
APIEvolutionMiner: Keeping API Evolution under
Control

André Hora∗, Anne Etien∗, Nicolas Anquetil∗, Stéphane Ducasse∗, Marco Tulio Valente†
∗ RMoD team, Inria, Lille, France
Email: firstname.lastname@inria.fr

† Department of Computer Science, UFMG, Belo Horizonte, Brazil
Email: mtov@dcc.ufmg.br

Abstract—During software evolution, source code is constantly
refactored. In real-world migrations, many methods in the newer
version are not present in the old version (e.g., 60% of the
methods in Eclipse 2.0 were not in version 1.0). This requires
changes to be consistently applied to reflect the new API and
avoid further maintenance problems. In this paper, we propose
a tool to extract rules by monitoring API changes applied in
source code during system evolution. In this process, changes
are mined at revision level in code history. Our tool focuses on
mining invocation changes to keep track of how they are evolving.
We also provide three case studies in order to evaluate the tool.

I. INTRODUCTION

During software evolution, features are added, bugs are
fixed, and source code is refactored to improve maintainability.
In such cases, changes must be consistently applied over the
code base to avoid inconsistencies. In Eclipse, 60% of the
methods in version 2.0 were not in version 1.0 [1]. In the
migration of the Pharo language from version 1.4 to 2.0,
27% of the methods in the newer version were not present in
the older version. This implies that calls to methods must be
consistently updated to reflect the new API and avoid further
maintenance problems.

To solve such problems, researches proposed to extract
rules from source code history due the existence of recurring
refactorings in code repositories [2], [3]. While some work
is dedicated to extract rules from code history by learning
from bug-fixes [3] others focus on extracting rules from
changes between major releases [1], [2], [4]. Rules can also
be created by experts on the system under analysis [5], or
targeted towards specific goals. However, such approaches are
not suited to keep track of API evolution as they extract rules
from bug-fix changes and major releases; or require the manual
intervention of experts.

In this paper, we propose APIEvolutionMiner, a tool to
extract API rules by monitoring invocation changes applied in
source code during system evolution. In this process, changes
are extracted at revision level in code history. Our tool focuses
on mining invocation changes to keep track of how they are
evolving. Moreover, we provide three case studies in order to
evaluate the tool.

The paper is structured as follows. In Section II, we present
our approach and tool. In Section III, we present case studies
to evaluate our approach. In Section IV, we discuss related
work, and we conclude the paper in Section V.

II. APPROACH AND APIEVOLUTIONMINER

Figure 1 shows an overview of our approach to support
discovering rules, which is separated in three steps. In Step
1, we extract deltas from revisions in system history (Sub-
section II-A). Such step is done once for a system history
under analysis. The next steps are part of the rule discovering
process, which is supported by APIEvolutionMiner. Our rules
are produced based on method calls that should be replaced.
Thus, in Step 2, we select the changes related to such calls
(Subsection II-B1). Finally, in Step 3, we mine the selected
changes to discover rules (Subsection II-B2). Also, in Subsec-
tion II-C we discuss how to automatically produce rules.

Fig. 1. Overview of our approach. Steps 2 and 3 are covered by our tool.

The tool produces rules to indicate how method calls should
be replaced. There are two ways to produce rules:

1) On demand rules: Method calls that should be replaced
are provided by the developer. He will receive on de-
mand rules about how the particular method calls should
be replaced.

2) Automatic rules: Method calls that should be replaced
are automatically extracted from code history. The de-
veloper will receive automatically created rules about
the overall API evolution. For example, rules to ensure
the change patterns shown in Figure 2.

Consider two change patterns that occurred in Pharo1 shown
in Figure 2. Figure 2-I shows the adoption of a form to

1http://www.pharo-project.org



retrieve a default system configuration, i.e., calls to ClassOr-
ganizer.default() are replaced by calls to Protocol.unclassified().
Figure 2-II shows the adoption of a form for testing if an
object is null, i.e., calls to equals(nil) are replaced by isNil().
We want to ensure that such changes are not lost and can be
materialized as rules.

I. Replace ClassOrganizer.default() by Protocol.unclassified()

Diff of method mA() between rev 1 and 2:
− if (method.protocol() == ClassOrganizer.default()) {
+ if (method.protocol() == Protocol.unclassified()) {
II. Replace equals(nil) by isNil()

Diff of method mE() between rev 2 and 3:
− if (context.equals(nil)) {
+ if (context.isNil()) {

Fig. 2. Examples of change patterns in Pharo. ‘−” indicates the deleted
line and “+” indicates the added line. Bold indicates the changed call. Code
converted to Java-like syntax to ease understanding.

A. Extracting Deltas from Revisions

The first step of our approach is to extract deltas from the
revisions, which will be used in the rule discovering process.
Let a delta be a set of changes (deleted and added invoca-
tions) of a method representing the differences between two
revisions. We represent a delta with predicates that describe
added or deleted method invocations:

deleted-invoc(id, receiver, signature, arguments[])
added-invoc(id, receiver, signature, arguments[])
where the predicate deleted-invoc(. . . ) represents a deleted

invocation; the predicate added-invoc(. . . ) represents an added
invocation; id uniquely identifies the change to save its con-
text; receiver is the name of the receiver2; signature is the
signature of the invoked method; and arguments is the list of
arguments, which are abstracted as “*” if they are not primitive
types such as int, boolean or null. In addition, as a meta-
data, each delta has a size (the number of deleted and added
invocations) and an age (the timeframe between the date it
occurred and the last analyzed delta).

Notice that, as we do not rely on the type of receivers
and arguments, such approach can be used in statically and
dynamically typed languages. Also, it keeps the approach
lightweight because there is no need to compile the analyzed
source code. Figure 3 shows the deltas generated to the
changes in Figure 2.

I. Replace ClassOrganizer.default() by Protocol.unclassified()
deleted-invoc(“mA-1-2”, “ClassOrganizer”, “default()”, [])
added-invoc(“mA-1-2”, “Protocol”, “unclassified()”, [])
II. Replace equals(nil) by isNil()
deleted-invoc(“mE-2-3”, “context”, “equals(*)”, [“nil”])
added-invoc(“mE-2-3”, “context”, “isNil()”, [])

Fig. 3. Deltas generated to the changes patterns in Figure 2.

B. Discovering Rules

Rules are computed from the extracted deltas, and indicate
how calls should be replaced. Next, we describe the steps to
discover rules, which are supported by APIEvolutionMiner.

2For example: implicit, local, instance variables or method names.

1) Selecting Changes: We name evidences the method calls
that should be replaced. Let an evidence be a triple with the
elements receiver, signature, and arguments:

evidence = <receiver, signature, arguments[]>
Given a set of related evidences, we select, for each delta:

(i) the deleted invocations that match the evidences and (ii)
the added invocations:

select-changes(evidences[]) ⇒
return, for each delta, the deleted invocations that match
the evidences ∪ added invocations

For example, next, we select the changes shown Figure 3-I:
select-changes([“ClassOrganizer”, “default()”, []]) ⇒

deleted-invoc(“mA-1-2”, “ClassOrganizer”, “default()”, [])
added-invoc(“mA-1-2”, “Protocol”, “unclassified()”, [])

Moreover, elements of the evidence can be abstracted with
“?”. Thus, below, we abstract the receiver (Figure 3-II) because
it is likely to be not constant:

select-changes([?, “equals(*)”, [“nil”]]) ⇒
deleted-invoc(“mE-2-3”, ?, “equals(*)”, [“nil”])
added-invoc(“mE-2-3”, ?, “isNil()”, [])

We mine the selected changes to discover rules. Before that,
we transform the selected changes in a set of transactions so
that it can be used in the mining process. For example, for the
previous query, we have one transaction:

select-changes([?, “equals(*)”, [“nil”]]) ⇒
T1: “deleted ?.equals(nil)”, “added ?.isNil()”

2) Mining Selected Changes: The last step of our approach
is to discover rules from the selected change transactions.

The transactions are analyzed using the data mining tech-
nique frequent itemset mining [6]. Given a set of transactions,
this technique identifies the itemsets which are subsets of at
least n transactions. It defines the support as the number of
occurrences of an itemset. An itemset is considered frequent
if its support is greater than or equal to a specified threshold
called minimum support:

find-frequent-itemsets(transactions[], min-supp) ⇒
return the itemsets in transactions with min-supp

For example, for the transaction generated by the previous
query (i.e., transaction T1), find-frequent-itemsets([T1], 1) pro-
duce three frequent itemsets, each one with support = 1, as
shown in Table I.

TABLE I
FREQUENT ITEMSETS FOR TRANSACTION T1 .

Id Frequent itemset Supp
I1 “deleted *.equals(nil)” 1
I2 “added *.isNil()” 1
I3 “deleted *.equals(nil)”, “added *.isNil()” 1

From the frequent itemsets, association rules [6] are com-
puted. An association rule is defined as L → R, where L and
R are itemsets. Moreover, an association rule has a confidence,
which is the probability of finding the R in transactions under
the condition these transactions also contain L. The confidence
is calculated as conf(L→ R) = supp(Itemset) / supp(L). Given
a set of itemsets and a minimum confidence indicating the
minimum accepted confidence, association rules are produced:

find-assoc-rules(itemsets[], min-conf) ⇒
return the association rules in itemsets with min-conf



We want to produce rules in the specific format Evidences
→ Replacement, where Evidences must include only itemsets
with deleted invocations, and Replacement must include only
itemsets with added invocations. According to the association
rule definition, we can consider that Replacement = X −
Evidences, thus, X must include only frequent itemsets with
both deleted and added invocations. For example, in Table I,
only I3 is considered relevant to our approach, since it satisfies
the condition to include both deleted and added invocations.
Thus, if X is the frequent itemset I3, find-assoc-rules([I3], 1)
produces the following rule with confidence = 1:

Rule: “deleted ?.equals(nil)” → “added ?.isNil()”
The overall process for generating rules Evidences → Re-

placement is sketched in Figure 4.

relevant-assoc-rules(evidences[], min-supp, min-conf) {
transactions = select-changes(evidences);
frequent-itemsets = find-frequent-itemsets(transactions, min-supp);
relevant-itemsets = select the itemsets in frequent-itemsets that

includes both deleted and added invocations;
rules = find-assoc-rules(relevant-itemsets, min-conf);
return rules }

Fig. 4. Overall process to generate rules Evidences → Replacement.

C. Automatically Discovering Rules
As stated in the begin of this section, in practice, there are

two ways to generate rules: on demand or automatically. We
have on demand rules when the developer provides evidences
to relevant-assoc-rules(. . . ). We have automatic rules when the
evidences are extracted from code history and provided to
relevant-assoc-rules(. . . ). Below we describe our heuristic to
automatically discover rules.

Let n-deleted-invocations be the number of deleted invoca-
tions in a delta. We consider that evidences are the deleted
invocations of each delta with n-deleted-invocations less than
or equal to a specified threshold max-deleted-invocations. In
such evidences, we abstract the receivers of non-static invoca-
tions since they are not likely to be constant as they can be, for
instance, variable names. In order to have relevant evidences,
they should not come from deltas with large changes since
such changes are known to be related with a great amount
of noise [1]. For example, from the deltas in Figure 3, two
evidences are extracted:

E1: “ClassOrganizer”, “default()”, []
E2: ?, “equals(*)”, [“nil”]

When provided to relevant-assoc-rules(. . . ), the evidences
produce the next rules, which represent their change patterns:

R1: “del ClassOrganizer.default()” → “added Protocol.unclassified()”
R2: “del ?.equals(nil)” → “added ?.isNil()”

D. Tool Browser
Figure 5 shows the main browser of APIEvolutionMiner3.

It is implemented in the Moose Platform4. In the Input pane
the developer can set the minimum support and the evidences,
i.e., it calls relevant-assoc-rules(. . . ). In addition, he can also
set two strategies in order to filter the produced rules: delta
size and age strategies. The delta size filters the deltas to be

3http://rmod.lille.inria.fr/web/pier/software/APIEvolutionMiner
4http://www.moosetechnology.org

analyzed according to its size while the age filters according
to its age (e.g., deltas from the last six months).

The Association Rule pane shows the associations rules with
confidence and support generated by the given input. When a
rule is selected, the Delta pane displays a list with all the
deltas in which the rule was found. In addition, there is an
alternative displaying of the deltas using distribution map [7],
[8], where the box represents a delta, the color represents the
commiter of the delta, and the size represents the size of the
delta. The idea is to have an overview of the distribution of
the deltas with respect their commiter and size. For example,
in the distribution map presented, we see that the deltas have
three commiters (i.e., three different colors) and distinct sizes.
When a delta is selected (either clicking on the listing or on
the boxes), the Diff pane shows original code from which the
delta came. It shows the old revision of the code on the left
side and newer revision on the right side. Other panes, such
as to support discovering automatic rules, are not described in
the paper due to limit of space.

III. CASE STUDY

We selected three open-source Smalltalk systems as our case
studies: Pharo, Seaside5, and Roassal6, from which 74, 66, and
29 rules were found, respectively. They are large and real-
world systems with relevant source code history. Pharo [9] is
a Smalltalk-inspired language and environment. Seaside [10]
is an open-source framework for developing web applications.
Roassal is a visualization engine which graphically renders
objects with interaction facilities. Next, we present some
extracted rules.

Pharo. Rule isNil().ifTrue(*) → ifNil(*) is a convention about
calling less methods when testing null objects, which makes
the test clearer and shorter. It occurred in 92 deltas, 8
revisions, and in timeframe of 77 days between its first
and last revision. Rule UserManager.default().currentUser() →
Smalltalk.tools().userManager() is about using the class Smalltalk
as a central entry point to the system. Note that in this case
the old API is not necessarily deprecated; Smalltalk class acts
as a facade to access the system.

Seaside. Rule ifNotNil(*) → isNil().ifFalse(*) is a system spe-
cific convention about calling more methods when testing null
objects, with a timeframe of 500 days. Rule registerAsAppli-
cation(*) → WAAdmin.registerAsApplicationAt(*,*) is about using
static method calls instead of shortcut calls. This rule has a
timeframe of 589 days.

Roassal. In this system, the carriage return was first rep-
resented as String.cr(), and afterwards as Character.cr(). Thus,
this generated rule String.cr() → Character.cr(). Later, the car-
riage return was represented as ROPlatform.current().newLine(),
a convention specific for this system. Therefore, this generated
rule Character.cr() → ROPlatform.current().newLine().

By analyzing incremental API changes patterns, we are able
to discover relevant rules which represent previously unknown
API updates or usage conventions. As our approach caught
them, it can be used to avoid related maintenance problems.

5http://www.seaside.st
6http://objectprofile.com/#/pages/products/roassal/overview.html



Fig. 5. APIEvolutionMiner main browser.

IV. RELATED WORK

Traditionally, two approaches are proposed to ensure con-
sistency of changes in source code: rules can be created by
experts, or extracted from changes in code history.

Rules created by experts. A first solution is to use rules
provided by static analysis tools such as PMD, Findbugs,
or SmallLint. However, overall, these rules are generic, i.e.,
not focusing on the system under analysis. Such rules can
also target domains [5], or specific goals such as migra-
tion. PMD contains a set of rules (pmd.sourceforge.net/pmd-
5.0.2/rules/java/migrating.html) to support migrating systems
from a Java version to another by updating method calls. In
FindBugs, some rules suggest the replacement of calls from
an API to another, even if the replaced API is not necessarily
deprecated. Overall, they focus on adjusting the use of an API
to another that is better suited. However, they are generic rules,
which come from previous experience of developers; getting
access and capturing their knowledge into new rules is costly.

Rules extracted from code history. A possible alternative
is to extract rules from code history. When analyzing source
code history, information can be extracted by comparing two
or more system versions [1], [2], [4], [11]. Some work mine
changes only related to bug-fixes [3]. This limits the search
space as it ignores ordinary commits by focusing on rules
related to bug-fixes. However, relevant information might also
be lost when not analyzing ordinary commits. As software
evolves, naturally, not just bugs are fixed, but code is added, re-
moved and refactored. In our previous study [12], we focused
on extracting API rules based on predefined rule patterns by
analyzing also ordinary commits. However, in this case, the
rules are restricted to follow such patterns.

V. CONCLUSION

We proposed a tool to extract rules by monitoring API
changes applied in source code during system evolution.

Changes are mined from invocation changes at revision level
to keep track of how APIs are evolving. Also, our tool can
provide either on demand or automatic rules.

Acknowledgments: This research is supported by Agence
Nationale de la Recherche (ANR-2010-BLAN-0219-01),
FAPEMIG (process CEX-APQ-00214-11) and STIC-
AmSud/CAPES (process 821).

REFERENCES

[1] Y. M. Mileva, A. Wasylkowski, and A. Zeller, “Mining Evolution of Ob-
ject Usage,” in European Conference on Object-Oriented Programming,
2011.

[2] M. Kim and D. Notkin, “Discovering and Representing Systematic Code
Changes,” in International Conference on Software Engineering, 2009.

[3] S. Kim, K. Pan, and E. E. J. Whitehead, Jr., “Memories of Bug Fixes,”
in International Symposium on Foundations of Software Engineering,
2006.

[4] H. A. Nguyen, T. T. Nguyen, G. Wilson, Jr., A. T. Nguyen, M. Kim,
and T. N. Nguyen, “A graph-based approach to API usage adaptation,”
in ACM International Conference on Object Oriented Programming
Systems Languages and Applications, 2010.

[5] A. Hora, N. Anquetil, S. Ducasse, and S. Allier, “Domain Specific
Warnings: Are They Any Better?” in International Conference on
Software Maintenance, 2012.

[6] M. Zaki and W. Meira Jr, “Fundamentals of data mining algorithms,”
2012.

[7] S. Ducasse, T. Girba, and A. Kuhn, “Distribution Map,” in International
Conference on Software Maintenance, 2006.

[8] A. Hora, C. Couto, N. Anquetil, S. Ducasse, M. Bhatti, M. T. Valente,
and J. Martins, “BugMaps: A Tool for the Visual Exploration and
Analysis of Bugs,” in European Conference on Software Maintenance
and Reengineering, Tool Track, 2012.

[9] A. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, and
M. Denker, Pharo by Example. Square Bracket Associates, 2009.

[10] S. Ducasse, A. Lienhard, and L. Renggli, “Seaside: A Flexible Environ-
ment for Building Dynamic Web Applications,” IEEE Software, vol. 24,
2007.

[11] N. Meng, M. Kim, and K. S. McKinley, “Lase: locating and applying
systematic edits by learning from examples,” in International Conference
on Software Engineering, 2013.

[12] A. Hora, N. Anquetil, S. Ducasse, and M. T. Valente, “Mining Sys-
tem Specific Rules from Change Patterns,” in Working Conference on
Reverse Engineering, 2013.



APPENDIX A
DESCRIPTION OF HOW THE DEMO WILL BE CONDUCTED

We will show how to generate rules for the case studies
presented in the paper (i.e., Pharo, Seaside, and Roassal)
demonstrating the idea of on demand and automatic rules.

A. On demand rules
We will provide evidences to the tool in order to produce

rules. We will show step by step how to produce rules and
check their real occurrence in source code, i.e., the changes
from which the rules were learned. Thus, we present the data
flow starting in the Input pane, then the Association rule and
the Delta pane until the Diff pane (Figure 6). In this process,
we will also present the confidence and support, and how such
measures are related to the quality of the rules.

Fig. 6. Main browser.

In addition, we will show the Delta pane displaying the map
of deltas (Figure 7). It provides an overview of the distribution
of the deltas with respect commiters and size. For example, in
the presented map, the selected rule came mostly from small
and medium deltas (size of the boxes) and from four distinct
commiters (color of the boxes: green, blue, red, and orange).

Fig. 7. Delta pane displaying the map of deltas.

B. Automatic rules
We will provide evidences to the tool in order to produce

rules. However, in this case, the evidences will come from
Automatic evidences pane (Figure 8), which were extracted
from code history. The idea is that even if the developer is not
an expert on the system under analysis, he still can generate
rules in order to understand how a particular API evolved.

Fig. 8. Automatic evidences pane.


