
Understanding Software Evolution using a Flexible Query Engine

Michele Lanza, St´ephane Ducasse, Lukas Steiger
Software Composition Group, University of Berne
Neubrückstrasse 12, CH – 3012 Berne, Switzerland

flanza,ducasse,steigerg@iam.unibe.ch — http://www.iam.unibe.ch/�scg/

Published in the Formal Foundations of Software Evolution Workshop Proceedings of CSMR 2001

Abstract

One of the main problems which arises in the field of
software evolution is the sheer amount of information to
be dealt with. Compared to reverse engineering where
the main goal is the main understanding of one single
system. In the field of software evolution this information
is multiplied by the number of versions of the system one
wants to understand. To counter this problem we have
come up with a flexible query engine which can perform
queries on the different versions of a system. In this paper
we give an outlook on our current work in the field of
software evolution and focus particularly on the concepts
behind the query engine we have built.

Keywords: Reverse Engineering, Evolution, Moose,
Object-Oriented Programming

1 Introduction

Understanding software systems that have evolved over
several versions is difficult because of two main obstacles:

� The changes on a system during its development are
often not or badly documented for several reasons. We
believe one of the main forces is the weak enforcement
of change documentation policies in companies: the
people who perform the changes know what they are
doing, so what’s the point of documenting it?

� The original design document is not updated according
to the performed changes, which leads to a rapid decay
in the original design coherence.

� The amount of information is multiplied by the num-
ber of versions of the subject system: coping with
such amounts of information is difficult and time-
consuming.

Software Evolution is confronted with the difficulty of
recovering such changes through the analysis of two or
more versions of the same system. The main problem here
is the amount of useless “noise” (i.e. false positives) which
is returned.

To counter this problem we have come up with the
idea of a flexible query engine similar to those used for
professional databases. In a query language like SQL it is
farily easy to define a query which can retrieve a certain set
of data out of a possibly huge collection of data. Moreover
it is also possible to further refine the query by adding more
criteria.

This paper is structured as follows: in the next sec-
tion we present the concepts and prerequisites of our query
engine. We then show how the queries are made. Then
we shortly present the tool which was realized using those
concepts, and present some results obtained using the query
engine on several case studies. In the final section of the
paper we discuss the current and future work that we plan
to do in this domain.

2 The Concepts and Prerequisites of the
Query Engine

2.1 The Concept

The whole concept of such a query engine is based on the
Composite Pattern[7]: The intent is to compose objects (in
our case queries) into tree structures to represent part-whole
hierarchies. A composite lets clients treat individual objects
(queries) and compositions of objects (composed queries)
uniformly.

A composed query can thus be seen as a hierarchy of
queries and subqueries glued together by binary logical op-
erators, i.e. AND and OR. A query can of course also be
negated by assigning a unary NOT operator to the query. A

1

name can be assigned to a query, through which it can be
included by reference in other queries.

2.2 The Prerequisites

A query engine like ours has some prerequisites which
must be fulfilled. The following prerequisites must hold:

� A Collection of Data. The primary prerequisite for
such a query engine is a collection of data which be-
haves like a database on which queries can be per-
formed. In our case we have our reengineering envi-
ronment Moose[6] that we have developed during the
FAMOOS ESPRIT project[4]. Note that Moose keeps
all entities in memory, instead of using a file based
approach like a database. Although we know that a
database is more scalable we have not encountered size
problems until now.

The Moose reengineering environment is an im-
plementation of the language independent FAMIX
metamodel[3]. At this time the following languages
can be represented in our metamodel: Smalltalk, Java,
C++ and COBOL.

We parse the source code (directly in the case of
Smalltalk and using parsers in the case of the other lan-
guages) and end up with a collection of entities which
are an internal representation of software artifacts. In
the context of evolution it is important that we can have
several metamodels (e.g. several versions of the same
software) parallel to each other at the same time in
memory.

� A Query Language. Although we could have used
Smalltalk as the query language, we have decided to
build a textual query language which can be expressed
at a graphical user interface level. The benefits of this
are that non-Smalltalkers can also make use of it and a
bigger ease of expression.

� A Metrics Framework. Most of the queries we per-
form are based on metric properties of the entities. For
that purpose we have implemented a large framework
of metrics (at this time more than 50), which is better
explained in [8].

3 A Taxonomy of Queries

In this section we explain what kinds of queries we can
build and how they can be composed into more complex
ones. Note that the notation we use in this paper does not
reflect the actual notation we use, which is much more ver-
bose. For the sake of simplicity and readability we have
decided on this easy-to-understand notation.

In this section we will show how with our query engine
we can compose step by step a query which in the end will
return the following result:

3.1 Basic Queries and Composite Queries

A basic query checks whether a certain condition holds
or not, i.e. it iterates over one or several metamodels and
returns entities which match the query. We now present how
basic queries can be combined to compose a refined query
which returns specific results. We distinguish four kinds of
basic queries, i.e.

1. Type Query

A type query returns all entities which belong to a cer-
tain type. The example below returns all classes of a
system.

ClassesQuery :=
[Type(x) = CLASS]

2. Name Query

This is a simple name matching query including wild-
cards. The example below returns all classes whose
name contains the string “Abstract”.

AbstractClassesQuery :=
[ClassesQuery] AND
[Name(x) = ’*Abstract*’]

3. Property Query

In our metamodel we can annotate properties on an en-
tity. Examples of such properties include whether a
class is abstract, whether a method is an accessor (i.e.
get/set), whether an attribute is private, etc. A property
query tries to match a property which always returns a
boolean value. The example below returns all classes
which contain the substring “Abstract” in their name
but in fact are not abstract.

FalseAbstractClassesQuery :=
[AbstractClassesQuery] AND
[Property.Abstract(x) = FALSE]

4. Metric Query

Moose provides an extensive set of metrics for the en-
tities, including most of the metrics mentioned in [1]
and [9]. In the case of such a query we either match
the exact value or check on whether a metric value of
an entity is above or below a certain threshold. The
example below returns the false abstract classes in the
system which implement more than 30 methods.

2

LargeFalseAbstrClassesQuery :=
[FalseAbstractClassesQuery]
AND
[NOM(x) > 30]

3.2 Software Evolution Queries

A query can be composed of other (sub)queries. Those
can be combined using binary logical operators, i.e. AND
and OR like we have seen above.

In the case of Software Evolution Queries, we build
queries which return results from different versions of the
software and combine those results using logical unary
(NOT) and binary (AND,OR) operators.

Suppose we have three versions of the softwareFoo. We
call the versionsFoo1, Foo2, Foo3. If we consider only
Foo1 andFoo2. We want to find all find all classes which
from one version to next increased their number of methods
by more than 20 (e.g. the class grew rapidly).

For that purpose we build the query

GrowQuery :=
[(NOM(x.new) - NOM(x.old)) > 20]

Here x represents the classes present in the new and the
old version of the software and NOM is the value of the
metric “Number of Methods” for x. This will return the
results for (Foo1, Foo2). We can apply the same query to
(Foo2, Foo3).

The combination of these through a logical AND opera-
tor will return the classes which grew constantly by at least
20 methods over the whole time frame we are considering.
The combination of these through a logical OR operator will
return the classes which grew at an arbitrary point in time.

3.3 Defining the Environment of a Query

Sometimes it is necessary to define a subquery on a
query. We call this subquery theenvironment of the query.
As an example, we want to find out all classes who grew by
addition of methods and whose subclasses (at least one of
them) shrank by removal of methods. Our guess is that in
such a case the step in between performed by the developers
was to push up the functionality of the subclasses into the
superclass which grew. The criteria are in this case:

PushUpCandidates :=
[(NOM(x.new) - NOM(x.old)) > 0]
AND
[((NOM(subclasses(x.new) -

NOM(subclasses(x.old)) < 0]

3.4 The Renamed Entity Tracking Problem

One of the major problems which must be dealt with,
is that although conceptually two different versions of the
same software entity have a “becomes” relationship, in our
metamodel those are two different objects. To establish the
connection between them, the obvious way is to go over the
naming: if two entities have the same unique name, they are
two versions of the same software artifact. However, what
happens if an entity has been renamed?

We have found two simple and effective solutions to this
problem which cover almost all cases:

1. Using the metrics. We compare the metric measure-
ments of the “new” entities (i.e. those which have ap-
peared for the first time in a certain version of the soft-
ware) with those of the previous ones and see if there is
a match. This solution is straight forward but not very
effective.

2. In the case of classes or higher level software con-
structs like packages, etc. we go over the entities con-
tained in them. As an example, in the case of a re-
named class we check if we have a match regarding
the methods: if the name of certain methods stays the
same, but the unique name (i.e. including their class
name) changes we can be nearly sure that we have a
renamed class.

These two approaches work well enough for us, although
in both cases there are false positives. However, the only
bullet-proof way to track the renamed entities would be to
have a versioning software which tracks all entities includ-
ing the renamed ones.

4 The Implementation of the Query Engine

We have implemented the concept of the query engine in
a tool called MooseFinder.

We have seen that the ease and flexibility of the query
composition mechanism is very important: Often a query
which works (i.e. returns useful results) in one context must
be changed for another context.

For that purpose MooseFinder supports an easy and
graphical way to compose queries including drag and drop
support. This is necessary to enable the user to quickly
adapt complex query structures to new contexts.

The window shown in Figure 1 is the main interface of
MooseFinder. Here we can select the queries and run them.

The Query Composition Window shown in Figure 2 en-
ables the user to build the basic queries and compose them
into composite ones.

3

Figure 1. The Main Window of MooseFinder.

Figure 2. The Query Composition Window of
MooseFinder.

5 Applying the Approach

The result of the approach we are working on, is to obtain
a set of queries which return meaningful results in the field
of software evolution. For that purpose we have set up a
number of large and very large case studies we want to work
on.

This work is still under way but we have already identi-
fied some useful queries. We list here what we can detect
with each query:

� Introduction of a class on top of a large hierarchy

� Subclasses that become the sibling of their super-
classes, i.e. that have been pushed up one hierarchy
level

� Classes where methods and/or attributes have been
pushed up into their superclass

� Classes that have rapidly grown/shrunk from one ver-
sion to the next

� Classes which have been merged

� Entities which have been added to/removed from the
software at a certain point

� Classes which have been renamed

6 Conclusions and Future Work

The preliminary results obtained using this approach
have already shown that it is indeed useful and can return
meaningful results. However, we have encountered the fol-
lowing problems:

� The usefulness of the approach is tied to the flexibility
and power of the query language. This is on one hand
the query language per se, on the other hand the user
interface with which we can compose the queries.

� This approach goes into the direction of data mining
and data reverse engineering. One of the main prob-
lems in those fields is the representation of the re-
sults. For the time being we still use textual represen-
tations, although we can easily interface with visual-
ization software.

� The more general and less specific a query is, the more
results it will return. On the other hand a very spe-
cific query can return an empty set of results. The fine-
tuning of the queries requires a considerable deal of
expertise on side of the user and flexibility on side of
the query engine.

Our future work in this context includes the publication
of a paper with the major results obtained with this approach
applied on several large and very large case studies.

Furthermore we will extend the query engine and its
query language to render it as flexible and powerful as pos-
sible.

We also plan to use the software visualization tool Code-
Crawler [8, 2, 5] in this context.

References

[1] S. R. Chidamber and C. F. Kemerer. A metrics suite for object
oriented design.IEEE Transactions on Software Engineering,
20(6):476–493, June 1994.

[2] S. Demeyer, S. Ducasse, and M. Lanza. A hybrid reverse
engineering platform combining metrics and program visu-
alization. In F. Balmas, M. Blaha, and S. Rugaber, editors,
Proceedings WCRE’99 (6th Working Conference on Reverse
Engineering). IEEE, Oct. 1999.

4

[3] S. Demeyer, S. Tichelaar, and P. Steyaert. FAMIX 2.0 - the
FAMOOS information exchange model. Technical report,
University of Bern, Aug. 1999.

[4] S. Ducasse and S. Demeyer, editors.The FAMOOS Object-
Oriented Reengineering Handbook. University of Bern, Oct.
1999. See http://www.iam.unibe.ch/˜famoos/handbook.

[5] S. Ducasse and M. Lanza. Towards a methodology for the un-
derstanding of object-oriented systems.Technique et science
informatiques, 20(4):539–566, 2001.

[6] S. Ducasse, M. Lanza, and S. Tichelaar. Moose: an ex-
tensible language-independent environment for reengineering
object-oriented systems. InProceedings of the Second Inter-
national Symposium on Constructing Software Engineering
Tools (CoSET 2000), June 2000.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns. Addison Wesley, Reading, Mass., 1995.

[8] M. Lanza. Combining metrics and graphs for object oriented
reverse engineering. Diploma thesis, University of Bern, Oct.
1999.

[9] M. Lorenz and J. Kidd.Object-Oriented Software Metrics: A
Practical Guide. Prentice-Hall, 1994.

5

