the proceedings version of
this paper could not be printed in color. Please obtain an online
version of this paper in order to see how colors are used in a class
blueprint.

Description Color
Attribute blue
Abstract method cyan
Extending method. A method with the same
name in the superclass which performs asuper
invocation

orange

Overriding method. A method which completely
redefines the behavior of a method in the super-
class with the same namewithout invoking the
superclass method

brown

Delegating method. A method which delegates
the functionality it is supposed to provide, by for-
warding the method call to another object

yellow

Constant method. A method which returns acon-
stantvalue

grey

Initialization layer method green
Interface and Implementation layer method white
Accessor layer method red
Invocationof a method black line
Invocationof an accessor. Semantically it is the
same as a direct access

cyan line

Accessof an attribute cyan line

Table 1: A color schema for class blueprints.

2.3 The Layout Algorithm of a Class Blueprint
The placement of the methods and attributes within the layers is
based on their context, e.g., if a method is an initialization method
it is placed within the initialization layer. To further enhance the
placement, we use a simple tree layout algorithm from left to right:
if method A invokes method B, B is placed to the right of A and
both are connected by an edge which represents the invocation re-
lationship. In the case of a method which accesses an attribute, the
edge represents an access relationship.

Initialization AccessorInterface Implementation Attributes

CLASS NAME

A

INVOCATION SEQUENCE

Figure 3: The basic filled structure of a class blueprint.

In Figure 3 we see a template blueprint. We see that there are 2
initialization methods and 3 interface methods. We also see that
some of its accessors (the ones in the ellipse) are not invoked and
therefore unused and that one of the attributes (A) is not accessed.

2.4 A First Visualization of a Class Blueprint
Using the ideas described in this section Figure 4 presents a blueprint
visualization of a real class. We can see that the class has 3 initial-
ize layer methods, two of which are invoked by the leftmost one.
We see that the class has a wide external interface composed of 12
methods. The class has 6 attributes and an empty accessor layer.
We also see, according to the color scheme of Table 1, that the
class does not contain overriding, extending, delegating or constant
methods.

Figure 4: An actual blueprint visualization of a class.

3. A CATEGORIZATION OF CLASSES
BASED ON CLASS BLUEPRINTS

In this section we present a categorization of classes based on their
blueprints, i.e., based on the way they display themselves using
the approach described in the previous section. The categoriza-
tion stems from the experiences we obtained while applying our
approach on several case studies. We subdivide this section in two
parts: In the first part we categorize the classes based on their in-
ternal structure, while in the second part we extend the context to
the inheritance hierarchy where the class resides. We use the term
pureclass blueprint when it falls unequivocally into one of the cat-
egories proposed in this section. The only kind of collaboration
between classes we discuss in this paper is inheritance.

Due to the limited size of this paper, we also show figures which
contain more than one kind of blueprint. Some of the blueprints are
thus discussed after the figure.

3.1 The Single Class Perspective
In this part we introduce a categorization of classes based on their
blueprint without considering the surrounding sub- and superclasses.
Based on the class blueprint we make statements regarding thein-
ternal implementationaspects of the class. Note that a class can
belong to more than one of the categories presented here.

Single Entry. We define asingle entryclass as one which has very
few or only one entry point to the interface layer. It then has a
large implementation layer with several levels of invocation rela-
tionships. Such classes are designed to deliver only one yet com-
plex functionality. Classes which implement a specific algorithm
belong to this type. In Figure 5 we see an actual single entry class.

Figure 5: The blueprint of the class MSEXMIDTDProducer: a
single entryclass without accessors.

Data Storage. We define adata storageclass as a class which
mainly contains attributes whose values can be read and written by
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using accessor methods. Such a class does not implement any com-
plex behavior, but merely stores and retrieves data for other classes.
The implementation layer is often empty, as the class functionality
does not need complex mechanisms to be delivered. The attribute
layer often contains several attributes which are accessed directly
or through accessor methods. In Figure 6 we see an example of a
data storage class.

Figure 6: The blueprint of the class MSEModelAttribut-
eDescriptor: a data storageclass. We see that there are many
accessors to the many attributes. The internal implementation
layer is empty.

Wide Interface. A wide interfaceis one that offers many entry
points to its functionality in respect to its overall implementation
layer. A good example for such a class is a GUI class with many
buttons on the user interface which offers a method for every button
the user can press. Note that a data storage class also belongs to this
type of class. In Figure 7 and Figure 8 we see examples of wide
interface class blueprints.

Figure 7: The blueprint of the class MSELoaderEnvySubcan-
vas: awide interfaceclass.

Large Implementation. A large implementationclass has a large
implementation layer with many methods and many invocations
between those methods. Asingle entryclass can also belong to
this type, although its invocation tree is deep and narrow. Large
classes often have a large implementation layer. In Figure 8 we see
a large implementation class: the class MSEImporterFacade from
the Moose case study contains several layers of invocations.

Delegator. A delegatoris a class which defines delegating meth-
ods. If the class definesonly delegating methods, we name it a
pure delegator. The class delegates calls to its functionality to the
classes which implement the needed functionality. Such a class of-
ten has only methods within the interface layer which are marked
as delegator methods. A delegator can represent either the design
patternFacadeor Wrapper [12]. See Figure 8 for an example of
a delegator.

does

Constant Definer. A constant definerclass is one which defines

Figure 8: The blueprint of the class MSEImporterFacade: a
large implementationclass, as well as adelegatorand a wide
interface.

default methods which return constant values. In Figure 12 we see
an example of such a constant definer: the constant methods have a
grey color.

Small Class. We define asmall classas a class which contains few
methods and attributes (if at all). To understand the class it is often
enough to know its name, especially if the class is astandalone
class, i.e., does not belong to an inheritance hierarchy.

3.2 The Inheritance Perspective
We expand the categorization of class blueprints by considering
the way the classes make use of the inheritance relationships with
their ancestors and descendants. This perspective adds consider-
able meaning to the class, as the functionality which can be pro-
vided by the class is in fact distributed across the inheritance chain
the class belongs to. In the case of inheritance we visualize every
class blueprint separately and put the subclasses below the super-
classes, similar to a inheritance tree layout, as we see in Figure 9.

Taking into account a whole inheritance hierarchy using our ap-
proach leads to a whole range of new class categories. In this sec-
tion we make the following distinction:

1. Definersare classes which reside at the top of a hierarchy.
They may define some kind of interface behavior for their
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Figure 9: The visualization of class blueprints in the context of
inheritance.

subclasses, apart from providing functionality of their own.

2. Specializersare leaf classes in inheritance hierarchies and
implement and refine behavior at the bottom of the hierar-
chies.

3. Inbetweenersare classes which are none of the above. How-
ever, often they can be put into one of the two categories
nonetheless. For example, if a class in the higher part of an
inheritance hierarchy is not a definer class, it can nonetheless
be classified as such if it shows the properties of a definer
class.

3.2.1 Definer Classes
A definerclass is one which resides in the higher levels of an in-
heritance hierarchy and whose main purpose is to define behavior
and state which is common to its subclasses. To do so, it defines
attributes (which are inherited to the subclasses) and abstract, de-
fault and hook methods which are overridden or extended by the
subclasses. Below we list types of definer classes based on the way
they are defined and behave. The types listed here are not mutually
exclusive, as a class can be of more than one of the following types.

Pluggable. A pluggableclass is one which establishes an inheri-
tance policy by defining abstract methods which must be overrid-
den by its subclasses to make them compliant to the policy. This
tightly ties the subclasses to the pluggable class. Apure pluggable
class is one which definesonly abstract methods. Figure 10 is an
example of a pluggable class.

Figure 10: A class hierarchy of the Duploc case study consisting
of onepluggablesuperclass and threepure talking overriders.

Attribute Definer . An attribute definerclass is one whose purpose

is to define attributes (instance variables) which are then inherited,
used and accessed by its subclasses. In Figure 11 we see a super-
class which defines heavily accessed attributes, as the size of the
attributes shows.

Figure 11: The blueprints of classes from the Moose case study
show anattribute definersuperclass and twotalking overrider-
extendersubclasses.

Figure 12: The blueprints of classes from the Moose case study
show aconstant definersuperclass and twotalking overriders,
which are alsosiamese twins.

3.2.2 Specializer Classes
Specializer classes are classes which specialize and extend the be-
havior of their superclasses. In this section we introduce the cat-
egories and discuss them later in detail. We present 3 ways for
classes to specialize the behavior of superclasses and 2 ways for
them to “communicate” with each other. The combination of these
will result in 6 possible categories.

In the context of inheritance, classes have the following possibili-
ties to extend the behavior of their superclasses:

1. Extending. The subclass contains at least one method which
contains asupercall. A subclass which extends its super-
class is tightly bound to it because it makes direct use of the
functionality defined there.
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2. Overriding . The subclass contains at least one method which
overrides the definition of a method with the same signature
in the superclass, i.e., the functionality of the method defined
in the superclass is completely redefined. There is nosuper
call to the overridden superclass method.

3. Adding. A subclass can also add its own functionality to
the one defined higher up the hierarchy by adding methods
which are not present in the superclass.

We distinguish two different ways of “communication” between
classes which inherit from each other:

1. Talking . The subclass communicates (talks) with its super-
classes by invoking the methods and by accessing the at-
tributes of the superclasses.

invocations

2. Mute. The subclass is “mute” if it does neither invoke super-
class methods nor access superclass attributes.

Based on this inheritance classification we summarize the possible
combinations in Table 2. Note that a mute extender is not possible,
as the definition of extension includes a call to the superclass.

Mute Talking
Extending - Talking Ex-

tender
Overriding Mute Over-

rider
Talking
Overrider

Adding Mute Adder Talking
Adder

Table 2: A classification schema based on inheritance.

The following is a list of the combinations listed in the Table 2,
their properties and class blueprints.

Talking Extender. A talking extenderclass communicates with
its superclasses by invoking their methods and accessing their at-
tributes. It also contains extending methods, i.e., methods which
do asupercall on a method with the same name. Note that such
classes may be fragile, as a change in a superclass (for example re-
moval of a method) has a direct effect on the depending subclasses
[25]. The case of apure talking extender, like we can see in Fig-
ure 16 marked as B, is rare.

Mute Overrider . A mute overriderclass is one which contains
at least one overriding method and is thus bound to its superclass.
It does however not invoke methods contained in it or access the
attributes of the superclass.

Talking Overrider . A talking overrideroverrides methods con-
tained in the superclass and also communicates with it using method
invocations and attribute accesses.

Mute Adder . A mute adderdoes not communicate with its su-
perclass and does not override any methods. It thus contains only
added functionality. In some occasions this may be a result of
wrong subclassing, where the subclass does not have anything to

do with its superclass. The subclass can then be moved somewhere
else without breaking its functionality.

Talking Adder . A talking adderclass is one which adds function-
ality to its superclass and invokes methods and accesses attributes
of the superclass. In the case of apure talking adderone must
check why the class does not extend or override methods.

Note that classes often belong to more than one category at the
same time. It is rare to have pure blueprints like a pure adder or a
pure extender. A frequent case is for example a talking extender-
overrider-adder class like the two subclasses we see in Figure 11.

3.2.3 Special Class Blueprints
Moreover we have detected some special cases of class blueprints,
which we list here:

Micro Specializer. A micro specializeris a small class which de-
fines overriding and extending methods. Such classes are mainly
used to specialize some kind of behavior.

Siamese Twin. Sometimes we encountersiamese twins, sibling
classes which have an impressive similarity with each other in terms
of methods, attributes, method invocations and attribute accesses.
This can be a case where the programmer forgot to refactor the
common functionality into the superclass of the siamese twins. See
Figure 12 for an example.

Pure Accessor. A class which does not invoke superclass meth-
ods, but directly accesses the attributes defined in the superclasses.
Three examples of pure accessing overriders can be seen in Fig-
ure 10.

Unfinished Realizer. An unfinished realizerclass is one which
does not fulfill the inheritance contract with its superclass, i.e., it
does not override all abstract methods defined by the superclass.
They are easy to detect if the number of overridden methods in
the subclass is inferior to the number of abstract methods in the
superclass.

3.3 Interpreting Suspicious Class Blueprints
Sometimes, at first sight, class blueprints may be hard to classify or
contain suspicious parts. In this section we present some frequent
cases:

Splittable Classes.Sometimes you may have one class doing work
that should be done by two. In the blueprint this comes out as
two (or more) separate clusters of methods and attributes which
are not connected in any way. Martin Fowler suggests in such
a case an “Extract Class” refactoring [11]. Note that our current
blueprint layout algorithm does not clearly show splittable classes,
some manual post processing is needed.

Inconsistent Accessor Use. As shown in Figure 13 there are two
cases of inconsistent use of accessors. The first is when a method
accesses an attribute both directly and via the accessor. Note that
this situation can become haphazard in case the accessor makes
use of lazy initialization, as the accessed attribute may be in an
undefined state. The second is when the accessor is not invoked at
all. In this case the accessor method adds unneeded complexity to
the class. A justification for this is if the class is part of a framework
or the class is intended for future reuse through subclassing.
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Method

Method

AttributeAccessor

Attribute
Accessor
not invoked

Figure 13: Two cases of inconsistent accessor use.

Classes without a Blueprint.One of the questions which remains
yet to be answered is what happens when the visualized class does
not match one of our blueprints. This happens quite often for larger
classes (say more than 50 methods). Although such classes need
not necessarily to be a sign of bad design, we think that the classes
are suspicious nonetheless and should be further examined.

Misuse of Inheritance Hierarchy Policy. Using our approach on
inheritance hierarchies we have often seen that the whole hierarchy
was built on one main inheritance concept, for example extension.
In such a case we have many extender subclasses. However, some-
times we happen across a class in such a hierarchy which is not
compliant with the policy established for that hierarchy. We con-
clude from this that the class in question is either unfinished or has
been added later by a developer who was unfamiliar with the inher-
itance policy local to the hierarchy. Seen at a lower level, it means
that if a definer class defines two abstract methods we expect to see
two overriding methods in its subclasses. Should this not be the
case, it means it is a misuse of inheritance or the subclass is not
finished yet.

Pure Mute Overriders. In the case of apure mute overriderwe
have a subclass B which does not invoke or access the superclass
A and does only method overrides. In such a case the subclass B
may not really need to be a subclass but could be moved to be a
sibling B’ of its superclass A’ and the overridden methods and the
behavior defined in A could be pushed higher up into a new super-
class C NEW and made abstract. The subclass would thus become
a sibling. The detection of such cases can provoke major changes
in the inheritance hierarchy by enhancing the flexibility and design
of the system. This situation, shown in Figure 14, is similar to the
“Extract Superclass” refactoring presented and discussed by Martin
Fowler [11].

BEFORE

A

B A’ B’

C NEW

AFTER

Figure 14: The “Extract Superclass” refactoring.

4. VALIDATION OF THE APPROACH
To validate our approach we used the following procedure: one
class of the case studies after the other has been visualized using
our approach. After the blueprint visualization we put the class
into one of the categories mentioned in the previous section.

We selected the case studies based on our knowledge about them.
In the first case we choose an application developed by ourselves
to be able to a verification of the obtained categorization. In the
second case we chose a foreign application to evaluate the approach
in an unbiased fashion.

To keep within the limits of this paper it is not possible for us to
discuss every blueprint. We prefer to discuss some examples to
show the benefits of the blueprints and to summarize and discuss
the final results.

4.1 Moose, a Reengineering Environment
Moose is a reengineering framework written in Smalltalk since
1996 and is still being developed. It contains two deep hierarchies,
one for the language independent metamodel, the other for the tool
support. It also contains other classes which are mainly responsible
for the graphical user interface. In Figure 15 we see an overview of
Moose using CodeCrawler..

Figure 15: An inheritance tree overview of the Moose case
study. In this case the boxes represent classes. We use num-
ber of attributes for the width, and the number of methods for
the height of the boxes. The color represents the lines of code.

We have summarized the classes of Moose, Version 1.49, in Ta-
ble 3.

Root Classes 4
Standalone Classes 27
Leaf Classes 42
Inbetweener Classes 22

Total Number of Classes 95

Table 3: The summary of the classes of Moose 1.49.

We have first treated the standalone classes and given two exam-
ples, shown in the previous section, to exemplify the insights we
get from the blueprint visualization. In Figure 5 we have already
seen that the class is asingle entryclass: the methods invoke each
other in a linear fashion from left to right. There is one attribute
on the right side which is accessed by one method. In Figure 7 we
have seen an example of awide interfaceclass: the interface layer
of this class is wide compared to the rest of the class.

We have then focused on the small inheritance tree of 6 classes on
the right side of Figure 15 marked asA. We see the blueprint of all
those classes in Figure 16. Within this hierarchy we can see that
the subclasses make heavy use of extension. The only class which
has few extending methods, the one marked asA, has long methods
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Figure 16: The blueprints of the classes of the hierarchy of
MSEAbstractParseTreeEnumerator: The inheritance policy is
based on method extension. All subclasses comply, except the
one marked as A. The class marked as B is apure talking exten-
der.

(shown by the size of the method rectangles). We deduce from that
that this class has been implemented rapidly and without a deep
knowledge of the inheritance policy used in this inheritance hierar-
chy. We can also see, marked asB, a very smalltalking extender. In
the case of the root class, we define it first of all alarge implemen-
tation class (4 layers) and also as anattribute definer. We see that
the attributes in that class are heavily accessed by the subclasses.

The next example, shown in Figure 12, is composed of a small
subtree composed of three classes. The superclass, which is the
root of a much larger inheritance hierarchy, is aconstant definer
class with awide interface. Its subclasses are both nearly identical
talking overriders, which makes themsiamese twins.

After classifying all classes of Moose based on their blueprints, we
have summarized our findings in Table 4.

Conclusion.The conclusion which can be drawn on Moose is that
it shows many characteristics of a mature application: delegators
which act as facades, a tightly bound hierarchy which makes heavy
use of extending and overridding methods. Although we are among
the developers of Moose, we had some surprises. For example we
detected 5 mute adders, 3 of which were actual cases of wrong
subclassing. Many other insights have triggered refactorings, espe-
cially the inconsistent use of accessors. We detected a low number
of false positives, i.e., there were only 2 classes whose blueprint
indicated the wrong category. However, there were also around 20
average-sized classes without a clear blueprint, which we would
categorize as being “normal”. We see this as a limit of our ap-
proach, especially in the context of reverse engineering legacy sys-
tems which have a tendency to have many classes like this.

Single Entry 9
Data Storage 3
Wide Interface 22
Large Implementation 1
Delegator 7
Small Class 33

Pluggable 6
Attribute Definer 6
Constant Definer 2

Talking Extender 1
Mute Overrider 3
Talking Overrider 2
Mute Adder 5
Talking Adder 2

Talking Adder-Overrider-Extender 34
Siamese Twin 6
Pure Blueprint 9

Table 4: The final summary of Moose based on its class
blueprints.

4.2 Duploc, a Duplication Detection Tool
Duploc is an application written in Smalltalk by two developers.
Duploc has been under development for three years now and has
become a complex and mature application whose goal is to support
the detection of duplicated code in large industrial applications.
The version of Duploc we examined, consisted of 159 classes, many
of which were either standalone or resided within small inheritance
hierarchies. We have shown some blueprints of Duploc classes in
Figure 12. We want to show the class in Figure 17 to give an im-
pression of the information a class blueprint conveys to the user:
The class is obviously a wide interface and a delegator class. It
also defines many constants. The peculiarity about this class is the
fact that some parts of it behave like a single entry class.

Single Entry 10
Data Storage 7
Wide Interface 16
Large Implementation 7
Delegator 6
Small Class 59

Pluggable 10
Attribute Definer 2
Constant Definer 1

Talking Extender 3
Mute Overrider 1
Talking Overrider 4
Mute Adder 1
Talking Adder 2

Talking Adder-Overrider-Extender 39
Siamese Twin 7
Pure Blueprint 10

Table 5: The final summary of Duploc based on its class
blueprints.

Conclusion. We have summarized the findings in Table 5. The
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Figure 17: A wide interface class of Duploc, which is also a del-
egator and which shows some characteristics of a single entry.
It even is also a constant definer.

conclusion which we have drawn of Duploc, after looking at all its
class blueprints, was that it contained innumerable small classes,
and that the code contained many pattern-like structures like fa-
cades, wrappers, etc. Here again, 21 classes could not be classified
using the blueprints, due to their considerable size and complexity.
We had many findings concerning inconsistent use of accessors,
unfinished classes, and sometimes overly large methods.

5. CODECRAWLER AND MOOSE
CodeCrawler is the tool used in this paper to visualize the class
blueprints. CodeCrawler supports reverse engineering through the
combination of metrics and software visualization [18, 4, 6]. Its
power and flexibility, based on simplicity and scalability, has been
repeatedly proven in several large scale industrial case studies, some
of which we list in Table 6.

XXZ C++ 1.2 MLOC (>2300 classes)
XXY C++/Java 120 kLOC (>400 classes)
XXX Smalltalk 600 kLOC (>2100 classes)
XXW COBOL 40 kLOC

Table 6: A list of some of the industrial case studies Code-
Crawler was applied upon.

CodeCrawler is implemented on top of Moose. Moose is a lan-
guage independent reengineering environment written in Smalltalk.
It is based on the FAMIX metamodel [5], which provides for a lan-
guage independent representation of object-oriented sources and
contains the required information for the reengineering tasks per-
formed by our tools. It islanguage independent, because we need
to work with legacy systems written in different implementation
languages. It isextensible, since we cannot know in advance all in-
formation that is needed in future tools, and since for some reengi-
neering problems tools might need to work with language-specific
information, we allow for language plug-ins that extend the model
with language-specific features. Next to that, we allow tool plug-
ins to extend as well the model with tool-specific information.

Figure 18: A simplified view of the FAMIX metamodel.

A simplified view of the FAMIX metamodel comprises the main
object-oriented concepts - namely Class, Method, Attribute and In-
heritance - plus the necessary associations between them - namely
Invocation and Access (see Figure 18).

6. RELATED WORK
Software Visualization. Among the various approaches to sup-
port reverse engineering that have been proposed in the literature,
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graphical representations of software have long been accepted as
comprehension aids.

Many tools make use of static information to visualize software like
Rigi [20], Hy+ [2], SeeSoft [8], ShrimpViews [26], TANGO [24] as
well as commercial tools like Imagix (see http://www.imagix.com)
to name but a few of the more prominent examples. However, most
publications and tools that address the problem of large-scale static
software visualization treat classes as the smallest unit in their vi-
sualizations. There are some tools, for instance the FIELD pro-
gramming environment [23] which have visualized the internals
of classes, but usually they limited themselves to showing method
names, attributes, etc. Some of them also make use of color codes:
the Classification Browser [3] uses colors to denote abstract meth-
ods, etc.

Substantial research has also been conducted on runtime informa-
tion visualization, like in Various tools and approaches make use of
dynamic (trace-based) information such as Program Explorer [17],
Jinsight and its ancestors [21, 22], Graphtrace [16]. Various ap-
proaches have been discussed like in [15] or [14] where interactions
in program executions are being visualized, to name but a few.

We provide a visualization of the internal structure of the classes
in terms of its implementation, static behaviour, as well as in the
context of their inheritance relationships with other classes. In this
sense our approach proposes a new dimension in the understanding
of systems.

Metrics. Metrics have long been studied as a way to assess the
quality and complexity of software [9], and recently this has been
applied to object-oriented software as well [19, 13]. Metrics profit
from their scalability and, in the case of simple ones, from their re-
liable definition. Metrics are often used to assess the internal com-
plexity of classes, for example by counting the number of methods
or attributes. However, metrics do not provide a combined view of
a class and its internal structure.

7. CONCLUSION
In this section we first discuss the lessons learned from the appli-
cation of our categorization on the case studies. We then list the
benefits and the limits of our approach and finally give an outlook
on the future work.

7.1 Lessons Learned from the Case Studies
The case studies have shown that our approach is indeed useful.
After a few visualizations of class blueprints, we could classify
the blueprints in a few seconds. We obtained a few insights, es-
pecially on our own system: we found several places that the class
blueprints indicated possible present and future problems. We have
also seen that in the case of the specializer classes, the number of
pure blueprints is very small. The most frequent case are subclasses
which at the same time override, extend and add functionality to
their superclasses.

In the case of the foreign case study our approach was useful to
make assumptions about the classes in terms of purpose, coding
style and coding conventions. Furthermore the number of false
positives, i.e., the classes which we wrongly classified, was small.
However, this last statement must be seen in the light of the fact
that our own system was the only case study where we could deter-
mine the false positives, as this requires us to know what the system
actually does.

7.2 Benefits of the Approach
The main benefits of the approach presented here are the following:

Reduction of complexity: the “taste” of a class. Using a sim-
ple visualization namedclass blueprintwe can make assumptions
about a class without having to read the whole source code. This
“taste” of the class, which conveys the purpose of a class, can be
used in two contexts:

1. Single Class Perspective. Based on the blueprint we can
make many assumptions and gain insights on the structure
and internal implementation of a class.

2. Inheritance Perspective. Based on the blueprints of several
classes which are related by inheritance, we can make state-
ments the way the class is embedded in its inheritance hier-
archy and about the way it makes use of inheritance.

A common vocabulary. We have defined a common vocabulary
for the different class categories based on their blueprints. This
vocabulary is of utmost importance during a reverse engineering
process, where complex contexts and situations must be communi-
cated to another person in an efficient way.

7.3 Limits of the Approach
The approach presented here is limited in the following ways:

Cognitive Science.The visualization algorithm presented here and
the methodology coming with it are both ad hoc. Although is prov-
ably useful, it shows little connection with research from the field
of cognitive science. At this time we are striving to update our
knowledge in this field, for example as presented in [27].

Layout Algorithm. The approach presented here relies heavily on
an efficient layout algorithm in terms of space and readability. Es-
pecially in the case of very large classes it may happen that the only
real statement we can make is that the class is large. Furthermore,
some minor manual post processing is still required at this time.

Functionality. The blueprint of a class can give the viewer a “taste”
of the class at one glance. However, it does not show the func-
tionality the class provides. The approach proposed here is thus
complementary to other approaches used to understand classes.

Collaboration. We do not address collaboration aspects between
classes for the time being.

Static Analysis.The approach presented here does not make use of
dynamic information. This means we are ignoring runtime infor-
mation about which methods get actually invoked in a class. This
is especially relevant in the context of polymorphism and switches
within the code. In this sense the class blueprint can be seen as a
visualization of every possible combination of method invocations.

7.4 Future Work
In the future we plan to make some more experiences to refine our
blueprint naming scheme and to enhance the visualization part, as
the success of the approach heavily depends on it. In particular, we
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would like to apply it on legacy systems to evaluate the percentage
of classes which cannot be categorized using the class blueprints.

We also plan to extend the approach to classes which are not within
the same inheritance hierarchy, but collaborate with each other.

We further plan to integrate this approach into the methodology we
have proposed in [6] and to extend and refine our reverse engineer-
ing methodology.

We would like to have an empirical usability analysis and qualita-
tive validation of our approach by letting reverse engineers use our
system and to collect their experiences. A second possibility we
want to explore is to compare the reverse engineering “efficiency”
of two groups of users, one with and the other without our tool.

We plan to apply our approach on applications developed in Java
and C++. We would like to evaluate if the layers we have defined,
especially the public interface layer, are still valid in such languages
too.

As our metrics engine supports more than 50 metrics, we will also
evaluate the use of other metrics than the ones used in this paper.
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