
Evaluating Machine-Learning Techniques
for Detecting Smart Ponzi Schemes
Giacomo Ibba

Dep. of Mathematics and Computer Science
University Of Cagliari

Cagliari, Italy
g.ibba14@studenti.unica.it

Giuseppe Antonio Pierro
Centre Inria

Lille Nord Europe
Lille, France

giuseppe.pierro@inria.fr

Marco Di Francesco
Flosslab

Cagliari, Itay
marco.difrancesco@flosslab.com

Abstract—Ethereum is one of the most popular platforms for
exchanging cryptocurrencies as well as the most established for
peer to peer programming and smart contracts publishing [3].
The versatility of the Solidity language allows developers to
program general-purpose smart contracts. Among the various
smart contracts, there may be some fraudulent ones, whose
purpose is to steal Ether from the network participants. A
notorious example of such cases are Ponzi schemes, i.e. a financial
frauds that require investors to be repaid through the investments
of others who have just entered the scheme. Within the Ethereum
blockchain, several contracts have been identified as being Ponzi
schemes. The paper proposes a machine learning model that uses
textual classification techniques to recognize contracts emulating
the behavior of a Ponzi scheme. Starting from a contracts dataset
containing exclusively Ponzi schemes uploaded between 2016 and
2018, we built models able to properly classify Ponzi schemes
contracts. We tested several models, some of which returned an
overall accuracy of 99% on classification. The best model turned
out to be the linear Support Vector Machine and the Multinomial
Naive Bayes model, which provides the best results in terms of
metrics evaluation.

Keywords—Blockchain, Smart Contract, Ethereum, Web
Scraping, Ponzi Scheme, Fraud Detection, Transactions, Text
Classification.

I. INTRODUCTION

The Ethereum’s network has millions of participants, and some
of them could likely be malicious. Usually, a malicious user
is defined as a user who abuses his privileges to harm other
users. Since we are considering the Ethereum context, we
refer to a malicious user as a network participant that tries
to convince other participants to invest their money in high-
risk contracts, in which there’s no guarantee of getting back
their Ethers. These types of contracts are obviously considered
fraudulent contracts. A particular type of fraud is that of the
Ponzi Scheme [1], a pyramidal model in which investors are
recruited with the promise of easy earnings and high-interest
rates relative to the initial investment. Other participants of
the scheme can also recruit new investors to increase their
earnings. This last point is interesting in the Ethereum context
because many of the contracts identified as Ponzi Scheme
require that a scheme participant recruits a new investor to
get his money back [2]. Previously we said that a malicious
user abuses his privileges. The main privileges provided by
blockchain are [5]:

• Anonimity: thanks to inner properties of blockchain the
head of the Ponzi Scheme can stay anonymous, and so
the other participants of the scheme.

• Ummutable and potentially unstoppable contracts:
Once a smart contract is deployed, it is not possible
to modify it, therefore making impossible to break the
scheme. Potentially, smart contract execution can’t be
stopped by any central authority though some Smart
Ponzi put an exit condition, for which that scheme can
not be executed anymore. This condition comes true
when there are not sufficient funds to pay a participant.
Obviously, a malicious user may want to exploit all the
advantages provided by the blockchain technology, so this
exit condition bring us to think that this types of contract
are just either proof of concepts or experiments.

• Trustworthiness: Most of the time, a smart contract’s
source code is available on the blockchain. The availabil-
ity and the transparency of the source code transmits trust
to a user, since a potential participant is more enticed to
invest money in a contract which clearly shows how it
works instead of a contract which keeps hidden its inner
properties.

Actually, some of the identified Smart Ponzi are just ex-
periments [7] since the nature of the contract is explicitly
explained by the contract’s creator with comments or with
the names of the variables and functions. Terms like partici-
pants, investments, payout, investors are quite common inside
these contracts. Despite some of these contracts being just
experiments, the problem of possible Ponzi Schemes scams is
real, and it is important to prevent it from happening. To do
so, one must identify Ponzi contracts and classify them; this
is possible because a Ponzi Scheme contract is recognizable
by its execution flow and some well-defined rules. The cyclic
flow ensures that the head of the pyramid (who is the one that
starts the scheme) finds potential investors. Likewise, investors
recruit new participants. Funds from new participants are used
to pay the previous investors that joined the scheme. The
scheme goes on until it is broken. The general rules of a Smart
Ponzi are:

1) A minimum investment is required to join the Ponzi
scheme.



2) Investors starts to get paid only if funds are sufficient.
3) If new investors are not available anymore, the scheme

is broken.
4) If funds are not sufficient to pay the investors, the

scheme is broken.
These rules are common to all Smart Ponzi contracts despite
some details that can be slightly different. For example, the
minimum fee required to join the scheme differs from contract
to contract. In addition to these rules, there are some other
elements common to all Smart Ponzi. These are:

1) The contract’s owner, which starts the scheme.
2) Investors, which are defined trough their address and

their balance.
3) An array or mapping that stores all the scheme partici-

pants.
4) A function that allows a new participant to join the

scheme.
5) A function to pay the participants.

It is also interesting to notice that there are different categories
of Ponzi schemes contracts. Previous work [5] defined four
categories and a taxonomy of Smart Ponzi. First, we have
tree-shaped schemes that use a tree data structure to induce an
ordering among users. In this particular category of schemes,
the user who has just joined the tree must indicate the partici-
pant who invited him. The user who invited the new participant
becomes his parent node in the tree. Another category is that of
chain-shaped schemes, which are a special case of tree-shaped
schemes. These types of schemes multiply the investment by
a constant factor. Waterfall schemes have a different logic
of money distribution. Here each new investment is poured
along the chain of investors so that each can take their share.
Eventually, we have Handover schemes, where the fee to join
the scheme is determined by the contract. This fee gets an
increased value each time a new investor joins the scheme.
Looking at the already classified Ponzi Schemes contracts on
the Ethereum blockchain, we noticed that a lot of them were
published between 2016 and 2017. We aim to build a classifier
trained with all the contract that have been spotted in the past
few years as well as some which don’t belong to this group,
as they are not Ponzi schemes. It is interesting to notice that
a lot of the already known schemes are very similar between
them, and it is clear that a lot of developers took inspiration
from others’ work. We can find also different versions of the
same contract with slight differences (variable names or some
unimportant operations).

II. STATE OF ART

The first Ponzi scheme contracts date back to 2015, the year
of the launch date of Ethereum, but almost all of the Smart
Ponzi contracts of our dataset are dated between 2016-2018.
Since they appeared in the blockchain (not only in that of
Ethereum but also in that of Bitcoin) the Ponzi scheme and
fraudulent contracts in general [11] have aroused great interest
in the scientific community. This is because these schemes are
potentially dangerous for participants who invest their money

unconsciously and that the inherent properties and advantages
offered by a blockchain make them even more effective. The
main advantage that a fraudulent smart contract can take ad-
vantage of is that of the guarantee of anonymity offered by the
blockchain. This makes a scam virtually impossible to track,
which is why such schemes need to be spotted. Currently,
several solutions have already been explored to identify Ponzi
schemes within the blockchain, both in that of Bitcoin and in
that of Ethereum. To recognize Smart Ponzi within Bitcoin,
several approaches were used, including those oriented to data
mining [8]. The idea is to apply data mining techniques to
detect Bitcoin addresses related to Ponzi schemes, considering
features like the lifetime of the address, the activity days, the
sum of all the values transferred to the address and others; the
problem is seen as a binary classification problem, in which a
classifier must recognize between ’Ponzi’ and ’non-Ponzi’. In
the field of Bitcoin, using survival analysis, factors that affect
scam persistence have been spotted [13]. Vasek and Moore
found out that when the scammer interacts a lot with their
victims, the scam’s life is increased, and that scams are shorter-
lived when the scammers register their account on the same
day that they post about their scam.
The Ethereum blockchain has also aroused great interest in
the search for Ponzi scheme contracts. Previous work [5]
examined all the contracts with a certified source code, deter-
mining if they were implementing a Ponzi scheme. They also
analyzed the source code of smart contracts (when available)
and discovered that most of the contracts share common
patterns. For the classification of Smart Ponzi on Ethereum,
a proposed model classifies whether a contract implements
a Ponzi scheme or not by using features extracted from the
transaction history and from the opcodes of smart contracts
[9]. In general, we can say that data science approaches
are widely used not only to detect scams but honeypots in
general [10]. Our approach is always based on solving a binary
classification problem, but it differs as it is based on natural
language processing techniques. In fact, we used the source
code (when available) of smart contracts to create our features.
The idea is that Smart Ponzi have a well-defined structure and
use meaningful terms that identify them. It is very unlikely that
there are Ponzi scheme contracts that do not make their source
code clear, or that in any case try to make their operation
ambiguous, because a participant is more inclined to invest
his money in a contract that clearly shows their functioning,
rather than in a contract whose functionality is not known. In
the next sections we will see in detail our proposed approach
for the classification of Smart Ponzi schemes.

III. SCRAPING

The use of machine learning concerning cryptocurrencies is
becoming increasingly important, especially for the classifi-
cation of smart contracts and predictions related to the trend
in the currency market [12]. Our idea is to build a machine
learning model taking advantage of Natural Language Process-
ing (NLP) techniques. In particular, we want to exploit Text
Classification techniques to classify Ponzi schemes contracts,



but first, we must determine what textual features will be part
of our dataset. All Ponzi schemes contracts have a common
execution flow and structure, so, we may take advantage of
this information. The first text feature we identified is the
source code of the smart contracts when available. We had
this feature for the entire dataset. Another text feature is
the contracts’ Opcode. We collected Opcodes for the entire
dataset since the source code of all the collected contracts
was available. The idea is that since Smart Ponzi contracts
have a similar structure, their Opcodes will be similar as well.
The last text feature consists of pieces of information extracted
from contracts’ transactions. Again, we took advantage of the
cyclic execution flow of a Ponzi scheme and key terms. The

Fig. 1: Example of contracts transactions

flow consists in:
1) Contract creation by the pyramid leader.
2) Recruitment of investors.
3) The just recruited investors recruit new participants as

well.
4) Payment of the investors.
5) Repeat from point 2 until the scheme is broken.

Considering this execution flow, it’s reasonable to think
that in Ponzi schemes contracts, we will find transactions
performed to execute the function to allow a new participant
to join the scheme and transactions that execute functions to
pay the investors. Usually, these functions have well-defined
names such as join, enter, pay, payout, and similar terms; the
idea is to take advantage of these pieces of information to
recognize a Smart Ponzi.
The next step in our recognition procedure is the feature
extraction. All the text information is available on Smart-
Corpus [6]. All one needs is the contract’s address, and then
scraping from the web page its relative source code, opcode,
and transactions is straightforward. We started from all the
collected contracts’ addresses, and then we used Python
to perform a web scraping task to retrieve all the needed
information. In particular, we used the beautifulsoup module
to perform web scraping and clean the text information from
HTML tags and elements.

IV. CLASSIFICATION
We started from a dataset made of already known Ponzi
schemes and of contracts that are not Ponzi schemes. We

collected 171 Smart Ponzi contracts and 1500 contracts that
are not Ponzi schemes, so our dataset is strongly unbalanced.

1 contract PiggyBank {
2
3 struct InvestorArray {
4 address etherAddress;
5 uint amount;
6 }
7
8 InvestorArray[] public investors;
9

10 uint public k = 0;
11 uint public fees;
12 uint public balance = 0;
13 address public owner;
14
15 // simple single -sig function modifier
16 modifier onlyowner { if (msg.sender == owner)

_; }
17
18 // this function is executed at initialization

and sets the owner of the contract
19 function PiggyBank() {
20 owner <= msg.sender;
21 }
22
23 // fallback function - simple transactions

trigger this
24 function() {
25 enter();
26 }
27
28 function enter() {
29 if (msg.value < 50 finney) {
30 msg.sender.send(msg.value);
31 return;
32 }
33
34 uint amount=msg.value;
35
36
37 // add a new participant to array
38 uint total_inv = investors.length;
39 investors.length += 1;
40 investors[total_inv].etherAddress = msg.

sender;
41 investors[total_inv].amount = amount;
42
43 // collect fees and update contract balance
44
45 fees = amount / 33; // 3% Fee
46 balance += amount; //

balance update
47
48
49 if (fees != 0)
50 {
51 if(balance>fees)
52 {
53 owner.send(fees);
54 balance -= fees; //

balance update
55 }
56 }
57
58
59 // 4% interest distributed to the investors
60 uint transactionAmount;
61
62 while (balance > investors[k].amount * 3/100

&& k<total_inv) //exit condition to
avoid infinite loop

63 {



64
65 if(k%25==0 && balance > investors[k].

amount * 9/100)
66 {
67 transactionAmount = investors[k].amount *

9/100;
68 investors[k].etherAddress.send(

transactionAmount);
69 balance -= investors[k].amount * 9/100;

//balance update
70 }
71 else
72 {
73 transactionAmount = investors[k].amount

*3/100;
74 investors[k].etherAddress.send(

transactionAmount);
75 balance -= investors[k].amount *3/100;

//balance
update

76 }
77
78 k += 1;
79 }
80
81 //----------------end enter
82 }
83
84
85
86 function setOwner(address new_owner) onlyowner

{
87 owner = new_owner;
88 }
89 }

Listing 1: Example of a Smart Ponzi, the PiggyBank contract

We saw the Ponzi schemes contracts classification problem as
a binary classification problem and we assigned the binary
target variable with value 1 for a Smart Ponzi and 0 for
other contracts. Section IV-C provides an overview about
the models used for the Ponzi schemes contracts classification
problem.

A. AST EXTRACTION

To have easy access to the contracts’ variables, statements,
conditions, and all the constructs in general, we extracted all
the Abstract Syntax Trees (AST) from our samples. We used
python as the programming language to build our solution.
Extracting AST from contracts using python is a trivial task
thanks to the solidity parser module. The module only re-
quires the user to load the desired contract for which the AST
is then extracted in a JSON file after parsing the source code.

B. SEMANTIC INFORMATION EXTRACTION

To extract information from AST, we must parse it. First,
to parse a Solidity contract AST we must know its structure,
defined by Solidity’s grammar. Checking grammar, we know
how our AST fields are defined; some of the types defined
are trivial, like VariableDeclaration, which contains only a
variable name and its type. Other nodes could contain quite
complex types and require a deep exploration of the subtree.
Types like BinaryOperation, MemberAccess, and IndexAccess
(for example) require a recursive exploration of the subtree
because they could have operations of the same type (i.e. a

BinaryOperation could have another BinaryOperation inside).
Once we built our AST parser, we extracted all the potential
information relevant from a semantic viewpoint. Variables
names, struct names, conditions inside constructs (like for,
if, while), and the operations performed inside contracts are
all relevant because we saw previously that some terms and
some operations are recurrent in Smart Ponzi schemes. To
extract a semantic document from AST, we took all the labels
previously listed and saved them in different structures. We
tried to look for the extracted features as much as possible
similar to something that suggests a natural language. To do
this, we built a dictionary that replaces all the mathematics and
logic operators with their semantic meaning (i.e. the symbol
’=’ is replaced with ’is assigned with value’). To add semantic
to the resulting document, we added meaningful words related
to the type of construct. For example, before a variable name or
a struct name we added ’declaring’, and after a struct name we
added ’with members’ followed by struct members name.Since
this approach could sound tricky and probably not so easy to
understand, we provide an example of the ’semantization’ of
the source code. Suppose to have a Solidity line of code like
the one below.

1 if (msg.value < 50 finney)

The entire line of code is an ’IfStatement’ field of the
Solidity AST. In this specific case the expression inside this
IfStatement, which is ’msg.value < 50 finney’, is a Binary-
Operation. Our parser decomposes the expression as follows:
the symbol ’<’ is the operator of the BinaryOperation, while
’msg.sender’ and ’50 finney’ are respectively the left part of
the operation and the right part of the operation. The right
part is simple, since it includes just a numerical value and a
Solidity’s keyword. The left part is not trivial, because it is a
MemberAccess expression and it needs further decomposition.
In this case, the expression is not too complex, since it has
only one identifier, which is ’sender’, so exploring the subtree
requires only one additional step. Now that we decomposed
the IfStatement the parser will build the corresponding line in
the semantic document.

1 if msg value is less than 50 finney

Following this approach for all contracts, we were able to
extract semantic documents from contracts’ AST and perform
text classification.

C. MODELS

The models tested for the Smart Ponzi classification problem
are:

• Decision Tree.
• Support Vector Machine (SVM).
• Multinomial Naive Bayes.

Decision Trees are among the simplest classifiers and can
be used for both classification and regression problems. As
the name suggests, they work building a tree representation
starting from data. We choose to test the Decision Tree just
because it is one of the simplest models and because any



missing values in the data do not affect the process of building
a tree to any considerable extent. One possible problem is that
this particular model is inadequate for applying regression
and predicting continuous values (but this is not our case).
Other problems consist in the average time required to train
the model, which is very long, and that computations can get
quite complex, especially when compared with other models.
Consequently, despite being simple, the Decision Tree is quite
an expensive model. The second model we tested is the SVM,
which maps training examples to points in space. This model
is memory efficient, and it works well when the two classes
are linearly separated. The problem is that this model is
not suitable for large datasets, and it is not easy to keep
track of decisions taken by the SVM, and therefore, it is
not simple to explain the obtained results. The Multinomial
Naive Bayes consider a feature vector where a given term
represents the number of times it appears or very often i.e.
frequency. We choose to test this model because it has a
low computational cost, can work with large datasets, and is
well known to perform well in text classification problems,
making it a perfect choice for our classification problem. The
main disadvantage is that using a Naive Bayes is difficult to
get the set of independent predictors for developing a model.
Considering the models’ inner properties, we can make some

Fig. 2: Proposed approach’s workflow

considerations about the expected results. In terms of time
complexity, we expect the Decision Tree as the slowest model
to train, and the SVM as the fastest. We expect to reach the
best performances with the Multinomial Naive Bayes Model,

and at least to reach similar results with the Support Vector
Machine, which should behave as well in this particular task.

D. CLASSIFICATION METHODOLOGY

To perform the classification, we built two different CSV files.
The first one has contracts’ source code and opcode, while
the second one has contracts’ source code and transactions
information. The idea is to test the models’ performances
making comparisons in terms of class metrics evaluation like
accuracy, precision, recall, and f1-score. We want to check
if these values are better with a model trained with source
code and opcode or with a model trained with source code
and transactions. First, we decided to use 80% of our dataset
to build the training set and the remaining 20% to build the
test set. Since we had fewer samples for the Ponzi schemes
contracts, we decided not to use a validation set. Once we
built our dataset, we dropped all the empty fields and possible
duplicates, and then we converted our collection of documents
to a matrix of token counts. Before training and testing the
model, we normalized our data removing the words that
commonly appear in the English language. We performed any
character normalization, and we set a threshold to ignore terms
having a document frequency lower than the given threshold.

E. EXPERIMENTAL SETUP USED

To perform our experiments we used a MSI PL62 7RC with
the following tech specs:

• Processor: Intel(R) Core(TM) i7-7700HQ CPU @
2.80GHz

• RAM: 8 GB
• Cores: 8
• Architecture:64-bits Ubuntu 18.04.4 desktop

We also used Google Colab to train and test our models. In
particular, we used a VM with 25 GB of RAM.

V. RESULTS AND DISCUSSION

Table I resumes the results obtained with the Decision Tree
model. We tested all the models with two different features.
The first text feature joins the source code and the opcode,
while the second one joins source code and transactions. Also,
we tested our models with different parameters. For example,
the criterion parameter allows to choose between the Gini
impurity and entropy as functions to measure the quality of
a split. Looking at results, we see that in terms of precision,
recall, and f1-score, the decision tree behaved well with both
the two different text features and with both Gini impurity and
entropy. Choosing between the Gini impurity and the Entropy-
based information gain doesn’t make too much difference
because they are pretty much the same. Anyway, selecting the
Gini impurity would spare to compute logarithmic functions,
which are computationally intensive. Anyway, we can see from
the results that the best configuration is a Decision Tree trained
with source code and transactions as a text feature. Table II
shows results reached by a Multinomial Naive Bayes model.
Again, the model behaved well and reached results not so



Features Criterion Target Precision Recall F1-Score Accuracy

Source code/Opcode Gini Not Ponzi 0.98 0.99 0.99 0.97833Gini Ponzi 0.94 0.89 0.91

Source code/Opcode Entropy Not Ponzi 0.98 1.00 0.99 0.98555Entropy Ponzi 1.00 0.89 0.94

Source code/Transactions Gini Not Ponzi 0.99 1.00 0.99 0.98916Gini Ponzi 0.97 0.94 0.96

Source code/Transactions Entropy Not Ponzi 0.99 1.00 0.99 0.98916Entropy Ponzi 0.97 0.94 0.96

TABLE I: Classification score for Decision Tree model

Features Fit Prior Target Precision Recall F1-Score Accuracy

Source code/Opcode True Not Ponzi 0.97 1.00 0.99 0.97472True Ponzi 1.00 0.81 0.89

Source code/Opcode False Not Ponzi 0.97 1.00 0.99 0.97472False Ponzi 1.00 0.81 0.89

Source code/Transactions True Not Ponzi 0.99 1.00 1.00 0.99277True Ponzi 1.00 0.94 0.97

Source code/Transactions False Not Ponzi 0.99 1.00 1.00 0.99277False Ponzi 1.00 0.94 0.97

TABLE II: Classification score for Multinomial Naive Bayes model

Features Loss Target Precision Recall F1-Score Accuracy

Source code/Opcode Hinge Not Ponzi 0.99 0.99 0.99 0.98555Hinge Ponzi 0.94 0.94 0.94

Source code/Opcode Squared Hinge Not Ponzi 0.99 0.99 0.99 0.98194Squared Hinge Ponzi 0.92 0.93 0.94

Source code/Transactions Hinge Not Ponzi 0.98 1.00 0.99 0.98194Hinge Ponzi 0.97 0.89 0.93

Source code/Transactions Squared Hinge Not Ponzi 0.99 1.00 0.99 0.98916Squared Hinge Ponzi 0.97 0.94 0.96

TABLE III: Classification score for Support Vector Machine model

far from Decision Trees’s one, and sometimes slightly better.
Again, the best configuration is a Multinomial Naive Bayes
trained with source code and transactions. The parameter Fit
Prior defines whether to learn class prior probabilities or not,
but from the results, we can see that using a uniform prior
or not doesn’t make any difference. Table III shows results

Fig. 3: Example of ROC curve showing the True Positive and
False Positive rate reached by our SVM model

reached by a SVM model. The loss parameter allows to choose
betweeen the hinge and squared hinge loss function. The SVM

model behaved well both with source code and opcode and
also with source code and transactions as text feature, despite
the configuration trained with source code and transactions
returns slightly better results.
Now that we showed all the results reached by all of the tested
models, we can do further considerations. All the models have
behaved well, and they were able to classify Ponzi schemes
contracts. As we expected, the best models are the Multinomial
Naive Bayes and the SVM, which obtained the best results
in terms of precision, recall, and f1-score, reaching both an
accuracy of 99pt%. The accuracy reached by our models
is almost perfect as evidenced by the ROC curve plotted
following a training of an SVM model shown in the Figure 3,
but we must consider that this was also because Ponzi Schemes
contracts have a well-defined structure, and many of them are
similar in terms of code since a lot of Ethereum developers
take inspiration from others’ work.

VI. FUTURE WORK

It must be said that despite all the work that has already
been done, Ethereum remains a relatively recent platform, and
as a result, many vulnerabilities and honeypots have yet to
be identified [14]. Given these premises, new scam schemes
may be implemented by exploiting these vulnerabilities. All
Ponzi scheme contracts used as dataset samples date back
to 2016-2018, but new contracts may have been introduced
in the meantime.We must consider that the Ponzi Schemes



contracts analyzed despite are included in a period of three
years, they show no differences substantial in implementation.
Although there have been several pragma and consequently
some changes in the definition of functions and constructs
are required, the flow of execution of a Smart Ponzi remains
almost unchanged compared to the types already presented in
section I.
The goal is to use our model to check whether new Ponzi
schemes have actually been introduced into the Ethereum
blockchain. The Ponzi scheme is just one of the possible
scams that can be implemented against the participants of the
Ehtereum network. In fact, other possibilities have been iden-
tified that allow taking advantage of the inner properties and
possibilities offered by blockchain technology to implement
scams. One possibility is to expand and make our model more
comprehensive than the one presented in the paper in such a
way as not only to recognize Ponzi schemes but also contracts
that are potentially highly damaging, in economic terms, to the
participants who use it.

REFERENCES

[1] M. Artzrouni ”The Mathematics of Ponzi schemes,” Mathematical Social
Sciences, 2009, vol. 58, pp. 190-201

[2] N. Atzei, M. Bartoletti, and T. Cimoli ”A Survey of Attacks on Ethereum
Smart Contracts (SoK)”, 2017, pp. 164-186

[3] Pinna, Andrea, et al. ”Design of a Sustainable Blockchain-Oriented
Software for Building Workers Management.” Front. Blockchain 3: 38.
doi: 10.3389/fbloc (2020).

[4] Marchesi, Michele, Lodovica Marchesi, and Roberto Tonelli. ”An agile
software engineering method to design blockchain applications.” Pro-
ceedings of the 14th Central and Eastern European Software Engineering
Conference Russia. 2018.

[5] M. Bartoletti, S. Carta, T. Cimoli, and R. Saia ”Dissecting Ponzi schemes
on Ethereum: Identification, analysis, and impact,” Future Generatio
Computer Systems, August 2019, vol. 102

[6] Pierro GA, Tonelli R, Marchesi M. An Organized Repository of
Ethereum Smart Contracts’ Source Codes and Metrics. Future Internet.
2020; 12(11):197. https://doi.org/10.3390/fi12110197.

[7] Y. Wang, A. Bracciali, T. Li, F. Li, X. Cui, and M. Zhao, ”Information
Sciences,” 2019, vol. 477, pp. 291-301

[8] M. Bartoletti, B. Pes, and S. Serusi ”Data Mining for detecting bit-
coin ponzi schemes”, 2018 [Crypto Valley Conference on Blockchain
Technology (CVCBT)], pp.75-84

[9] W. Chen, Z. Zheng, E. Ngai, P. Zheng, and Y. Zhou ”Exploiting
Blockchain Data to Detect Smart Ponzi Schemes on Ethereum,” March
2019, vol. PP, pp. 1-1

[10] C. Ramiro, C. F. Torres, and R. State ”A Data Science Approach for
Honeypot Detection in Ethereum,” 2019, CoRR

[11] C. F. Torres, M. Steichen, and R. State ”The Art of The Scam:
Demystifying Honeypots in Ethereum Smart Contracts,” 2019

[12] N. Uras, L. Marchesi, M. Marchesi, and R. Tonelli ”Forecasting Bitcoin
closing price series using linear regression and neural networks models,”
PeerJ Computer Science 6, e279

[13] M. Vasek, and T. Moore ”Analyzing the Bitcoin Ponzi Scheme Ecosys-
tem,” In A. Zohar, I. Eyal, V. Teague, J. Clark, A. Bracciali, F. Pintore,
and M. Sala, editors, Financial Cryptography and Data Security, 2019,
pp. 101-112, Berlin, Hei-delberg. Springer Berlin Heidelberg

[14] H. Chen, M. Pendleton, L. Njilla, and S. Xu ”A Survey on Ethereum
Systems Security: Vulnerabilities, Attacks, and Defenses,” June 2020,
ACM Comput. Surv., vol. 53,

[15] Fenu, Gianni, et al. ”The ICO phenomenon and its relationships with
ethereum smart contract environment.” 2018 International Workshop on
Blockchain Oriented Software Engineering (IWBOSE). IEEE, 2018.


	Introduction
	State of Art
	Scraping
	Classification
	AST extraction
	Semantic Information Extraction
	Models
	Classification Methodology
	Experimental setup used

	Results and discussion
	Future Work
	References

