
 

Accepted Manuscript

Automatic Detection of System-Specific Conventions Unknown to
Developers
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Highlights

• We propose to free the developers from the need to create system-specific rules.

• A relevant amount of the rules (62%) is automatically created for our case study.

• Created rules point to 47 real violations in source code.

• There is no overlap between our system-specific rules and the generic ones.
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Abstract

In Apache Ant, a convention to improve maintenance was introduced in 2004 stat-
ing a new way to close files instead of the Java generic InputStream.close(). Yet, six
years after its introduction, this convention was still not generally known to the de-
velopers. Two existing solutions could help in these cases. First, one can deprecate
entities, but, in our example, one can hardly deprecate Java’s method. Second, one
can create a system-specific rule to be automatically enforced. In a preceding publica-
tion, we showed that system-specific rules are more likely to be noticed by developers
than generic ones. However, in practice, developers rarely create specific rules. We
therefore propose to free the developers from the need to create rules by automatically
detecting such conventions from source code repositories. This is done by mining the
change history of the system to discover similar changes being applied over several
revisions. The proposed approach is applied to a real-world system, and the extracted
rules are validated with the help of experts. The results show that many rules are in fact
relevant for the experts.

Keywords: Automatic coding convention detection, Mining software repositories,
Software evolution, Empirical software engineering

1. Introduction

During its life, a software system is subject to changes in programming conven-
tions. These changes may have different purposes, but generally enhance code quality
and ease maintenance. For example, by deciding that the constructor Double(double)
in Java should be replaced by Double.valueOf(double), the system’s performance is im-
proved. The knowledge of these change conventions may take time to spread in the
developer community. Developers rarely make use of deprecation annotations to ex-
plicitly mark the calls to be avoided [27], or it may be impossible to use deprecation (in
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the example above the Double(double) is not deprecated), or older languages may lack
the ability to deprecate anything.

Because such conventions are not linked to compilation or execution errors they
can remain unnoticed. They are not used uniformly over the system and occurrences
of the old form will still be found and even introduced years after the first decision was
taken [9]. In this case, the benefits of the new convention, which are often to free the
maintainers from unneeded cognitive burden, are lost over a large part of the system. It
will increase maintenance difficulty as the unaware maintainers are left wondering why
in some cases one convention is used whether in other cases it is another convention.
On the other hand, we give example (in Section 5.1) where the fact that a change in
convention is not uniformly applied is actually very meaningful because it points to
different usage scenarii.

One proposed solution to help in this case, is to use static analysis tools, such as
PMD [4], FindBugs [12], or SmallLint [28] with rules that will check and highlight
the occurrences of the old convention. These tools come with a set of generic rules,
such as the Double(double) example above (taken from FindBugs rules1), but they can-
not answer to system-specific needs, which are more likely to be noticed by develop-
ers [8, 26]. In Section 2, we will give examples of conventions that are specific to
a given system, for example, the Apache Ant convention stating a new way to close
files. Such system-specific rules are neither linked to compilation/execution errors nor
hinder correct execution of the system. This raises the problem of how these rules can
be defined which may be a non trivial task. Some solutions were proposed to auto-
matically extract system-specific rules from a system’s code history, but they present
limitations that make them ill-fitted to tackle this problem. For example, some of these
existing solutions will rely on the hypothesis that a method has been removed and its
call should be substituted by new method calls [21, 33], but this does not apply to the
scenario we are considering here where the old convention does not prevent correct
compilation and execution. Other solutions will rely specifically on bug fix changes to
automatically correct future occurrences of these bugs or prevent their apparition [16].
Again, this does not fit our scenario where the old convention does not hinder correct
execution of the system but is judged less efficient.

In this paper, we propose to automatically detect system-specific conventions un-
known to some developers of the system. Our goal is to provide rules that will detect
occurrences of the old convention and thus will reduce the time it takes to apply the
new convention over the entire system.

Our approach is presented in Section 3. To lower the amount of noise in the candi-
date rules generated, we use patterns that constrain the rules to meaningful ones. We
also set restriction over the occurrences of the new convention in various revisions.

We validate our approach (Section 4) on two open-source systems, Pharo2 [2, 3]
and Moose3 [6, 25], with the help of experts of these systems. The results (presented
in Section 5) show that many rules are in fact relevant and can be used to ensure faster

1http://goo.gl/JK3aDi
2http://www.pharo.org
3http://www.moosetechnology.org
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adoption of new coding conventions.
In addition, in Section 6, we discuss specific details of implementing our approach

such as whether it is better to extract rules from revisions or releases, thresholds to
decide when a rule should be created, how to create new patterns, and we also compare
the system-specific extracted rules with generic rules provided by a static analysis tool.

This work is an extension of our previous study [9]. First, it provides new patterns
to produce rules concerning method invocation. These patterns are included in the new
validation study. Second, we extended the validation by asking the opinion of an expert
(previous validation was only automatic). We also provide more information on how to
fine-tune the approach to a specific system with new results from our experiments with
respect to the occurrence of the new convention over distinct revisions and by showing
how new rule patterns might be created. Finally, we discuss the overlap between our
rules and generic rules provided by static analysis tools.

Thus, the main contributions of this paper can be summarized as follows:

• We provide an extension of our previous study [9] with new patterns to extract
system-specific rules.

• We provide a qualitative and quantitative (both with the help of a system expert)
evaluation of the extracted rules.

• We provide an analysis about the overlap between our rules and rules provided
by static analysis tools as well as about the creation of rules.

• We discuss rule extraction at revision and release level.

• We discuss and illustrate how new patterns can be added to create new rules.

We close this paper with a discussion of the threats to the validity of our experi-
ments (Section 7), a presentation of related work (Section 8), and the conclusion (Sec-
tion 9).

2. Motivating Examples

This section presents concrete cases in which system-specific rules extracted from
source code history would be helpful to developers, and the advantages of our ap-
proach. For this purpose, we consider two examples extracted from real systems where
change conventions have been performed by developers for different reasons. They
illustrate two important change conventions characteristics: (i) several years later they
are still occasionally applied by aware developers, and, (ii) they are very specific to
each system.

First, in Apache Ant4, a convention stating a new way to close files, i.e., calls to In-
putStream.close() should be replaced by calls to FileUtils.close(*), was introduced in the
system in 2004 to improve maintenance centralizing the knowledge on closing files. In
this case, it is not possible to deprecate the old way of doing things corresponding to

4http://ant.apache.org
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the Java InputStream.close() method. After the addition, this system-specific conven-
tion was only applied 37% of the time by Apache Ant developers aware of it [9].
Whereas this change convention has been introduced to improve maintenance, it in
fact degrade it since the developers have to know that the two pieces of code can be
used. Moreover, with time, the reasons of the change conventions and the change con-
ventions themselves may have been forgotten. A new developer will not know which
method to use, and, consequently, the invocations to the old one may increase instead
of disappearing.

Second, in Roassal (a visualization library that runs in several platforms5), a con-
vention was introduced to improve portability. The convention stated that calls to
Collection.ifEmpty(*) should be replaced by calls to Collection.isEmpty().ifTrue(*) because
Collection.ifEmpty(*) is platform-specific. We detected such convention being occa-
sionally applied in Roassal source code during one year and half. Moreover, in
Pharo, the language in which Roassal is written, the convention is the opposite. Thus,
applying the Pharo-specific rule to Roassal, or the Roassal-specific rule to Pharo would
actually decrease their code quality.

In both cases, if these conventions were better known to developers, or if a recom-
mendation rule existed, the changes would have been applied in source code at once or
in a shorter time frame and only in the adequate context, not in another system. It is la-
borious for developers to create rules for each change convention they performed. Our
idea is therefore to use the fact that a change conventions are parsimoniously applied
to automatically detect them in source code history, and describe them as rules. These
two examples have some characteristics in common:

• They can be described as change rules: as they are recurrent and follow a specific
format, they can be described as change rules that can be automatically applied
by static analysis tools;

• They are system-specific. This can be seen as a drawback as defining such rules
is typically a costly task that needs, here, to be repeated for each system. How-
ever, previous research [8, 26] showed that system-specific rules are more rel-
evant than generic ones, more likely to be followed by developers and having
better chances to remove errors in the code;

• They are spread over different revisions: the changes occur in different revisions
(commits) of the systems, differently from changes related to API evolution in-
volving, for example, class or method renaming, which cannot be spread over
revisions;

• They are not “hard errors”, raising issues at compilation or execution and which
would get more chances to be rapidly noticed. They are rather coding convention
that can ease (if followed) or hinder (if not followed) the maintenance by freeing
the maintainers from unneeded cognitive burden.

5http://objectprofile.com/ObjectProfile.html
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Previous researchers took advantage of the fact that similar source code changes
are recurrent to support bug-discovering, or API evolution. In the bug-discovering
context, researchers restrict their analysis to bug-fix changes (e.g., [17, 16, 24, 30, 31]).
In the API evolution context, researchers normally restrict their analysis to detect how
deleted methods are replaced [33, 21] or are limited to produce one-replaced-by-one
rules [5, 29]. In both cases, they do not focus on the detection of change conventions,
and occurrences over different revisions are not considered. In fact, the examples we
presented are neither related to bug-fix changes nor involved with deleted methods:
they are system-specific conventions incrementally applied by developers over different
revisions.

Our approach describes these changes as rules by (i) analyzing all revisions in
source code history, (ii) considering, in this process, methods not removed from the
system, and (iii) taking into account their occurrence in different revisions to generate
better rules. Our final goal is to automatically produce system-specific rules.

3. Mining System-Specific Rules

In this section we present our approach, which extracts system-specific rules by
monitoring API changes found in source code history of the system. Our approach is
divided in three steps, as shown in Figure 1. First, we extract replacement facts from
the source code history and store them in a database (Subsection 3.1). A replacement is
composed of an addition and a removal of some code. Here we will exemplify it with
method invocation replacements. Second, we look for some pre-defined patterns in the
database of replacements and we generate candidate rules (Subsection 3.2). Finally,
we discard some candidate rules that have a high probability of being false positives
(Subsection 3.3). Each of these three steps of the approach is fully automated and does
not require the presence of experts.

Figure 1: Overview of our approach.

6
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Before detailing our approach, we present an overview about it. Consider the ex-
amples shown in Figures 2 and 3 that occurred in the Pharo programming language.
Figure 2 shows a replacement of the static method call RPackageOrganizer.default() by
RPackage.organizer(). Figure 3 shows a replacement to improve code legibility, i.e.,
calls to Collection.at(3) are replaced by calls to Collection.third().

Diff between revisions 1 and 2 of method foo()

− rpackage = RPackageOrganizer.default();
+ rpackage = RPackage.organizer();

Figure 2: Replacement example of RPackageOrganizer.default() by RPackage.organizer() in Pharo.

Diff between revisions 3 and 4 of method bar()

− if (coll.at(3)) { . . .
+ if (coll.third()) { . . .

Figure 3: Replacement example of at(3) by third() in Pharo.

Notice that the replaced methods might still exist in the system. In Figure 2, the old
method call, RPackageOrganizer.default() should only be used in specific cases and by
some classes.6 In Figure 3, the new method call, someCollection.third(), is considered a
rule to better convey code intention. These changes occurred several times in different
revisions, and they testify the efforts to use a better API.

This also means that these conventions are different from refactoring operations
such as renaming a method, moving it elsewhere, or changing its signature. In our
approach there is no difference between renaming a method or “simply deciding” that
another one should be invoked instead of it, as is the case when one recommends to use
Java Double.valueOf(Double) rather than the constructor Double(Double). In the first case,
the renamed method “disappears” from the system, in the second case, the constructor
is still available but the recommendation is to not use it. For us, both cases will result in
removal of the old invocations and addition of the new ones, i.e., a code replacement.

3.1. Extracting Deltas (Step 1)
The first step of our approach is to extract changes from the revisions. When

comparing the differences between changed source code, one needs to define what
should be analyzed in the code. For example, one can keep track of fine-grained
changes (i.e., adding or removing conditional statements, modifying expressions), or
more coarse-grained changes (i.e., adding or removing classes, methods, method in-
vocations). While the first ones play an important role in the context of bug discov-
ering [16, 24, 30, 31], they have a small role in discovering systematic changes, for
which the second ones are better suited since they do not take into account low level
changes [14, 17].

6As stated in http://goo.gl/ch8Ba2.
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In this work, our approach extracts rules, for example, from method call changes
(e.g., invocation to method foo() is replaced by a call to method bar()). In order to do
so, we need to extract the correct data from the source code history of a system.

We iterate over all the revisions of the system under analysis, starting in the second
revision. In each iteration, we detect pair of methods that are present in both current
and previous revision (i.e., methods that did not change their signature). For each pair
of method, we consider a delta to be the set of deleted and added calls between the
method pair. We represent a delta with predicates that describe each deleted or added
method call:

delta := [predicate]*
predicate := deleted-call(args) or added-call(args)
args := [id, receiver, signature, static]

where, the predicate deleted-call(. . . ) represents a deleted invocation; the predicate
added-call(. . . ) represents an added invocation; id uniquely identifies a change context
(i.e., the full name of the changed method7 and the revision); receiver is the receiver of
the invocation; signature is the signature of the invoked method (for the arguments, the
value is represented if they are primitive types such as int, boolean or null, otherwise the
type is represented; this is done to obtain more precise rules); and static8 is a keyword
isStatic or notStatic that states if the invocation is static. There is a balance that we
need to strike into account when fixing the delta size: larger deltas will extract more
rules but with less precision while smaller deltas will extract less rules but with more
precision. High precision is important as developers will stop trusting a tool with low
precision. Thus, small deltas between revisions are preferable to avoid the noise that
can be found in large ones [17, 22]. To avoid the problem of large diff size between
methods, making it difficult to extract relevant information, we always select deltas
involving less than five deleted or added calls.

Discovering other type of rules may imply extracting other data (e.g., inheritance),
which is not in the scope of this work. Notice that the approach is independent from
the programming language because the facts (here invocations) are represented in a
language independent model (the added-call and deleted-call predicates). In Figures 4
and 5, we present the deltas generated by the changes in Figures 2 and 3.

Deltas between revisions 1 and 2 of method foo()

deleted-call(“foo()-rev2”, “RPackageOrganizer”, “default()”, “isStatic”)
added-call(“foo()-rev2”, “RPackage”, “organizer()”, “isStatic")

Figure 4: Deltas generated for the changes in Figure 2.

7The full name consists of module name, class name and method name.
8In our previous study [9] we did not use the “static” variable because for Java we could resolve the type

of the receive while for Pharo we only took into account changes related to static calls (then, again, we have
the type of the receiver).

8



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Deltas between revisions 3 and 4 of method bar()

deleted-call(“bar()-rev4”, “coll”, “at(3)”, “notStatic”)
added-call(“bar()-rev4”, “coll”, “third()”, “notStatic”)

Figure 5: Deltas generated for the changes in Figure 3.

3.2. Mining Rules (Step 2)

The second step of our approach is to mine rules from the extracted deltas. To add
new relevant rules, we define patterns that the rules must follow. These patterns will
limit the search space, and, thus, the extraction of noisy rules. In particular, such pat-
terns were inspired by existing change rules found in static analysis tools. For example,
Table 1 presents some real-world rules and patterns that inspired us in this study.

Table 1: Example of change rules found in FindBugs and SmallLint static analysis tools.

Tool Rule Description Rule Pattern
FindBugs Use the nextInt of Random

rather than nextDouble to
generate a random integer

Random.nextDouble()
→ Random.nextInt()

Change invocation,
same receiver,
static

SmallLint Consider using isNil when
testing null objects to im-
prove legibility

obj.equals(nil) →
obj.isNil()

Change invocation,
same receiver, non-
static

SmallLint Consider using isEmpty
when testing empty collec-
tions to improve legibility

list.size(0) →
list.isEmpty()

Change invocation,
same receiver, non-
static (with fixed int
argument)

Our solution automatically creates new rules related to method call replacement.
A classical change rule in SmallLint states that invocations to Object.equals(nil) should
be replaced by invocations to Object.isNil(). Assume that this rule has been applied in
source code; so for each replacement, our approach generates a delta similar to:9

deleted-call(“mtd()-revX”, “obj”, “equals(nil)”, “notStatic”)
added-call(“mtd()-revX’, “obj”, “isNil()”, “notStatic”)

The deltas are used as a database in which we want to find instances of predefined
patterns. For example, the previous change follows the pattern where the receiver (and
id) remains the same (i.e.,obj) while the method call changes (i.e., from equals(nil) to
isNil()). We could query our database to search instances of such pattern. For example,
a SQL-like query would be:

select deleted-call.signature, added-call.signature
from deleted-call, added-call

9Each with their respective id.
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where deleted-call.id = added-call.id and deleted-call.receiver = added-call.receiver
and deleted-call.static = “notStatic” and added-call.static = “notStatic”

As shorthand notation, we use the following pattern to represent the previous query:

examplePattern(deletedSignature, addedSignature) =
deleted-call(id, receiver, deletedSignature, “notStatic”) and
added-call(id, receiver, addedSignature, “notStatic”)

The variables within the predicates are used to ensure the constraints of the pat-
tern. In this paper, we use the same variable in both deleted and added predicates to
ensure the same id, receiver or signature (e.g., in the example above id and receiver
are the same in both predicates). We use different variables in both predicates to en-
sure different id, receiver or signature (e.g., deletedSignature and addedSignature, such
that deletedSignature 6= addedSignature). The predicates deleted-call(...) and added-
call(...) are used with the logical operator and, thus two or more predicates can be
grouped to form a pattern. The part before the equals represents the name and the
output of the pattern, which is formed by a subset of variables used in the predicates.
For example, the example above is named examplePattern and it outputs rules in the
format: deletedSignature → addedSignature, where the left hand side (LHS) presents
what should be deleted and the right hand side (RHS) presents what should be added.
The output for the previous delta is equals(nil)→ isNil().

The following list of patterns has been defined in order to detect system-specific
rules. This list is not exhaustive and a discussion about additional patterns is proposed
in Subsection 6.3. Next, we present each pattern.

Pattern 1: Change receiver and invocation, static
pattern1(deletedReceiver, deletedSignature, addedReceiver, addedSignature) =

deleted-call(id, deletedReceiver, deletedSignature, “isStatic”) and
added-call(id, addedReceiver, addedSignature, “isStatic”)

Example
FileDirectory.default()→ FileSystem.workingDirectory()

Pattern 2: Change invocation, same receiver, static
pattern2(receiver, deletedSignature, addedSignature) =

deleted-call(id, receiver, deletedSignature, “isStatic”) and
added-call(id, receiver, addedSignature, “isStatic”)

Example
SystemNavigation.default()→ SystemNavigation.new()

Pattern 3: Change receiver, same invocation, static
pattern3(deletedReceiver, addedReceiver, signature) =

deleted-call(id, deletedReceiver, signature, “isStatic”) and
added-call(id, addedReceiver, signature, “isStatic”)

Example
SystemChangeNotifier.uniqueInstance()→ SystemAnnouncer.uniqueInstance()

10
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Pattern 4: Change invocation, same receiver, non-static
pattern4(deletedSignature, addedSignature) =

deleted-call(id, receiver, deletedSignature, “notStatic”) and
added-call(id, receiver, addedSignature, “notStatic”)

Example
obj.noMoreNotificationsFor()→ obj.unsubscribe()

Pattern 5: Change double invocation, same receiver, non-static
pattern5(deletedSignature1, deletedSignature2, addedSignature1, addedSigna-
ture2)=

deleted-call(id, receiver, deletedSignature1, “notStatic”) and
deleted-call(id, deletedSignature1, deletedSignature2, “notStatic”) and
added-call(id, receiver, addedSignature1, “notStatic”) and
added-call(id, addedSignature1, addedSignature2, “notStatic”)

Example
obj.vm().getSystemAttribute(1001)→ obj.platform().name()

Patterns 1, 2 and 3 represent the cases where a static invocation is replaced by an-
other. Patterns 4 and 5 cover the replacement of non-static invocations. These patterns
were kept because they produced little noisy rules. In Subsection 6.3 we discuss the
creation of additional patterns.

We recall that the patterns should be applied in small deltas in order to avoid noisy
rules. In this work, we apply Patterns 1 to 4 in deltas with up to three deleted or
added calls, and Pattern 5 in deltas with four deleted or added calls. This is done to
avoid false positives in many-to-many replacements since Pattern 4 can be considered
a sub-pattern of Pattern 5.

From the delta shown in Figure 4, we find a rule based on Pattern 1: RPackageOr-
ganizer.default()→ RPackage.organizer(), and from the delta in Figure 5, we find a rule
based on Pattern 4: at(3)→ third().

3.3. Selecting Relevant Rules (Step 3)

In the source code history of real systems many rules may be found. Our goal is to
provide rules which are likely to be system-specific and relevant. The usage of patterns
ensures a certain quality since they enforce a structure on the rules, i.e., an old and a
new call. However, even with such precautions and even if the added rules are clearly
system-specific, they may not all be relevant. The relevance of the rules can be stated
by experts. Nevertheless, the idea of the approach is to automatically detect relevant
rules corresponding to change conventions without using experts but only relying on
code history analysis. If it is difficult to state that a rule is relevant, it is safer to say that
it is not or that currently we have not enough information to decide. Indeed, changes
that occur in only one revision are likely to simply capture method or class renaming
done, for example, with the support of refactoring tools provided by current IDEs or
to capture a localized change or refactoring. These changes are not in the scope of our
work. In contrast, we tackle change modifications for which there exist no other tool
to automatically and largely apply them.

11
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Thus, we consider rules as relevant if they occur in two or more revisions. We
decided to use at least two revisions to limit false positives (noisy rules). For this pur-
pose, we compute the number of revisions in which the changes expressed in the rule
occurred and keep the rules corresponding to changes occurring in two or more revi-
sion. Obviously, the more revisions there are in which the changes occur, the more
relevant the corresponding rule is. Additional discussion on this point is given in Sub-
section 6.2.

4. Validation Experiment

In this section we detail our research questions and the experiments that test them.
We first present the proposed main research questions (Subsection 4.1). Then, we
present the context of our experiments detailing the case studies and the evaluated
change rules (Subsections 4.2 and 4.3). Finally, in Subsections 4.4 and 4.5, we formal-
ize the experiments design used to answer the main research questions. Complemen-
tary research questions will be treated in Section 6.

4.1. Research Questions
We propose research questions to assess the rules generated by the proposed ap-

proach. We assess the change rules correctness and whether they are likely to find
violations in source code that developers would fix.

Assessing Rules Correctness. We evaluate whether the rules are correct according to
the opinion of an expert (it has to be noticed that the expert presence is required only
for the scientific evaluation but not during the concrete use). Thus we propose a first
research question:

RQ1 Are the rules correct to the system expert?

Assessing Rule Violations. The rules may be classified as correct but produce no
violation when applied to source code. To complement RQ1, we also evaluate whether
violations identified by the change rules are likely to be fixed, as suggested by the rule.
This will also be validated with the help of an expert. For example, a violation for the
rule at(3)→ third() is a piece of source code that still contains a call at(3) instead of the
call third(); if the expert decides that this piece of code should be fixed, he will replace
by third(). Thus, we propose another research question:

RQ2 Are the violations “real” ones (i.e., that the experts want to fix)?

4.2. Case Studies
The context of the experiment is real systems for which source code history is

available. We need real systems to ensure that our experiment is meaningful, and we
need source code history to extract our change rules. Moreover, it is fundamental to
have access to the experts of the systems to receive relevant assessment.

In this work, we selected two open-source systems, Pharo [2, 3] and Moose [6, 25]
to perform our empirical studies. They have the advantage of being large and non-
trivial systems, with a consolidated number of developers as well as relevant source
code history. Also, they have different missions working in different domains.

12
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Pharo is an open-source Smalltalk-inspired dynamically typed language and en-
vironment. It can be compared to the Java SDK and includes the implementation of
all features inherent to an object-oriented language (collections, exceptions, primitive
types, etc.) as well as an IDE and several tools. It is currently used in many industrial
and research projects.10 The latest analyzed version has 374 KLOC, 3,246 classes, and
is supported by 37 developers.

Moose is an open-source academic platform for software and data analysis written
in Pharo. It is composed of several tools to deal with meta-modeling; frameworks to
build visualizations, diagrams, interactive browsers; it also includes tools to support
common software maintenance tasks such as code duplication detection, identifying
dependency cycles, among others. It is currently supported by several research groups
around the world11, and also adopted in industrial projects. The latest analyzed version
has 210 KLOC, 2,617 classes, and is supported by 45 developers.

We extracted rules from source code changes that occurred during the evolution of
Pharo 1.4 to 2.0 (435 revisions from April 2012 to March 2013). Then, we applied
such rules in the last release of Pharo 2.0 itself and in Moose. Although we claim that
the rules are system-specific, when they are about the Pharo public API, they are also
relevant to Pharo clients. Moose is a Pharo client and should thus benefit also from
Pharo’s new conventions.

We have access to an expert of the Pharo environment, which is fundamental to
receive relevant assessment about the rules and their violations and to validate the ap-
proach. The expert selected to validate the rules and the violations is a core developer
and release master of the system. He has worked on it since the first version and for
10 years on a preceding system (Squeak) from which Pharo is derived. Results were
evaluated violation by violation, sometimes with the help of documentation.

Additionally, in a previous study [9] we experimented with three Java systems:
Apache Ant, Tomcat and Lucene. Ant is a tool for automating software build processes,
Tomcat is a web server and servlet container, and Lucene is an information retrieval
software library. This analysis was intended to compare the specific rules created by
our approach with generic ones found in static analysis tools. We evaluated whether
our approach can be used to improve the set of generic rules provided by these tools,
and then provide better rules to developers. This experiment is discussed in Section 5.

4.3. Detecting Rules

We obtain the rules by mining Pharo code changes which incrementally occurred
in revisions between versions 1.4 and 2.0. As small deltas between revisions are prefer-
able to avoid the noise that can be found in large ones [17, 22], we select deltas involved
in less than five deleted or added invocations. There is a total of 6,513 deltas; from such
deltas, 4,272 (65,6%) have less than five deleted or added invocations. Therefore, they
represent a relevant amount of the deltas.

In this process, changes are represented as the deltas described in Subsection 3.1

10http://consortium.pharo.org
11http://www.moosetechnology.org/docs/publications
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and stored in a database. From this database of deltas, we generated the rules as de-
scribed in Subsection 3.2.

As shown in Table 2, this process generated a total of 426 rules considering all
patterns. Because this was too much for the expert evaluation, we ranked the rules
generated by each pattern by the number of distinct revision they appear in. Then,
we only analyzed the top-15 (i.e., the first 15 in the ranking) rules generated by each
pattern; this was done to reduce the amount of rules to be manually analyzed by an
expert. To detect the rules relevant for our study (cf. Subsection 3.3), we selected
from the top-15 the ones that occurred in two or more revisions. In the case that some
rule(s) in the top-15 and the 16th rule occurred in the same amount of revisions, they
were not considered; this was done to ensure a maximum of 15 rules per pattern and
then facilitate the validation by the expert. This process generated at the end 45 rules
considering all patterns.

Table 2: Rules obtained from Pharo.

Pattern 1 2 3 4 5 Total
All Rules 25 31 49 304 17 426
Rules ≥ 2 revisions 14 11 3 13 4 45

4.4. Experiment for RQ1: Assessing Rules Correctness

RQ1 Are the rules correct to the system expert?

With the help of an expert we validate the rules according to their correctness. We
asked the expert to classify the rules as correct or incorrect, a correct rule being one
that he believes would describe a valid modification to apply in the source code.

4.5. Experiment for RQ2: Assessing Rule Violations

We detail this experiment with the methodology proposed by Wohlin et al [32].

4.5.1. Hypotheses Formulation
RQ2 Are the violations “real” ones (i.e., that the experts want to fix)?

H2
0 Number of violations before and after fixing are the same.

H2
a Number of violations before and after fixing are not the same.

4.5.2. Variable and Subject Selection
The subjects for this experiment are the violations generated by rules. First, we take

the last version of Pharo and Moose, and we compute the number of violations gener-
ated by each rule; this will generate a sample, namely violations before fixing. From
such sample, we remove the violations that, according to the expert, should be fixed
exactly as suggested by the rule; this will generate another sample, namely violations
after fixing.
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The independent variable is the rule. It is categorical and takes two values: before
or after fixing the violations. The dependent variable (measured) is the number of
violations for each rule.

4.5.3. Experiment Design
We want to compare the two generated samples (violations before fixing and vio-

lations after fixing). Thus, we use a paired setting, which means the rules composing
one sample (before fixing the violations) are the same than those composing the other
sample (after fixing the violations). We use the Wilcoxon test which is used for assess-
ing whether one of two samples tends to have smaller/larger values than the other. It
can be used when the participants are the same in each sample. The null hypothesis is
that the median of violations is the same for both samples. The tests will be performed
at the 5% significance level (i.e., α = 0.05).

We also report the effect size which measures the distance between the null hypoth-
esis and alternative hypothesis, and is independent of sample size. Effect size value
0.1, 0.3 and 0.5 are considered small, medium and large effects, respectively.

Notice that for this experiment we do not present recall. That would imply knowing
all the conventions of the systems under analysis, which is not feasible in practice due
to the size of the systems. The decision of not computing recall is also shared by related
studies such as [5, 16, 29].

5. Experiment Results

In this section, we present the results of our empirical study and discuss them.
All the results (the generated rules and the evaluation by the expert) are available for
download.12

The whole process to produce rules took no longer than one hour, for each system.
Notice that, execution time was rather long in this case because it was the first analysis
of the systems. It meant we had to download the full code history, compute the deltas,
and process them. For day to day use, one can compute the deltas and process them
incrementally (see the discussion in Section 6.2). In our approach, all the steps can be
done off-line, by nightly jobs. In that case, execution time is negligible.

5.1. Evaluating RQ1: Assessing Rules Correctness

RQ1 Are the rules correct to the system expert?

Table 3 shows that 62% (28 out of 45) of the analyzed rules were correct according
to the expert. In Pattern 1, 79% (11 out of 14) of analyzed rules were correct while in
Pattern 3, 1 out of 3 were correct. Some patterns are clearly better than others, e.g.,
Pattern 1 and 5 have 77% correctness. The incorrect rules were mostly noisy rules,
which are likely to occur when they are extracted from deltas not related to change
conventions. In such deltas, method calls not involved with change conventions tend to
get intermingled with real rules [17]. The outcome of this experiment is that a relatively

12https://goo.gl/PyvSMF
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large percentage of rules are correct according to the expert. Next, we present examples
of correct and incorrect rules.

Table 3: RQ1: Assessing rules correctness.

Pattern 1 2 3 4 5 Total
Rules ≥ 2 revisions 14 11 3 13 4 45
Correct rules 11 (79%) 6 (55%) 1 (33%) 7 (54%) 3 (75%) 28 (62%)

Table 4 presents some correct rules generated for Pharo. For instance, in the
rule RPackageOrganizer.default() → RPackage.organizer(), the method RPackageOrga-
nizer.default() should only be used in specific cases as stated in a comment into the
method definition of RPackageOrganizer.default(). The rule vm(). getSystemAttribute(1001)
→ platform().name() clearly improves legibility.

Table 4: Examples of Pharo rules.

Pattern 1
FileDirectory.default()→ FileSystem.workingDirectory()
RPackageOrganizer.default()→ RPackage.organizer()

Pattern 2
ZnCharacterEncoder.forEncoding(*)→ ZnCharacterEncoder.newForEncoding(*)
SystemAnnouncer.current()→ SystemAnnouncer.uniqueInstance()

Pattern 3
DataStream.initialize()→ MCDataStream.initialize()
SystemChangeNotifier.uniqueInstance()→ SystemAnnouncer.uniqueInstance()

Pattern 4
getSource()→ sourceCode()
noMoreNotificationsFor(*)→ unsubscribe(*)

Pattern 5
vm().getSystemAttribute(1001)→ platform().name()
vm().getSystemAttribute(1003)→ platform().subtype()

Some of the generated rules were also incorrect (or not blindly applicable) for
different reasons. The rule FileSystem.workingDirectory() → FileDirectory.default() was
generated when the correct one is in fact its opposite (also generated, see 1st rule in
Table 4). The incorrect rule was generated due to unrelated rollbacks applied on the
source code. In this case, the correct rule was much more frequent, and, thus, easy to
be detected.

Other rules were not incorrect but should not be applied blindly as there are cases
where the old form is also valid. For example, the rule MCHttpRepository.locationUser-
Password(*,*,*) → MCHttpRepository.location(*) should not be applied when the HTTP
access does require user and password information. Similarly, the rule Composable-
Model.new()→ DummyComposableModel.new() came out from a specific convention to
ease testing of ComposableModel.

We believe the existence of such rules, that should not be applied blindly, actually
reinforce the need for applying coding convention as widely as possible. In the case of
these rules, not applying the change is meaningful and points to different use scenarios.
In this case, the maintainers get useful information from the fact that there are two
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different invocation conventions (notice that as aforementioned the correct rule is more
frequent, and, thus, easy to be detected). Such cases should not be mistaken with those
where the changes were not applied because the developers were not aware of the new
convention.

All the correct rules were implemented in the static analysis tool SmallLint (the
static analysis tool for Smalltalk), and they are publicly available13 to support develop-
ers. Furthermore, the discovering of 28 new system-specific rules represents a signifi-
cant addition to the set of rules provided by SmallLint, which originally includes only
19 generic change rules that were created by experts.

5.2. Evaluating RQ2: Assessing Rule Violations

RQ2 Are the violations “real” ones (i.e., that the experts want to fix)?

H2
0 Number of violations before and after fixing are the same.

H2
a Number of violations before and after fixing are not the same.

We extracted two samples of violations of the rules for Pharo and Moose, the first
sample before fixing and the second sample after fixing the violations. Table 5 shows
the number of rules that produced at least one violation and the total number of viola-
tions in each sample. In the last analyzed Pharo release, 8 rules generated at least one
violation, producing a total of 21 violations (before fixing). The expert pointed that,
from such violations, 10 should be fixed, so only 11 violations remained (after fixing).
In the last analyzed Moose release, 7 rules generated at least one violation, producing
a total of 37 violations (before fixing). The expert pointed that all violations should
be fixed, thus, 0 violations remained (after fixing). Applying the Wilcoxon test in the
samples gives a p-value < 0.01, then we reject the null hypothesis and consider that
the number of violations before and after fixing are not the same. Moreover, the effect
size is = 0.56, which indicates a large effect.

Table 5: RQ2: Assessing violations before and after fixing the real ones. Rules refers to the number of rules
that produced at least one violation.

System Rules
Violations

Before fixing After fixing
Pharo 8 21 11
Moose 7 37 0
Total 15 58 11

We conclude that the rules are pointing to violations in source code. In total, 15
rules generated violations, producing a total of 58 violations from which 47 (81%)
were real ones.

13www.smalltalkhub.com, Project: FindBugs, Package: MiningLintRules-PharoMigration
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Fixing a violation generated by a rule is usually a fast and easy task if the devel-
opers knows the system. The rules consist in a LHS which is the current code and a
RHS which is the suggested replacement. This can be done automatically if the user
validates the application of the rule.

5.3. Java Case Studies

In our previous work [9], we evaluated the proposed approach on the Java systems
Ant, Tomcat and Lucene. The goal of this study was to compare our system specific
rules with generic ones provided by static analysis tools. In order to complement the
results of this paper, we present the main research questions of our previous study and
discuss them.

RQ3 Are specific warnings more likely to point to real violations than generic warn-
ings?

The outcome of this experiment is that specific warnings are in fact more likely to
point to real violations. This was true for all the case studies. As expected, in general,
tools to detect coding standard violations produce too many false positives [13, 15, 26].
In this case, precision of generic warnings remained between 0.015 and 0.07 (which
is coherent with previously published results [8, 15, 16]), while precision of specific
warnings remained between 0.12 and 0.49.

However, rules are not equal in identifying real violations, i.e., some rules per-
formed better than others. Thus, we also studied whether specific rules are more likely
to point to real violations than generic ones.

RQ4 Are specific rules more likely to point to real violations than generic rules?

This was true for Tomcat. We could not show that the specific rules performed
better than the generic ones for Ant and Lucene. This was mostly because warnings
generated by some generic rules in these systems were almost all fixed during the
experiment timeframe.

An example of rule generated for Apache Ant was presented in the motivation sec-
tion: the convention to close files, where calls to InputStream.close() should be replaced
by calls to FileUtils.close(InputStream). As mentioned, this convention was introduced
in the system in 2004, but in practice it has never been fully adopted as, even six years
later (2010), the refactoring was still being applied. Our approach caught it and, thus,
can be used to avoid similar maintenance problems.

In Tomcat, we detected rules defined by FindBugs such as “DM_NUMBER_CTOR:
Method invokes inefficient Number constructor; use static valueOf instead”14. This rule
is intended to solve performance issues and it states that using valueOf is approximately
3.5 times faster than using constructor. In fact, we detected such rules because Tomcat
developers have been using FindBugs over time. Even if there was an effort to fix such
violations, they were not completely removed. This means that developers may not be
aware of common refactorings even when static analysis tools are adopted. Also, the

14goo.gl/JK3aDi
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great amount of violations generated by such tools in real-world systems is not easy
to manage [26, 13, 15]. Our approach also caught this refactoring and again it can be
used to avoid similar problems where changes are not consistently applied.

In Lucene, system specific rules were related, for example, to structural changes
(e.g., replace Document.get() by StoredDocument.get()) and to internal guidance to have
better performance (e.g., replace Analyzer.tokenStream() by Analyzer.reusableTokenStream(),
replace Random.nextInt() by SmartRandom.nextInt()). Overall, the analysis also produced
rules related to Java API changes such as the replacement of calls to the classes Vec-
tor to calls to ArrayList, Hashtable to Map, and StringBuffer to StringBuilder, which were
incrementally fixed by developers, and, thus, also detected by our approach.

6. Complementary Research Questions

In this section we present complementary research questions to our study. First, we
compare rule extraction at revision and release level. Second, we discuss the creation
of rules with respect to their frequency over different revisions. Third, we discuss the
creation of additional patterns in order to complement the proposed ones. Finally, we
discuss the overlap of our rules with predefined generic change rules.

6.1. Comparing Rule Extraction at Revision and Release Level

In the proposed approach we extract rules from changes at revision level. The mo-
tivation to do that came from real world examples such as the ones presented in Sec-
tion 2, in which recurrent changes were spread over different revisions of the systems
as well as from related studies [5, 21]. However, another solution to extract rules is at
release level, i.e., considering changes between releases rather than between revisions.
Thus, in this subsection we compare rule extraction at revision and release level.

CRQ1 Is it better to extract rules considering revision or release level?

In order to produce rules at release level, we considered the changes between Pharo
releases 1.4 and 2.0, i.e., discarding the revisions between them. Notice that when
release level is adopted, the fine-grained changes (i.e., commits) existing between the
two analyzed releases may be lost. As a result, when comparing two major releases,
more noise can be found.

Table 6 shows the number of rules extracted at revision and release level. Con-
sidering all rules, 426 rules were produced at revision level and 311 at release level;
considering the relevant rules (i.e., that occurred in two or more revisions for the rules
at revision level and that that occurred two or more times for the rules at release level),
45 and 21 rules were produced, respectively. At revision level, 28 correct rules were
extracted (62%). At release level, only 9 correct rules were extracted (43%); such rules
are included in the 28 generated rule at revision level. Therefore, 19 rules were found
only at revision level.

The smaller amount of rules at release level occurs due to the larger size of changes
between the releases. In such larger changes, method calls not involved with change
conventions tend to get intermingled with real rules [17]. This confirms that, in our
case, extraction at revision level gives better results than at release level.
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Table 6: Number of correct rules extracted at revision and release level per pattern.

Rules Level 1 2 3 4 5 Total

All
Revision 25 31 49 304 17 426
Release 15 23 35 238 0 311

Relevant
Revision 14 11 3 13 4 45
Release 2 7 5 7 0 21

Correct
Revision 11 (79%) 6 (55%) 1 (33%) 7 (54%) 3 (75%) 28 (62%)
Release 1 (50%) 5 (83%) 1 (20%) 2 (28%) 0 (0%) 9 (43%)

6.2. Assessing When Rules Should be Created

In our experiments we extracted rules from a specific time frame, i.e., for revisions
between Pharo 1.4 and 2.0. Then, we validated such rules in the latest Pharo and Moose
releases. However, in practice, there should be no clear time frame about what should
be analyzed in the past code history. Therefore, to support these cases, in this subsec-
tion we discuss the creation of rules considering when a change is frequent enough to
be considered as a rule.

CRQ2 When is a change frequent enough to be considered a rule?

This frequency can impact the quality of the produced rules as well as the amount
of generated rules. Thus, depending on the goal of the developer (e.g., to produce rules
with better precision or to produce more rules), different frequencies can be adopted.
Next, we study the impact of such frequency to obtain rules.

6.2.1. Process to learn and evaluate rules
To automatically assess when rules should be created, we need to learn the rules

and evaluate them incrementally revision by revision. To learn the rules from source
code history, we use the approach developed by Kim et al [16] on navigating through
revisions to extract information. It suits well since it works by learning from changes
in revisions. The idea is that we walk through the revision history of a project learning
rules and evaluating at each revision how well our approach works when using only
the information available for that revision. We learn a rule when it occurs in f different
revisions. We evaluate at revision n the rules learned from revisions 1 to n − 1. If a
fix in revision n matches the learned rule, i.e., revision n − 1 has a call to the LHS
of the rule and revision n replaces it by a call to RHS, we have a true positive (TP)
violation. If a fix in revision n matches the LHS, but not the RHS, we have a false
positive (FP) violation. We can measure the precision of a rule from the portion of
violations predicted correctly over all violations, i.e., precision = TP/(TP + FP).

6.2.2. Discussion
Table 7 shows the precision and the number of rules obtained over the frequency f

such that 2 ≤ f ≤ 9 for our case study. For example, if we say that rules are created
when the same change occurs over two different revisions (i.e., f = 2), then 104 rules
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are generated and they have a precision of 25%. As expected, the greater the frequency,
the more precise are the generated rules, but the smaller the number of generated rules.

From Table 7 we can also compute deltas for the precision and the number of rules.
For example, moving from f = 2 to f = 3 improves the precision by 36% but reduces
the number of generated rules by 58% (which is the greatest loss in number of rules).
Moving from f = 3 to f = 4 improves the precision by 85% (which is the greatest
gain in precision) but reduces the number of generated rules by 46%. Also, moving
from f = 6 to f = 7 changes neither the precision nor the number of generated rules.

We observe that the precision tend to be greater and the number of generated rules
tend to be smaller. If the number of generated rules is an important goal, then we
should not choose a large f .

Table 7: Evaluation of the frequency (f ) to create rules.

Frequency (f ) 2 3 4 5 6 7 8 9
Precision 25% 34% 63% 71% 72% 72% 75% 75%
Rules 104 43 23 12 8 8 6 6

In Table 8 we compare the precisions of the rules generated for each frequency.
This comparison is done by applying the Mann-Whitney test on each pair of rule sam-
ples. For example, the p-value 0.01 (first line and last column) means that the precision
of the rules obtained with f = 9 is statistically greater at the 1% level than the preci-
sion of the rules obtained with f = 2. Also, the p-value 0.43 (last line and last column)
means that we cannot decide whether the precision for f = 9 is greater than the preci-
sion for f = 8. We marked with * results that are significant at the 10% level and with
** results that are significant at the 5% level.

By analyzing the first line in the table, we see that the precision of rules obtained
with f = 2 is statistically smaller than any other sample (they are all marked). When
analyzing the second line, we see that the precision of rules obtained with f = 3 is
statistically smaller than the ones obtained with f = 8 and f = 9. The same occurs
in the third line: the precision of rules obtained with f = 4 is statistically smaller
than the ones obtained with f = 8 and f = 9. However, when analyzing the fourth
line (i.e., f = 5 in bold), we see that no other sample is statistically greater than the
one obtained with f = 5. The same occurs for the subsequent lines. Therefore, it
means that the precision of the rules obtained from f = 5 to 9 are equivalent. In such
samples, the precision remains between 71% and 75% (as we see in Table 7). It means
that, choosing between f = 5 to 9 would bring equivalent results. If precision is an
important goal, we should choose a large f, but only up to a certain point (f=5 in
our experiments).

6.3. Evaluating Additional Patterns

In Subsection 3.2 we proposed five patterns in order to detect system-specific rules.
In practice, other patterns than the proposed ones can be created. Therefore, we ask:
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Table 8: p-values comparing the precisions of the created rules. ** p-value < 0.05, * p-value < 0.10.

Frequency (f ) 3 4 5 6 7 8 9
2 0.07* 0.05* 0.07* 0.02** 0.02** 0.02** 0.01**
3 - 0.36 0.23 0.11 0.11 0.07* 0.05*
4 - - 0.25 0.11 0.14 0.05* 0.04**
5 - - - 0.36 0.43 0.22 0.17
6 - - - - 0.60 0.39 0.43
7 - - - - - 0.37 0.27
8 - - - - - - 0.43

CRQ3 What other patterns can be created considering single method invocation and
how relevant are them?

For this experiment and to limit the scope, we will consider all possible patterns
with one single method invocation. Table 9 shows a complete list of possible patterns
for single method invocation. Recall that a pattern must include one added and one
removed predicate. We use a shorthand notation as compared to the one presented in
Subsection 3.2 to facilitate the comparison between the patterns.

Table 9: Exhaustive list of patterns for single method invocation. The patterns annotated with * are the ones
adopted in this study. rules means the number of rules that occurred in two or more revisions. cor means the
number of correct rules. s means static and ns means non-static.

deleted-call(...) added-call(...) rules cor. % of cor.
1* deletedRec deletedSig s addedRec addedSig s 14 11 79%
2* receiver deletedSig s receiver addedSig s 11 6 55%
3* deletedRec signature s addedRec signature s 3 1 33%
4 deletedRec deletedSig ns addedRec addedSig ns 15 0 0%
5* receiver deletedSig ns receiver addedSig ns 13 7 54%
6 deletedRec signature ns addedRec signature ns - - -
7 deletedRec deletedSig s addedRec addedSig ns 10 2 20%
8 receiver deletedSig s receiver addedSig ns - - -
9 deletedRec signature s addedRec signature ns 5 0 0%
10 deletedRec deletedSig ns addedRec addedSig s 3 0 0%
11 receiver deletedSig ns receiver addedSig s - - -
12 deletedRec signature ns addedRec signature s 15 0 0%

Each group of pattern has three patterns in order to check all the possible variations
of receivers and signatures. The first in each group (i.e., Patterns 1, 4, 7 and 10) is about
changing receiver (from deletedRec to addedRec) and invocation (from deletedSig to
addedSig); the second (i.e., Patterns 2, 5, 8 and 11) is about changing invocation (from
deletedSig to addedSig) and keeping the same receiver; and the third in each group
(i.e., Patterns 3, 6, 9 and 12) is about changing receiver (from deletedRec to addedRec)
and keeping the same invocation.
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The first group of patterns (i.e., Patterns 1 to 3) is about the replacement of static
methods, the second group (i.e., Patterns 4 to 6) covers the replacement of non-static
methods, the third group of patterns (i.e., Patterns 7 to 9) describes the replacement of
static by non-static methods, and the fourth group (i.e., Patterns 10 to 12) is about the
replacement of non-static by static methods.

The twelve patterns are presented in Table 9 to facilitate the comprehension on how
they were produced. However, Patterns 6, 8 and 11 do not make sense in our context.
Pattern 6 is about changing receiver while keeping the same invocation for non-static
methods, which cannot produce relevant rules since the non-static invocations are the
same (e.g., it would produce rules such as foo()→ foo()). Patterns 8 and 11 are about
changing invocation while keeping the same receiver while swapping between static
and non-static methods, which cannot occur since the same receiver cannot be static
and non-static.

The last three columns of Table 9 present the number of rules that occurred in two or
more revisions, the correct ones and the percentage of correct rules, respectively. The
patterns annotated with * (i.e., Patterns 1, 2, 3, 5) are the ones with best performance.
They are already the patterns described in Subsection 3.2 and used in our experiment
in Section 5 (note that we also used another pattern with more than one invocation, so
it does not appear here).

The patterns not annotated with * have lowest performance; they produced too
many incorrect rules. The same explanation of RQ1 can be used in the cases where the
rules were incorrect: they came out from specific refactorings in source code therefore
we cannot generalize them to be applied in all the system. For example, Pattern 7
produced the rule TestResult.error()→ defaultTestError(), which even if it makes sense,
is only applicable in the context of Test classes. These patterns did not show promising
in our case study because too many rules should be analyzed in order to detect correct
ones (e.g., Pattern 7 in Table 9) or because they did not produced correct rules at all.

Overall, the patterns involving only the replacement of static methods (first group)
performed better than the others. In fact, these patterns include the type of the receiver
which gives naturally more robust rules. The patterns involving only non-static meth-
ods (second group) also performed well. In this case, it is preferable patterns related to
less noisy changes such as Pattern 5 in Table 9, in which the invocation change but the
receiver is the same.

6.4. Overlap with Generic Change Rules

As stated in the introduction, the static analysis tool SmallLint also provides generic
change rules that were manually created by experts. It contains 19 generic change rules
that details how source code should be updated to improve code maintainability. Based
on that we ask:

CRQ4 Is there any overlap between the system-specific rules we generated and the
generic ones provided by SmallLint?

We found that there is no overlap between our rules and the generic change rules
provided by SmallLint. This is similar to the results provided by Kim et al [16] in
which the intersection of bug-detection rules generated by their approach and rules
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found in the Java static analysis tool PMD were exclusive. One reason for this result is
that the generic change rules were not applied in the analyzed case study over different
revisions or they were applied in large commits, so our approach was not able to detect
them.

7. Threats to Validity

7.1. Construct Validity

The construct validity is related to whether the measurement in the study reflects
real-world situations. In our study, the main threat is the validation of the rules.

As an error in this process would bias the results, our rules were manually validated
with the help of an expert to decrease the possibility of bias. In fact, many previous
studies (e.g., [29, 21, 33]) do not adopt the validation with experts, i.e., the authors of
the studies validate the rules themselves, which may introduce bias.

Another threat is that we are acquainted with the system expert. However, we
reinforce that the expert has worked on Pharo since the first version and for 10 years on
the preceding Pharo system. Based on that, we believe that we could not find a better
expert for such analysis. For example, not all the rules were correct for him; in fact, he
only marked as correct the rules that made sense for him as core Pharo developer.

Moreover, we address that Moose was initially written by one of the authors of the
paper in its conception. This threat is alleviated because since then, around 10 years
passed and Moose has evolved and became a broadly used tool with several developers
around the world. From the Moose repository control website, we can see that it has
now 45 contributors.15 Therefore, we believe that the fact that one of the authors has
initially contributed to Moose does not influence our results.

7.2. Internal Validity

The internal validity is related to uncontrolled aspects that may affect the experi-
mental results. In our study, the main threat is the possible errors in the implementation
of our approach causing the generation of wrong rules.

Apart from the validation by the expert presented in this paper, the rules generated
by our approach have been (i) used by several members of our laboratory in different
systems and (ii) divulged in the Moose open-source software reengineering mailing list
such that developers of this community can use it, thus, we believe that the risks of this
threat are reduced.

Moreover, the patterns used to extract rules from source code history may be an
underestimation of the real changes occurring in commits: some changes are more
complex, only introducing new code or only removing old code. We do not extract
rules from such cases, and they might also represent relevant source of information.
However, the patterns do reflect generic change rules found in static analysis tools.

15http://smalltalkhub.com/#!/~Moose
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7.3. External Validity

The external validity is related to the possibility to generalize our results. In our
study, the main threat is the representativeness of our case studies.

Pharo and Moose are credible case studies as they are open-source and non-trivial
systems with a consolidated number of developers and users. They also come from dif-
ferent domains and include a large number of revisions. Despite this observation, our
findings – as usual in empirical software engineering – cannot be directly generalized
to other systems, specifically to systems implemented in other languages or to systems
from different domains. Closed-source systems, due to differences in the internal pro-
cesses, might also have different properties in their commits. Finally, small systems or
systems in initial stage may not produce data sufficient to generate rules.

8. Related Work

System-Specific Rules

This work is an extension of our previous study [9]. In that study, we focused on ex-
tracting rules for the Patterns 1, 2 and 3 and comparing the mined rules with predefined
rules provided by PMD and SmallLint. We extracted and validated the rules for the
Java systems Ant, Tomcat and Lucene, and for Pharo. As a result, the mined rules were
shown to be statistically more precise than PMD and SmallLint rules. Overall, such
work detected several relevant rules as we discussed in Subsection 5.3. The current
work differs from the previous one in several points. We have now five patterns while
the previous study had three. The research questions are different: while the previous
study compared the change rules with rules provided by static analysis tools, in the
current work there is no comparison with static analysis tools in the research questions,
instead, we focus on the correctness of rules and whether they are likely to point to real
violations. In the current work we have the support of the expert to validate the change
rules while in the previous the rules were validated automatically. Furthermore, in the
current study we discuss the overlap between our change rules and predefined generic
rules and the creation of rules with respect to its frequency over different revisions.

API Migration

Some work has been proposed to support during API evolution and migration [1,
7, 10, 11, 34]. Nguyen et al. [23] propose LibSync that uses graph-based techniques
to help developers migrate from one framework version to another. In this process,
the tool takes as input the client system, a set of systems already migrated to the new
framework as well as the old and new version of the framework in focus. Using the
learned adaptation patterns, the tool recommends locations and update operations for
adapting due to API evolution.

Dagenais and Robillard [5] present a tool (SemDiff) that suggests replacements for
framework elements accessed by client systems based on how a framework adapts to
its own changes. Schäfer et al [29] propose to mine framework usage change rules
from client systems. They produce rules by comparing two versions of a class using
the framework. These studies are intended to produce one-replaced-by-one rules; this
is done in order filter out false positives. In contrast, our study is not restricted to
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produce one-replaced-by-one rules (see for example Pattern 5, which produces two-
replaced-by-two rules); we filter out false positive rules using patterns and considering
their spread over different revisions. Moreover, the goal of our study is very different:
we detect rules about conventions, and not API migration. Our approach can also be
seen as a generalization of such related studies, in which more flexible rules can be
generated.

Wu et al [33] propose an approach (AURA) that combines call dependency and text
similarity analyses to produce evolution rules. They extract rules by comparing two
major versions of the framework. Meng et al [21] propose a history-based matching
approach (HiMa) approach to support framework evolution. The rules are extracted
from the revisions in code history together with comments recorded in the evolution
history of the framework. These studies focus on supporting framework clients during
a migration while we focus on new rules about conventions. Moreover, such studies
use addition and deletion of methods (instead of method calls) as the basis for detecting
rules. That is to say that they verify how methods deleted in one revision or release were
replaced in the next one. As a result, they cannot produce rules about conventions (i.e.,
when both methods are available to be used) as proposed by our approach.

Bug Discovering
Kim et al [16] aim to discover system-specific bugs based on source code history.

They analyze bug-fixes changes extracting involving numeric and string literals, vari-
ables and method calls, which are then stored in a database. Our approach and the
related work are intended to find system-specific changes but in very different con-
texts. There are several differences between our study and the related one. First, the
input is different. While the authors check revisions related to bug-fixes in the learning
process, we check all the revisions. As a result, they focus on rules in the context of
bug-fixes while we focus on conventions spread over revisions. Second, the way rules
are presented to developers is distinct. Our approach produces rules while the related
work stores bug-fix changes in a database. As a result, their work is not intended to
give rules beforehand for developers (they provide “on-demand rules”), in contrast with
ours, which is intended to give rules for developers. Finally, the goal of both studies
is very different. As stated before, the related work is intended to support develop-
ers to discover system-specific bugs while ours is intended to detect system-specific
conventions unknown to the developers. In summary, to filter out noise in the data
mining process (which produce many false positives), they concentrate on bug-fixes.
This means they discard a lot of information that we are using. If the related study
worked with as many data as us, they would produce many false positives because they
would not have filtering like our approach.

Williams and Hollingsworth [31] focus on discovering warnings which are likely
real bugs by mining code history. They investigate a specific type of warning (check-
ing if return value is tested before being used), which is more likely to happen in C
programs. They improve bug-finding techniques by ranking warnings based on histor-
ical information. While the authors investigate a single known type of warning, we are
intended to discover new system-specific types of violations. Another similar research
in the sense that authors use historical information to improve ranking mechanism is
proposed by Kim and Ernst [15]. They propose to rank warnings reported by static
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analysis tools based on the number of times such warnings were fixed over the history.
Again, they focus on defined rules while we focus on new system-specific rules that
are not included in static analysis tools.

Livshits and Zimmermann [17] propose to discover system-specific usage patterns
over code history. These patterns are then dynamically tested. to support discovering
such pattern, they use the data mining technique Apriori. Results show that the usage
patterns, such as method pairs (e.g., lock() must happen with unlock()), can be found.
While the related work extracts usage patterns to understand how methods should be
invoked, we extract invocation changes patterns to understand how invocations should
be updated.

Other studies focus on extracting information by analyzing the differences between
major versions. Nguyen et al [24] aim to discover recurring bug-fixes by analyzing sys-
tem two versions. They propose to recommend the fix according to learned bug-fixes.
Meng et al [20] study systematic edits in source code related to bug-fixes and feature
addition. They aim to find relevant location and make correct edits in source code
in order to support developers. Our work is not restricted to bug-fix analysis and we
also extract rules at revision level. Mileva et al [22] focus on discovering changes that
must be systematically applied in source code. These changes are obtained by compar-
ing two versions of the same system, determining object usage, and deriving patterns.
They compare object usage models and temporal properties from each version. By
learning systematic changes, they are able to find places in source code where changes
were not correctly applied. We focus on rule related to API changes to improve static
analysis while the related work focuses on object usage. Sun et al [30] propose to ex-
tend a commercial static analysis tool by discovering specific defects. They focus on
mining a graph, with data or control dependencies, to discover specific defects. While
they extract data from a single version, we extract from code history. We focus on
mining invocation changes to produce change rules.

Some studies investigate rule recovering from execution traces [18, 19]. While they
extract rules via dynamic analysis of a single system version to produce temporal rules
(e.g., every call to m1() must be preceded by a call to m2()), we extract rules via static
analysis of changes from incremental versions to produce change rules (e.g., every call
to m1() must be replaced by a call to m2()).

9. Conclusion

In this paper, we proposed to automatically extract system-specific conventions
unknown to the developers. In this process, we extract information from incremental
revisions in source code history and the rules are based on predefined patterns that
ensure their quality.

We validated our approach on open-source systems with the help of an expert.
For such validation, we had the support of a Pharo expert which was very valuable to
provide assessment about the change rules. In our previous study, we validated our
approach in Java systems showing that relevant rules were also extracted. In addition,
in this paper, we compared the extracted rules with predefined generic change rules
provided by a static analysis tool and we discussed the creation of rules with respect to
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their frequency over different revisions. We reiterate here the most interesting conclu-
sions we derived from our study:

1. A a relatively large percentage of the change rules (62%, 28 out of 45) were
correct to the expert in our Pharo case study. The discovering of 28 new system-
specific rules represents a significant addition to the set of rules provided by the
static analysis tool SmallLint since it contains only 19 generic change rules.

2. Rules pointed to real violations in source code: 58 violation were produced, from
which 47 (81%) were fixed by the expert.

3. Different frequencies (f ) can be adopted depending on the goal of the developer
to assess when rules should be created. If precision is an important goal, we
should choose a large f but only up to a certain point (f=5 in our experiments).

4. There was no overlap between our rules and the generic change rules provided
by SmallLint.

As future work, we plan to extract rules from other structural changes such as class
access and inheritance. In addition, we plan to investigate frequent large changes to
extract rules. In this case, we plan to use a data mining approach to induce the rules
from the changes.
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