
A detailed VM profiler for the Cog VM

Sophie Kaleba1, Clément Béra1, Alexandre Bergel2, Stéphane Ducasse1
1INRIA- Lille Nord Europe, France

2Pleiad Lab, DCC, University of Chile, Santiago, Chile

Abstract
Code profiling enables a user to know where in an appli-
cation or function the execution time is spent. The Pharo
ecosystem offers several code profilers. However, most of the
publicly available profilers (MessageTally, Spy, GadgetPro-
filer) largely ignore the activity carried out by the virtual ma-
chine, thus incurring inaccuracy in the gathered information
and missing important information, such as the Just-in-time
compiler activity.

This paper describes the motivations and the latest im-
provements carried out in VMProfiler, a code execution pro-
filer hooked into the virtual machine, that performs its analy-
sis by monitoring the virtual machine execution. These im-
provements address some limitations related to assessing the
activity of native functions (resulting from a Just-in-time
compiler operation): as of now, VMProfiler provides more
detailed profiling reports, showing for native code functions
in which bytecode range the execution time is spent.

1. Introduction
Although computers tend to get faster and faster, improv-
ing software performance, especially in terms of execution
time, remains a major goal to be pursued when developing a
software. This statement applies of course to virtualised en-
vironments and assuring the performance of virtual machine
(VM) is critical when you aim for an overall good perfor-
mance. Thus, it is crucial to know where the time is spent in
the VM during execution: indeed, it helps identifying where
to tune its settings to actually get better results.

To get a precise idea of the program behavior, critical
information can be collected by profiling code. Such profil-
ing tools are already available in Pharo, like MessageTally
[BCDL13] and VMProfiler [Mir08b]: they provide statisti-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
OOPSLA ’14, Month d–d, 20yy, City, ST, Country.
Copyright © 2014 ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/3139903.3139911

cal/graphical reports, showing the methods in which most
of the execution time is spent, and how much of this time is
spent in garbage collection [BCDL13]. However, VMProfiler,
unlike MessageTally, provides statistical data about the time
spent in the Cog VM. Cog [Mir08a] is a virtual machine
designed for Smalltalk, and currently used for other similar
languages, such as Pharo [BDN+09] and Squeak [BDN+07].
Cog features a bytecode interpreter and a just-in-time com-
piler (JIT). A careful monitoring of the interpreter and the
JIT is crucial to adequately estimate the time taken to execute
a portion of code.

The existing VMProfiler cannot track down precisely
where the time is spent when executing the code generated by
the JIT. It tracks down in which methods the time is spent, but
it cannot track down in which part of those methods the time
is spent. For example, assuming there is a frequently used
method with multiple loops, VMProfiler mentions that most
of the time is spent in this method (it is indeed frequently
used), but it cannot mention in which loop the time is spent.

This problem is more and more significant as new opti-
misations are added to the JIT, based on the work of Hölzle
and Ungar [HU94]. The development branch of the JIT now
features speculative inlining. In this context, the JIT gener-
ates a single machine code method for multiple unoptimised
bytecode methods (the method optimised and the inlined
methods). The VM profiler shows that most of the time is
spent in optimised code, but it is currently not possible to
know in which inlined method most of the time is spent on. So
while we get a faster and more performant VM, the profiler
mostly ignores optimisations when computing and reporting
its analysis.

To increase the level of detail of the profile, the existing
VMProfiler has to be enhanced to show specifically where the
time is spent in a method. To do so, we use the API usually
used for debugging, that maps machine code program counter
(pc) to bytecode program counter. This way, we can tell for
each method appearing in the report in which bytecode range
most of the time is spent.

In this paper, we will first discuss the existing Squeak VM-
Profiler, how it works and how the granularity of its reports

when optimised native code functions are profiled raises a
problem. Then, we describe the proposed solution, a bytecode
level profiling, to address this problem. Eventually, we men-
tion other profiling tools in Smalltalk and other programming
languages and compare them against VMProfiler.

2. Profiling jitted code
This section first defines the terminology used in the paper,
then describes the existing VMProfiler available in the Cog
VM clients such as Squeak or more recently Pharo, and the
debugger mapping and lastly states the problem analysed in
the rest of the paper.

2.1 Terminology
Function. In the paper, we use the term function to refer to
executable code, in our case, method or block closures.

Bytecode function. The term bytecode function is used
to refer specifically to the compiled function in the form
of bytecode, for example, instances of CompiledMethod in
the case of methods. Bytecode functions are regular objects
accessible from the Squeak/Pharo runtime and are present in
the heap with all other objects. These functions are executable
by the VM.

Native function. We use the term native function to refer to
the representation of a function generated by Cog’s JIT, which
includes the native code. Native functions are not regular
objects and are allocated in a specific memory zone (called
the machine code zone), which is executable. These functions
are directly executable by the processor.

2.2 Existing VM profiler
VMProfiler has been available for almost a decade in Squeak
and has been recently ported to Pharo. VMProfiler allows
one to track down where the time is spent in the VM when
executing a specific portion of code. VMProfiler computes
where the time is spent in the compiled C code of the VM, in
the VM plugins and in the native functions. All the results are
available as a statistical report. A typical report includes two
main sections, the time spent in generated code, i.e., in native
functions and the time spent in the compiled C code. The
time spent in the compiled C code includes the time spent in
the bytecode interpreter, in the garbage collector and in the
JIT.

Machine code zone. As depicted in Figure 1, the machine
code zone is composed of three areas (in order, the numbers
match the numbers on the figure):

1. The first area includes all the trampolines and enilopmarts
generated at VM start-up. Trampolines are native code
routines. Some of them are used as discovery routine at
VM start-up to know which instructions the processor
supports. The other trampolines are called from native
functions, either to switch to the C runtime of the VM

or just to execute specific uncommon code. Enilopmarts
(trampoline written backwards) are native code routines
called from the C runtime of the VM to switch to native
functions generated by the JIT.

2. The second area is composed of native functions (Cog-
Methods or CogFullBlocks, depending on if a method or a
block closure is compiled) and polymorphic inline caches
(PIC) (ClosedPICs, PICs represented as a jump table up
to 6 cases or OpenPICs, PICs represented as a hash map
search with an 8 entry hash map). [HCU91]

3. The last area is a linked list of native functions or PICs
referencing young objects. This list is used by the scav-
enger.

Trampolines
Enilopmarts

CogMethods, CogFullBlocks,
ClosedPICs, OpenPICs

LinkedList
of elements with
young referent

Used zone Free zone

CogCode CCFree CCEnd

1 2 3

Figure 1: Machine code zone layout

During the runtime, part of the machine code zone is
unused. When the machine code zone is full and a new
function needs to be compiled, a code compaction happens,
freeing a quarter of the machine code zone, using a least
recently used naive algorithm. Hence, while running a normal
application, up to a quarter of the machine code zone is free.

We use three keywords to identify different addresses in
the machine code zone. CogCode is the beginning of the
machine code zone, before the trampolines and enilmoparts.
CCFree is the beginning of the unused part of the machine
code zone. CCEnd is the last address of the machine code
zone before the linked list of young referrers.

Implementation. Implementation-wise, VMProfiler is a
sampling profiler. When profiling is started, a separate high-
priority OS thread is started and collects the instruction
pointers of the VM OS thread in a large circular buffer at an
approximate cadence of 1.4kHz. Once the profiling ends (i.e.,
once the profiled code has been executed), a primitive method
is available to gather the samples from the VM into a Bitmap.
To understand to which functions the samples correspond to,
VMProfiler requests:

• The symbol table of the VM executable and all external
plugins.

• A description of the native functions currently present in
the machine code zone.

aFunctionSymbol

name foo
address 0x0000FF76

limit 0x00010A56

sampleBag

0x0000FF89 12
0x00000AE4 3

0x0002EAC3 4

0x0001562D 7

0x0001062D 7

0x0002EAC3 4

0x00000AE4 3
0x0000FF89 12

0x000157B1 11

0x00000AE4 30x0000FFD4 1

Report

1932 samples in profiled code.
20 (12 + 1 + 7) samples in foo.
1.04% (20/1932) of execution time spent in foo

Figure 2: Mapping in original code

Each function (indifferently, a native function or a C function)
is represented as a function symbol (the name of the function,
either the Smalltalk function name with the method class
and the selector or the C function symbol), a start address
and the last address. VMProfiler uses these ranges to find
out in which function each profiling sample corresponds to,
as shown in Figure 2. Then, the profiler generates a report,
either in the form of a string or through a user interface.

Primitive Cog Constituents. The primitiveCollectCog-

CodeConstituents provides VMProfiler with the description
of the native functions currently present in the machine code
zone it needs. This primitive answers an array of pair-wise
elements as shown in Figure 3. The first element of the pair
is either :

• the name of a trampoline/enilopmart, or
• a function pointer, or
• the name of a selector (for PICs), or
• annotations (i.e., CCFree, CCEnd).

The second item of the pair is the start address of this element
in the machine code zone.

primitiveCollectCogCodeConstituents is called once
the profiling samples has been gathered. These samples are
mapped to the data answered by the primitive. For instance, if
a sample is equal to 0x89012F0, one can find out it refers
to Behavior>>new thanks to the primitive, as showed in
Figure 3.

2.3 Debugger mapping
To be able to debug native functions as if they were executed
as bytecode functions by the bytecode interpreter, when Cog’s
JIT generates a native function for a given bytecode function,
it generates a list of annotations [Bér16] allowing one to

reconstruct the interpreter state of the function activation
at any point where the code execution can be interrupted
(message sends, conditional branches or back jumps). Each
annotation includes a mapping between the pc in the machine
code and the pc in the bytecode of the method. The VM is
able to use these annotations to reify function activations and
provide it to Pharo.

2.4 Problem
The VM development team is currently working on the im-
plementation of an optimising JIT for the Cog VM. These
optimisations include speculative inlining, as described in
the work of Hölzle and Ungar [HU94], in a similar way to
production VMs such as Java’s hotspot VM (The hotspot
VM is the default virtual machine for Java [PVC01]) and
Javascript’s V8 engine (V8 is mostly used as the Javascript
engine for Google Chrome and NodeJS [Goo08]). The opti-
mising JIT is designed as a bytecode functions to bytecode
functions runtime optimising compiler, re-using the exist-
ing JIT as a back-end to generate native functions. In this
context, optimised functions are present both in the form of

Array

Behavior>>#new
0x89012F0

True>>#not
0x89033A8

CogCode
0x8900000

CCFree
0x89C0D23

CCEnd
0x9000000

False>>#not
0x894208

ClosedPIC #not
0x89033F0

ProtoObject>>#initialize
0x8902420

Behavior>>#basicNew
0x89013C8

OpenPIC #basicNew
0x8903458

OpenPIC #initialize
0x8904100

ceCheckFeaturesFunction
0x8900000

ceTraceStoreTrampoline
0x8901270

ceGetFP
0x8900010

Trampolines /
Enilopmarts

Used
Zone

Free
Zone

Figure 3: Cog constituents as answered by the primitive

Source code Bytecode

foobarbaz 25 <4C> self
self foo. 26 <80> send: foo
self bar. 27 <D8> pop
self baz. 28 <4C> self

29 <81> send: bar
30 <D8> pop
31 <4C> self
32 <82> send: baz
33 <D8> pop
34 <58> returnSelf

Figure 4: Example method

bytecode functions and native functions, using the extended
bytecode set described in the work of Béra et al. [BM14].
When profiling optimised code for benchmarks such as the
Games benchmark [GB04], VMProfiler now shows that all
the time is spent in a single function (the function where the
rest of the functions used by the benchmark are inlined). To
improve performance and tune the optimising JIT, the VM
development team requires more information about where the
time is spent in optimised functions, for example, in which
range of bytecodes the time is spent.

Problem statement. How to provide detailed profiling in-
formation in large native functions profiled?

To address this problem, we propose an implementation
that takes advantage of an API used for debugging, to map
machine code pc to bytecode pc, to be able to identify in
which bytecode range the time is spent in a function. The
implementation is specific to the Cog VM, with a working
version in both Squeak and Pharo. A similar design could
apply in other VMs featuring similar debugging capabilities.

3. Solution
To accurately profile large native functions, we re-use the API
available for debugging to identify in which section of the
function the time is spent. The solution is split in two steps.
First, we enhanced the primitive providing the description
of the native functions present in the machine code zone to
provide a mapping between machine code pc and bytecode
pc in addition to the start address of the function. Second,
we used the mapping to identify in which range of bytecodes
each sample is.

3.1 Improved primitive
In the improved version of the primitive, if the native function
has at least one machine code pc mapped to a bytecode pc, the
primitive answers for the function, instead of the start address,
an array starting with the start address followed by pairs of
machine code pc and the corresponding mapped bytecode pc.

For example, the function foobarbaz in Figure 4 sends 3
messages. Once translated to bytecode, there are indeed 3

send bytecodes, each responsible for the sending of a message
(on bytecode pc 26, 29 and 32, in bold in Figure 4). For this
function, the original primitive was answering 2 elements:
the pointer to the native function and its start address in the
machine code zone

As you can see in Figure 5, the improved primitive
still answers 2 elements, but, while the first one remains
unchanged and still refers to the name of the function, the
second one is an array, because the 3 send bytecodes are
mapped. The first element of this array is the starting address
of the function in the machine code zone. The other elements
come in pairs: the first one is the machine code pc, the second
one is the bytecode pc. The results answered by the improved
primitive are then used to determine bytecode ranges in the
function. In Figure 5, there are 4 bytecode ranges, each
delimited by a mapped bytecode pc.

foobarbaz
0x0000FF45

foobarbaz
Array
 0x0000FF45
 0x0000FF47
 26
 0x0000FF52
 29
 0x0000FF63
 32

Existing primitive results Improved primitive results

0x0000FF47 0x0000FF52 0x0000FF63
start

address limit

26 <80>
send:foo

29 <81>
send:bar

32 <82>
send:baz

range 2 range 3 range 4

cogMethod header

range 1

cogMethod map

start address

mcpc with
corresponding
bytecode pc

Figure 5: Example of primitive results

3.2 Accurate mapping and report
To compute the profiling statistics, the profiler uses the
primitive to create a description of the native functions
currently present in the machine code zone. Each function is
represented by a functionSymbol object, characterized by the
name of the function and its starting and limit addresses in
the machine code zone. A new field in FunctionSymbol has
been added to take the results of the modified primitive into
account: mcpcbcpcmap, standing for machine code program
counter - bytecode program counter map. This dictionary
associates a machine code pc with a bytecode pc.

As shown in Figure 6, this new field helps with identifying
where the execution time is spent. For instance, we know that
foobarbaz starts at 0x0000FF45, and that the first mapped
bytecode pc (26) is at 0x0000FF47: it means that the 12

samples within this address range will refer to the bytecode
instructions between 1 and 26. The same applies for the other
entries: the unique sample within the range 0x0000FF47 and
0x0000FF52 will refer to the bytecode instructions between
26 and 29.

In the Figure 6, 1932 samples were gathered in total and
20 were referring to foobarbaz. Among these 20 samples,
12 were referring to foo’s bytecode pc between 1 and 26.
Therefore, 60% of the time spent in foobarbaz was spent
between these bytecode pcs.

aFunctionSymbol

name foobarbaz
address 0x0000FF45

limit 0x00010A25

sampleBag

0x0000FF89 12
0x00000AE4 3

0x0002EAC3 4

0x0001562D 7

0x0000FF62 7

0x0002EAC3 4

0x00000AE4 3
0x0000FF46 12

0x00010A55 11

0x00000AE4 30x0000FF49 1

Report

1932 samples in profiled code.
20 (12 + 1 + 7) samples in foobarbaz.
1.04% (20/1932) of execution time spent in foo
 12 samples between bcpc 1 and 26
 1 samples between bcpc 26 and 29
 7 samples between bcpc 29 and 32

mcpcbcpcmap
0x0000FF47 -> 26
0x0000FF52 -> 29
0x0000FF63 -> 32

Figure 6: Mapping with new feature

4. Example
In this section, we present a concrete example of profiling a
benchmark.

We profiled the following benchmark: 10 tinyBenchmarks

using first the existing VMProfiler, and using then the detailed
VMProfiler. Figure 7 puts the two profiling reports side by
side. Among the jitted methods, Integer>>benchFib was the
one in which most of the execution time was spent (around
45% of the total time).

In the original version of the profiler (left-hand side
of Figure 7), one cannot identify where 45% of the total
execution time is spent. In the detailed version (right-hand
side), however, the method is decomposed in 8 bytecode
ranges: one can then identify in which bytecode range(s)
most of the time is spent. Here, 57.95% of the time is spent in
the entry. The next significant part of time is spent in the last
bytecode instructions (12% starting from bytecode pc 38).

In the Integer>>benchmark function, most of the time
is spent in the 74 -> 78 bytecode range, referring to the
following bytecode instructions:

• 75 <6B> popIntoTemp: 3

• 76 <13> pushTemp: 3

• 77 <10> pushTemp: 0

• 78 <B4> send: <=

In the next bytecode instructions of the Integer>>benchmark

method, one can find the 90 <A3> jumpTo: 76 instruction. It
indicates that there is a loop between the 76 and 90 bytecode
instructions. Thus, we can assume that the time is mostly
spent in the 76, 77 and 78 bytecode instructions.

5. Related Work
The field of execution profiling is vast and has received a
large attention from the research community. This section
presents the different works related to the effort presented in
this paper.

5.1 Standard Pharo profilers
Smalltalk, and therefore Pharo, offers a sophisticated reflec-
tive API. Threads are openly exposed and the stack for each
active thread may be introspected. In addition, the next thread
in the execution queue may be accessed. MessageTally and
AndreasSystemProfiler are two standard profilers in Pharo
that exploit this advanced reflective API. Both follow the
same principle: a thread of high-priority is run and regularly
it samples the thread queue. The frequency of the samples
typically ranges from 1 to 10 milliseconds. After the program
execution, frequency of method context frames is determined.
Such frequency is used to estimate the time spent in each
frame.

Both profilers essentially rely on the Smalltalk reflective
API. Since most of the computation happens within the image,
the overhead of the profiler is therefore likely to be expensive
and intrusive (e.g., time to execute an application is longer
when being profiled). It is known that getting a sample profiler
with a high-precision is difficult to achieve and prone to
error [MSHD08, MDHS10, Ber11].

5.2 Support in the Virtual Machine
The Java Virtual Machine Tool Interface (JVM TI) is a native
programming interface offered by the JVM to build dedicated
profiling and debugging tools [Ora02]. JVM TI provides both
a way to inspect the state and to control the execution of Java
applications.

A JVM TI client, defined as an agent, can be notified of
particular events emitted by the JVM. In total, a client may
receive 31 different kinds of JVM events. These events cover
breakpoints, class loading, garbage collection, method execu-
tion, monitor, and virtual machine start up and destruction.

JVisualVM [Ora08] is a visual profiling tool and frame-
work. JVisualVM offers a large set of features, including

/media/sophie/Data/GSOC/Part2-Precision/VM_Test/pharo-vm/lib/pharo/
5.0-201706131152/pharo 2017-06-19 22:16:11
eden size: 3,801,936 stack pages: 50 code size: 1,048,576

6.948 seconds; sampling frequency 1495 hz
10368 samples in the VM (10389 samples in the entire program) 99.80% of total

10067 samples in generated vm code 97.10% of entire vm (96.90% of total)
301 samples in vanilla vm code 2.90% of entire vm (2.90% of total)

% of generated vm code (% of total) (samples) (cumulative)
47.03% (45.58%) Integer>>benchFib (4735) (47.03%)
 57.95% 1->23 (2744) (57.95%)
 5.89% 24->30 (279) (63.84%)
 2.89% 30->31 (137) (66.74%)
 8.24% 31->34 (390) (74.97%)
 3.38% 34->35 (160) (78.35%)
 6.59% 35->36 (312) (84.94%)
 3.06% 36->38 (145) (88.00%)
 12.00% 38->6667 (568) (100.0%)
20.62% (19.98%) Integer>>benchmark (2076) (67.66%)
 0.05% 44->50 (1) (0.05%)
 11.32% 52->60 (235) (11.37%)
 3.90% 61->65 (81) (15.27%)
 4.05% 65->66 (84) (19.32%)
 6.17% 66->70 (128) (25.48%)
 2.94% 70->74 (61) (28.42%)
 35.36% 74->78 (734) (63.78%)
 8.24% 79->84 (171) (72.01%)
 8.62% 84->88 (179) (80.64%)
 8.67% 88->90 (180) (89.31%)
 2.12% 90->94 (44) (91.43%)
 5.15% 94->98 (107) (96.58%)
 3.37% 98->100 (70) (99.95%)
 0.05% 100->104 (1) (100.0%)
15.36% (14.88%) Object>>at:put: (1546) (83.01%)
 100.0% 1->65 (1546) (100.0%)
10.78% (10.44%) SmallInteger>>+ (1085) (93.79%)
 100.0% 1->22 (1085) (100.0%)
6.07% (5.88%) Object>>at: (611) (99.86%)
 100.0% 1->57 (611) (100.0%)
0.04% (0.04%) Sequenceab...m:to:put:(4) (99.90%)
0.03% (0.03%) Array class>>new: (3) (99.93%)
0.02% (0.02%) Array>>repla...startingAt:(2) (99.95%)
0.02% (0.02%) SmallInteger>>- (2) (99.97%)
0.03% (0.03%) ...others... (3) (100.0%)

% of vanilla vm code (% of total) (samples) (cumulative)
45.18% (1.31%) primitiveStringReplace (136) (45.18%)
30.56% (0.89%) instantiateClassindexableSize (92) (75.75%)
9.30% (0.27%) scavengeReferentsOf (28) (85.05%)
3.99% (0.12%) copyAndForward (12) (89.04%)
1.99% (0.06%) addressAfter (6) (91.03%)
1.99% (0.06%) doScavenge (6) (93.02%)
1.99% (0.06%) heartbeat_handler (6) (95.02%)
1.99% (0.06%) moveFramesInth...toPage.isra.74(6) (97.01%)
0.66% (0.02%) handleStackOverflow (2) (97.67%)
2.33% (0.07%) ...others... (7) (100.0%)

Memory
old +2,425,712 bytes
free +0 bytes

GCs
full 0 totalling 0ms (0.0% elapsed time)
scavenges 182 totalling 53ms (0.763% elapsed time), avg 0.291ms
tenures 0
root table 0 overflows

Compiled Code Compactions
0 totalling 0ms (0.0% elapsed time)

Events
Process switches 38 (5 per second)
ioProcessEvents calls 340 (49 per second)
Interrupt checks 3656 (526 per second)
Event checks 3660 (527 per second)
Stack overflows 15183 (2185 per second)
Stack page divorces 0 (0 per second)

Existing profiler report Accurate profiler report

/media/sophie/Data/GSOC/Part2-Precision/VM_Test/pharo-vm/lib/pharo/
5.0-201706131152/pharo 2017-06-19 22:21:34
eden size: 3,801,936 stack pages: 50 code size: 1,048,576

7.126 seconds; sampling frequency 1450 hz
10305 samples in the VM (10332 samples in the entire program) 99.74% of total

10007 samples in generated vm code 97.11% of entire vm (96.85% of total)
298 samples in vanilla vm code 2.89% of entire vm (2.88% of total)

% of generated vm code (% of total) (samples) (cumulative)
46.55% (45.08%) Integer>>benchFib (4658) (46.55%)
20.40% (19.75%) Integer>>benchmark (2041) (66.94%)
17.21% (16.67%) Object>>at:put: (1722) (84.15%)
10.10% (9.79%) SmallInteger>>+ (1011) (94.25%)
5.68% (5.50%) Object>>at: (568) (99.93%)
0.03% (0.03%) Sequenceab...m:to:put:(3) (99.96%)
0.02% (0.02%) Array>>repla...startingAt:(2) (99.98%)
0.02% (0.02%) ...others... (2) (100.0%)

% of vanilla vm code (% of total) (samples) (cumulative)
47.65% (1.37%) primitiveStringReplace (142) (47.65%)
27.18% (0.78%) instantiateClassindexableSize (81) (74.83%)
8.72% (0.25%) scavengeReferentsOf (26) (83.56%)
5.70% (0.16%) copyAndForward (17) (89.26%)
3.36% (0.10%) doScavenge (10) (92.62%)
2.01% (0.06%) addressAfter (6) (94.63%)
1.68% (0.05%) heartbeat_handler (5) (96.31%)
1.34% (0.04%) bytesInObject (4) (97.65%)
0.67% (0.02%) shouldRemapObj (2) (98.32%)
1.68% (0.05%) ...others... (5) (100.0%)

Memory
old +157,616 bytes
free +0 bytes

GCs
full 0 totalling 0ms (0.0% elapsed time)
scavenges 182 totalling 57ms (0.8% elapsed time), avg 0.313ms
tenures 0
root table 0 overflows

Compiled Code Compactions
0 totalling 0ms (0.0% elapsed time)

Events
Process switches 38 (5 per second)
ioProcessEvents calls 350 (49 per second)
Interrupt checks 3745 (526 per second)
Event checks 3743 (525 per second)
Stack overflows 209 (29 per second)
Stack page divorces 0 (0 per second)

Figure 7: Comparison of profiling reports for 10 tinyBenchmark

remote debugging / profiling, thread analysis, heap snapshot,
and garbage collection monitoring.

5.3 Generic profilers
The profiling tool described in this paper is intended to be
used to address performance issues. The software engineer-
ing community has produced software execution monitor-
ing techniques to profile various aspects related to an execu-
tion [RBN12, RBNR12].

A common profiling technique is to use instrumentation
instead of sampling [MLG05]. For example, Spy [BBRR11]
is a framework to build domain-specific profilers, with appli-
cation ranging from memory consumption analysis [IB15] to
test coverage [BP12].

6. Conclusion and Future Work
In this paper, we have presented the evolutions carried out
in VMProfiler, a profiler enabling to identify where the
execution time is spent in the VM side, i.e. identify where the
time is spent in the C code of the VM (interpreter, garbage
collector) and in the jitted functions.

As this kind of tool is typically used to know where
to boost performance, the existing VMProfiler could be
improved: it could not provide detailed profiling data for
large native code functions. Indeed, it could report that most
of the execution time was spent in a function, but not where
in this function the time was spent. This problem was getting
significant as more and more optimisations were performed
by the JIT ; inlining, especially, makes the jitted functions
harder to accurately profile.

This paper describes a way to address this problem: an
API used for debugging purposes offers a mapping between
machine code pc and bytecode pc. This mapping is then used
to determine bytecode ranges in a large native code function,
and thus identifies how many samples are included in one or
the other range. Now, VMProfiler provides detailed profiling
statistical reports.

Further improvements are currently being considered:

• As for now, VMProfiler is only available headless in
Pharo. A graphical user interface could be implemented
to provide profiling data from another perspective.

• Sometimes, customers in a Windows environment request
profiling, yet the VMProfiler is currently available for
Mac and Linux only. The VMProfiler could then be
implemented for Windows to tackle this problem.

• Currently, VMProfiler shows PIC disregarding if the PIC
is a closed PIC or an open PIC. It would be nice to
extend it to show this information (it requires changes
in primitiveCollectCogCodeConstituents).

Acknowledgments
We thank Eliot Miranda for the original implementation of
VMProfiler and his support during the evolution.

This work was supported by Ministry of Higher Education
and Research, Nord-Pas de Calais Regional Council, CPER
Nord-Pas de Calais/FEDER DATA Advanced data science
and technologies 2015-2020.

References
[BBRR11] Alexandre Bergel, Felipe Bañados, Romain Robbes,

and David Röthlisberger. Spy: A flexible code profiling
framework. Journal of Computer Languages, Systems
and Structures, 38(1), December 2011.

[BCDL13] Alexandre Bergel, Damien Cassou, Stéphane Ducasse,
and Jannik Laval. Deep Into Pharo. Square Bracket
Associates, 2013.

[BDN+07] Andrew Black, Stéphane Ducasse, Oscar Nierstrasz,
Damien Pollet, Damien Cassou, and Marcus Denker.
Squeak by Example. Square Bracket Associates, 2007.

[BDN+09] Andrew P. Black, Stéphane Ducasse, Oscar Nier-
strasz, Damien Pollet, Damien Cassou, and Marcus
Denker. Pharo by Example. Square Bracket Asso-
ciates, Kehrsatz, Switzerland, 2009.

[Ber11] Alexandre Bergel. Counting messages as a proxy for
average execution time in pharo. In Proceedings of
the 25th European Conference on Object-Oriented
Programming (ECOOP’11), LNCS, pages 533–557.
Springer-Verlag, July 2011.

[Bér16] Clément Béra. Smalltalk, Tips ’n Tricks. CogMethod’s
Maps, 2016. https://clementbera.wordpress.com/
2016/09/19/cogmethods-maps/.

[BM14] Clément Béra and Eliot Miranda. A bytecode set for
adaptive optimizations. In International Workshop on
Smalltalk Technologies 2014, IWST ’14, 2014.

[BP12] Alexandre Bergel and Vanessa Peña. Increasing test
coverage with hapao. Science of Computer Program-
ming, 79(1):86–100, 2012.

[GB04] Isaac Gouy and Fulgham Brent. The Computer Lan-
guage Benchmarks Game, 2004. http://benchmarks
game.alioth.debian.org/.

[Goo08] Google. V8 repository, 2008. https://github.com/v8/v8.

[HCU91] Urs Hölzle, Craig Chambers, and David Ungar. Op-
timizing Dynamically-Typed Object-Oriented Lan-
guages With Polymorphic Inline Caches. In Euro-
pean Conference on Object-Oriented Programming,
ECOOP ’91, London, UK, UK, 1991.

[HU94] Urs Hölzle and David Ungar. Optimizing dynamically-
dispatched calls with run-time type feedback. In
Programming Language Design and Implementation,
PLDI ’94, pages 326–336, New York, NY, USA, 1994.

[IB15] Alejandro Infante and Alexandre Bergel. Efficiently
identifying object production sites. In Proceedings of
the 22nd IEEE International Conference on Software
Analysis, Evolution, and Reengineering (ERA Track),
March 2015.

[MDHS10] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth,
and Peter F. Sweeney. Evaluating the accuracy of java
profilers. In Proceedings of the 31st conference on
Programming language design and implementation,
PLDI ’10, pages 187–197, New York, NY, USA, 2010.
ACM.

[Mir08a] Eliot Miranda. Cog Blog: Speeding Up Terf, Squeak,
Pharo and Croquet with a fast open-source Smalltalk
VM, 2008. http://www.mirandabanda.org/cogblog/.

[Mir08b] Eliot Miranda. Cog Blog: Speeding Up Terf, Squeak,
Pharo and Croquet with a fast open-source Smalltalk
VM. The Idee Fixe and the Perfected Profiler, 2008.
http://www.mirandabanda.org/cogblog/2008/12/30/the-
idee-fixe-and-the-perfected-profiler/.

[MLG05] Edu Metz, Raimondas Lencevicius, and Teofilo F. Gon-
zalez. Performance data collection using a hybrid ap-
proach. In Proceedings of the 10th European software
engineering conference held jointly with 13th ACM
SIGSOFT international symposium on Foundations of
software engineering, ESEC/FSE-13, pages 126–135,
New York, NY, USA, 2005. ACM.

[MSHD08] Todd Mytkowicz, Peter F. Sweeney, Matthias Hauswirth,
and Amer Diwan. Observer effect and measurement
bias in performance analysis, 2008.

[Ora02] Oracle. Java Virtual Machine Tool Interface, 2002.
https://docs.oracle.com/javase/8/docs/platform/jvmti/
jvmti.html.

[Ora08] Oracle. Java VisualVM, 2008. https://visualvm.
github.io/.

[PVC01] Michael Paleczny, Christopher Vick, and Cliff Click.
The Java hotspotTM Server Compiler. In Symposium
on JavaTM Virtual Machine Research and Technology
Symposium - Volume 1, JVM’01. USENIX Associa-
tion, 2001.

[RBN12] Jorge Ressia, Alexandre Bergel, and Oscar Nierstrasz.
Object-centric debugging. In Proceedings of the
34rd international conference on Software engineering,
ICSE ’12, 2012.

[RBNR12] Jorge Ressia, Alexandre Bergel, Oscar Nierstrasz, and
Lukas Renggli. Modeling domain-specific profilers.
Journal of Object Technology, 11(1):1–21, April 2012.

	Introduction
	Profiling jitted code
	Terminology
	Existing VM profiler
	Debugger mapping
	Problem

	Solution
	Improved primitive
	Accurate mapping and report

	Example
	Related Work
	Standard Pharo profilers
	Support in the Virtual Machine
	Generic profilers

	Conclusion and Future Work

