
HAL Id: hal-02978015
https://hal.inria.fr/hal-02978015

Submitted on 26 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving practices in a medium french company: First
step

Mahugnon Honore Houekpetodji, Nicolas Anquetil

To cite this version:
Mahugnon Honore Houekpetodji, Nicolas Anquetil. Improving practices in a medium french company:
First step. [Rapport de recherche] RMod. 2019. �hal-02978015�

https://hal.inria.fr/hal-02978015
https://hal.archives-ouvertes.fr


Improving practices in a medium french company:
First step

HOUEKPETODJI Mahugnon Honore∗†, Nicolas Anquetil‡
∗University of Lille, France

†Inria Lille - Nord Europe, France
homahugnon@gmail.com, nicolas.anquetil@inria.fr

Abstract—Legacy systems are old software that still does useful
tasks. In industrial software companies, legacy systems are often
crucial for the company business model and represent a long-
term business investment. Legacy systems are known to be hard
to maintain. This is the case in a french company whose main
product is twenty years old software written in PowerBuilder.
Our long-term goal is to help it re-engineer this system. But
how to validate our intervention? Little data is available on the
system and specifically, past versions of the source code are not
easy to recover. This constrained us on the metrics we could use.
In this paper, we present a lightweight model to characterize the
situation of the system and allow us to monitor it in the future.

Index Terms—Legacy system, software quality model .

I. INTRODUCTION

Software companies have little spare resources to allocate
to software quality improvement or code defect removal. As
a result, they often develop features in a hurry. As the system
grows, it becomes harder and harder to maintain. To ensure
the future of the system, and through it, of the company
itself, some re-engineering actions might be necessary. The
long period of growth and evolution of the system as well as
staff evolution, lead to problems such as dead code, duplicate
code, and obsolete documentation. The developers at the origin
of the application are no longer present, so a large part of
the knowledge (and this at different levels of granularity) is
scattered or lost.

This is the situation at a medium French company, which
main business product we are studying. The system is written
in an old language (PowerBuilder) typically unknown to young
programmers which translates in a difficulty to hire new
developers. There is also a sense in the development team that
the system suffers from architecture erosion and is difficult
to maintain or evolve which translates into a steep learning
curve for new developers. We are trying to help this company
improve its software engineering practices and restructure the
system to improve the situation.

In this paper, we are trying to answer the following question:
How to validate our intervention and can we measure its
concrete impact on the system and its evolution?

For the reasons explained above, we cannot completely
rely on current developers knowledge of the system. The
only usable information about the system is its non-versioned
source code and a ticket database. Past literature often relied
on historical data on the source code, for example cyclomatic
complexity [Gill and Kemerer, 1991], or number of lines of

code [Port and Taber, 2018]. In lack of a reliable software
versioning system, we could not use these solutions.

We mine and analyse the ticket database to overcome our
problem. This paper presents the results of this work.

This paper is structured as follows: we start with related
work in section II, followed by the section III in which we
present tickets database mining background. In the section IV
we present our methodology and conclude in section VI.

II. RELATED WORK

Recently, research on mining software repositories has re-
ceived much attention as it attempts to understand software
evolution [Zhang and Kim, 2010]. Software defect history
and source code history are often used to monitor software
maintenance or predict the system’s quality. For instance, soft-
ware defect prediction using software repositories has already
been extensively discussed in the literature as witnessed by
many literature surveys: [Catal and Diri, 2009, Hall, Beecham,
Bowes, Gray, and Counsell, 2011, Hosseini, Turhan, and
Gunarathna, 2017, Li, Shepperd, and Guo, 2019, Malhotra,
2015].

But these solutions rely on the availability of source code
history. For example, [Gill and Kemerer, 1991] used McCabe’s
cyclomatic complexity metric divided by the size of the system
to predict software maintenance productivity. [Port and Taber,
2018, Zhang and Kim, 2010] used software defect history and
source code history to assess a system evolution to monitor
maintenance.

In our case, the source code history is not easily available as
the company does not make use of a version control system.
Thus, we cannot use the methods presented above.

[Herzig, Just, and Zeller, 2013] propose to consider ticket
database. He reports that 33.8% of the bugs studied among
five open-source projects were misclassified. For this reason,
other researchers try to automatically re-classify maintenance
activities (e.g. [Levin and Yehudai, 2019, Mockus and Votta,
2000]).

At the company, maintenance activities classification is
more reliable because it drives the entire software evolution
process. We rely on this classification to make our analysis.

We develop a lightweight technique to analyse the ticket
database.



III. STUDY BACKGROUND

In this paper, we are interested in characterising the system
and its evolution to better evaluate the possible future impact
of our intervention.

A. Presentation of the system studied

Legacy systems have a lifespan of several decades, decisions
made at the beginning of development and their evolution over
the life of the software are often lost. This is the case of the
system we are studying which is more than 20 years old. It
is written in Powerbuilder. Powerbuilder is a programming
language and integrated development environment initially
developed by PowerSoft. The first version was published in
1992. Powerbuilder application components are grouped in
libraries. A Powerbuilder library contains differents type of
objects: datawindow, user object, global function, menu, etc.
Powerbuilder is a procedural language that evolved to (partial)
object-orientedness: inheritance and object-oriented features
are limited to some object types (windows, user objects and
menus).

The system has 3 MLOC, in 117 Powerbuilder libraries.
The largest library is over 300 KLOC. The development team
varied over time but counts 15 people at the moment, without
the testing team which is external to development.

PowerBuilder version supports version control only since its
2017 version, and even this supports is still not entirely satisfy-
ing, for example conflict resolution is performed automatically
by the system by choosing one version over the other without
asking the developer. For these reasons, version control man-
agement was never used on the system studied.However some
old major versions or archived in separate directories. Versions
before 2012 are completely lost. Some version control is done
informally inside the team. When developers work on the same
version of the system, they chat with each other to notify which
part they are modifying so that others won’t modify the same
part. Also, each developer has to write a comment in the source
code with his/her name and the date the modification he/she
performed.

B. Ticket

At the company, tickets are stored in the tickets database
since 2000. A ticket represents a unit work. The ticket database
drives the entire software evolution process: assignment of
work to developers, management of the workflow to answer
a client request, billing information about each task. There
are tickets for fixing defects, writing documentation, adding
new features, etc. As a consequence, we can rely on a ticket’s
classification because it is reviewed by the team manager to
ensure that it is properly handled.

At the company, a ticket includes the following character-
istics among other things:

• the creation date
• the closing date
• the estimation of the time needed by the developer to

work on the ticket
• time spent by a developer

– time to analyze
– time to implement a solution
– time to test

• the library(ies) impacted

IV. METHODOLOGY

Our long-term goal is to help developers re-engineer the
system at a small cost. This is needed to improve the general
quality and make future evolution easier, but it needs to be
cheap to convince upper management investing in this purely
technical task.

Therefore, we need to validate our intervention as well as
the restructuring work developers might engage in the future.

A. Souce code versionning

Our first action was to introduce a version management
system. We chose Subversion (SVN) because it was simpler to
explain to developers that were not familiar with the concepts
of version management. We gave a short training session to
the developers, and they are now starting to use it as part of
the new process.

Besides, we are reconstructing a summarized source history
in SVN by importing one after the other the different major
versions currently stored in directories (versions 2012 to
2019). We hope that this will help us analyze the system’s
historical code changes to have additional information about
the system evolution.

B. Ticket data analysis

Our goal was to characterize the system to be able to
measure our impact and that of the developers in the future.
The problem was to extract information from the system that
was relevant for the company and for which we could hope to
have some impact. All this within the very restricted context
described above.

We turned to the ticket database and elected the following
questions:

• What is the proportion of evolution versus correction
tickets?

• How long does it take to close a ticket?
• Development time spent on a ticket?
• Testing time spent by the developer on a ticket?
• Testing time spent by the tester (other teams) on a ticket?
• Difference between the time estimated and the actual time

for a ticket?
The ticket database first needed some cleaning:
• Tickets may concern several software systems in the com-

pany and different development teams. We thus selected
tickets related to the system we are studying.

• The ticket database contains data from 1998 until today.
Before 2004, tickets information are not always consis-
tent, for example, missing creation date or missing/in-
correct category. This constrained us to eliminate tickets
prior to 2004.



• Up to recently, the name of the library concerned by
a ticket was filled manually (free text). As a conse-
quence, there are some typos in the names that need
to be corrected. A simple and frequent case is two
swapped characters cwm liq ou instead of cwm liq uo
(“uo” PowerBuilder User Object). Some more complex
cases require an understanding of the application do-
main and the system, for example, uo liq instead of
cwm liq uo. We identified all the errors manually and
corrected them.

• The category of the ticket is fine-grained whereas we are
only interested in evolution versus corrective tickets. In
our analysis, we recategorized the tickets according to
some simple dictionary provided by the team manager.

• Durations are registered in a free text format with some
conventions. As should be expected, the conventions were
not always respected (e.g. “5d” or “5days”) and there
were typos. We created a simple converter which covers
all the cases and converts them into numerical values.

For all the questions on time (for example time to close the
tickets), the tickets are grouped by month of creation and their
value are averaged for the month of creation. We compute the
data for our questions as follows:

• We compute the closing time of a ticket simply as the time
between creation and closing. This is only computed for
closed tickets, the other ones are ignored.

• The time spent by the developers to implement the
solution for a ticket is recorded in a “Time” table related
to the ticket. We sum all “Time” rows linked to the ticket
that are marked as development.

• The time spent by the developers to implement the
solution for a ticket is recorded in a “Time” table, we
sum all “Time” rows linked to the ticket that are marked
as testing

• In the ticket there is a field recording the estimated time
to solve it. This field is filled by the team manager. There
is also a field recording the total time spent on the ticket
by the developer. We compute the difference between the
total time spent and the estimated time. If this difference
is positive, there was under estimation, and if it is negative
there was over estimation.

We finally plotted the data on a 2 dimension graph. We
noticed a very large variation of the results from month to
month (nonstationary results). This made it hard to interpret
the graphs. To get smoother plots, we computed the moving
average of [month - 2; month + 2] for each month. So for
example, plotted data for July 2010 corresponds to the average
time of all tickets opened between May 2010 (inclusive)
and September 2010 (inclusive). We will also plot the linear
regression of the curve for each graph to get a better notion
of the trend.

V. RESULTS

A. Souce code versionning
The introduction of SVN only started one month ago and

we do not have yet significant results to report.

For the reconstruction of the summarized source history,
we already imported major versions sorted by release date
until 2015 in an SVN repository. At the end of the importing,
we could analyze changes between release at the source code
level.

B. Data collection

TABLE I
TICKET ANALYSED

Tickets Defect Evolution
27380 15407 (56%) 11973 (44%)

Table I gives the number of defect versus evolution tickets.
We note that 56% of defect tickets seems a high proportion.
Literature (e.g. [Pigoski, 1996] ) states that the proportion is
typically 20% to 25% of defect tickets. This is an issue that
we will investigate and monitor in the future.

C. Time to close a ticket

Fig. 1. Time to close evolution (up) and defect (down) tickets

Figure 1 presents the values of closing time for evolution
(up) and defect (down) tickets. One can notice a large variation
of plotted time, even after smoothing it with the moving
average. We don’t see it as pointing to a significant problem
with the system.



It takes longer (on average) to close an evolution ticket than
a defect ticket which seems natural.

We also note that the time is augmenting over the years
for both categories which may be a sign of declining quality.
Finally, we note that the closing time over the 15 years was
multiplied by 2 for evolution tickets and 3 for defect tickets.
Again this is an issue to investigate.

D. Developement time spent on a ticket

Fig. 2. Time spent by developers to implement his solution for evolution (up)
and defect (down) tickets

Figure 2 presents the time spent by developers to implement
a solution to evolution (up) and defect (down) tickets. As Fig-
ure 1, Figure 2 shows a large variation even after smoothing.

It takes longer (on average) to implement a solution for an
evolution ticket than a defect ticket. This seems natural.

We also note that the time is augmenting over the years
for both categories which may be a sign of declining quality.
Finally, we note that the time spent by developers to implement
a solution was multiplied by a similar factor for evolution and
defects (about 8 or 10).

E. Testing time by the developper

Figure 3 presents the trend of the time spent by developers
to test their solution for evolution (up) and defect (down) tick-
ets. We can observe that the time is decreasing for evolution
tickets and stable for defect tickets. This might be due to the

Fig. 3. Time spent by a developer to test his solution for evolution (up) and
defect (down) tickets

pressure to deliver new evolutions. We will come back to this
in the next section. This declining testing time may result in
a loss of quality of the system that could explain the results
shown in the previous sections.

F. Time estimation

Figure 4 shows the difference between the time spent by
the developer and the time estimated for evolution (up) and
defect (down) tickets. We can observe two obvious periods:
before and after May 2013. Before May 2013 the time spent
by the developer is superior to the time estimated with and
increasing difference for both evolution and defect tickets.
This means that the developers did not have enough time to
solve the tickets. It constrained developers in their task which
might have impacted negatively the quality of the solutions
and therefore of the code.

After May 2013 the time estimated is superior to the
time spent for evolution and defect tickets. This estimate is
improving for evolution tickets as the regression line is closing
to 0. For defects tickets, the overestimation tends to increase.
We could relate this to diminishing testing time (Section V-E)
for evolution ticket (that could be due to a lack of time)
whereas the testing time remains constant for defect tickets
which still enjoy a clear over-estimation. However, it must be
noted that we did not see the same two periods difference



Fig. 4. Difference between time spent by developers and time estimated for
evolution (up) and defect (down) tickets

in the previous section, therefore it is not clear that under-
estimation of the time is at the source of the diminishing
testing time.

VI. SUMMARY AND CONCLUSIONS

In this paper, we present our first steps in improving
practices in a medium company. We first introduced a version
control system in the evolution process. We chose Subversion
as it seemed simpler to present to developers that had no
previous knowledge of versioning. The development team is
now using it and the source code is now versioned. This will
open the door for further analyses specifically on the code
repository to understand the system evolution.

As we want to monitor our future actions on the system,
we analysed the ticket database to characterize the current
situation. The results seem to point to the declining quality of
the system (it takes longer to implements tickets), but we also
noted an improvement in the estimation of the workload of a
ticket.

REFERENCES

Cagatay Catal and Banu Diri. A systematic review of software
fault prediction studies. Expert Syst. Appl., 36(4):7346–
7354, May 2009. ISSN 0957-4174. doi: 10.1016/j.eswa.
2008.10.027. URL http://dx.doi.org/10.1016/j.eswa.2008.
10.027.

Geoffrey K Gill and Chris F Kemerer. Cyclomatic complex-
ity density and software maintenance productivity. IEEE
transactions on software engineering, 17(12):1284, 1991.

Tracy Hall, Sarah Beecham, David Bowes, David Gray, and
Steve Counsell. A systematic literature review on fault

prediction performance in software engineering. IEEE
Transactions on Software Engineering, 38(6):1276–1304,
2011.

Kim Herzig, Sascha Just, and Andreas Zeller. It&#039;s not
a bug, it&#039;s a feature: How misclassification impacts
bug prediction. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13, pages 392–
401, Piscataway, NJ, USA, 2013. IEEE Press. ISBN
978-1-4673-3076-3. URL http://dl.acm.org/citation.cfm?id=
2486788.2486840.

Rebvar Hosseini, Burak Turhan, and Dimuthu Gunarathna.
A systematic literature review and meta-analysis on cross
project defect prediction. IEEE Transactions on Software
Engineering, PP:1–1, 11 2017. doi: 10.1109/TSE.2017.
2770124.

Stanislav Levin and Amiram Yehudai. Towards software
analytics: Modeling maintenance activities, 2019.

Ning Li, Martin Shepperd, and Yuchen Guo. A systematic
review of unsupervised learning techniques for software
defect prediction. arXiv preprint arXiv:1907.12027, 2019.

Ruchika Malhotra. A systematic review of machine learning
techniques for software fault prediction. Applied Soft Com-
puting, 27:504 – 518, 2015. ISSN 1568-4946. doi: https:
//doi.org/10.1016/j.asoc.2014.11.023. URL http://www.
sciencedirect.com/science/article/pii/S1568494614005857.

Mockus and Votta. Identifying reasons for software changes
using historic databases. In Proceedings International
Conference on Software Maintenance ICSM-94, pages 120–
130, Victoria, BC, Canada, 2000. IEEE Comput. Soc.
Press. ISBN 978-0-8186-6330-7. doi: 10.1109/ICSM.2000.
883028. URL http://ieeexplore.ieee.org/document/883028/.

Thomas M. Pigoski. Practical Software Maintenance: Best
Practices for Managing Your Software Investment. Wi-
ley Publishing, 1st edition, 1996. ISBN 0471170011,
9780471170013.

Dan Port and Bill Taber. An empirical study of process policies
and metrics to manage productivity and quality for main-
tenance of critical software systems at the jet propulsion
laboratory. In Proceedings of the 12th ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and
Measurement, page 37. ACM, 2018.

Hongyu Zhang and Sunghun Kim. Monitoring software
quality evolution for defects. IEEE Software, 27:58–64, 07
2010. doi: 10.1109/MS.2010.66.


