
Domain Specific Warnings: Are They Any Better?

André Hora, Nicolas Anquetil, Stéphane Ducasse, Simon Allier
RMoD Team

INRIA, Lille, France
{firstName.lastName}@inria.fr

Abstract—Tools to detect coding standard violations in
source code are commonly used to improve code quality. One
of their original goals is to prevent bugs, yet, a high number
of false positives is generated by the rules of these tools, i.e.,
most warnings do not indicate real bugs. There are empirical
evidences supporting the intuition that the rules enforced by
such tools do not prevent the introduction of bugs in software.
This may occur because the rules are too generic and do
not focus on domain specific problems of the software under
analysis. We underwent an investigation of rules created for
a specific domain based on expert opinion to understand if
such rules are worthwhile enforcing in the context of defect
prevention. In this paper, we performed a systematic study to
investigate the relation between generic and domain specific
warnings and observed defects. From our experiment on a
real case, long term evolution, software, we have found that
domain specific rules provide better defect prevention than
generic ones.

I. INTRODUCTION

Tools to detect coding standard violations in source code
such as FindBugs [1] are commonly used to ensure the
quality of the source code. Over the years several tools have
been made available to provide such analyses [2], [3], [4],
[5]. The rules provided by these tools are usually created for
generic purposes such as ensuring that classes and methods
are commented, checking identifiers length (long enough
to be significant), and of the methods (not too long), or
searching an assignment that has no effect. These rules
can be targeted towards multiple goals, such as reliability,
portability or maintainability [6], but very few are focused
on the domain of the software under analysis.

A significant percentage of violations (warnings) reported
by these rules are false positives, that is to say, most
violations do not indicate real bugs. There are empirical
evidences supporting the intuition that bug finding tools,
with these rules, do not prevent the introduction of bugs
in software [7], [8], [9], [6], [10], [11]. In general, warnings
and observed defects are independent, there is no correlation
between them.

We hypothesized that this happens because the rules used
are generic and are not focusing on domain-specific prob-
lems of the software under analysis. For example, studies
indicate that the most prevalent type of bug is semantic or
program specific [12], [13], [9]. These kinds of bugs cannot

be easily detected by generic rules [7]. In addition, using
domain specific rules is not easy since they must be defined
by an expert of the domain under analysis, for each domain.
The efficiency of such domain specific rules for defect
prevention or reduction needs therefore to be demonstrated.

In this paper, we performed a systematic study to inves-
tigate the relation between, on one side, generic or domain
specific warnings and, on the other side, observed defects.
For that, we first consider the warnings reported by generic
and domain specific rules. Then, we consider the warnings
reported by generic and domain specific rules that better
correlate with the presence of bug, that we call top rules. The
study is performed on Seaside, a web application framework,
that has been used and maintained for years and for which
domain specific rules have been created [14]. The results
show that domain specific rules provide a better defect
prevention than generic ones.

The contributions of this work are: (1) replication of
previous experiments as to the lack of correlation between
generic warnings and bugs; (2) new experiments on the
correlation between domain specific warnings and bugs;
and, (3) comparison between the precision of generic and
domain specific rules as to bug prediction. The replication
of previous experiments (first contribution) was required
because we work with an OO language and a bug-finding
tool not yet covered by previous studies.

This paper is structured as follow. Section II gives an
overview of the approaches used to assess and match warn-
ings and defects in source code. These approaches are used
to support our study. Section III details our research ques-
tions. Section IV presents our experiment setting. Section V
details the results of the empirical study. In section VI we
present the evaluation of the results and we discuss threats
to validity of the experiment. Finally, Section VII discusses
related work and we conclude the paper in Section VIII.

II. ASSESSING AND MATCHING WARNINGS AND
DEFECTS

This section describes the approach used to assess and
match warnings and defects in source code. More specifi-
cally, we describe how to assign warnings and defects to
software components such as methods or lines of code.
Then, we present how to match warnings and defects to
detect which warnings are pointing to lines with defects and

978-1-4673-2312-3/12/$31.00 c© 2012 IEEE

which are not pointing, i.e., the true and false positives and
negatives.

A. Determining Warning and Defect

Previous research try to predict bugs at the levels of
classes, methods, or lines of code [8], [15], [6], [9]. This
work is about evaluating the relation between warnings
and defects, which requires to match them to source code.
Working at the level of line is considered more difficult but
giving better results [7] because it gives a more detailed level
of granularity. Tools to detect coding standard violations
usually give warnings at the level of lines of code, therefore,
it is best to identify bugs at the same level so that both
information match. In contrast, a problem that may occur
when adopting classes or methods level is the possibility
of wrong matching. Consider for example matching bugs
and warnings at the class level, a warning may occur in
one method of the class and a bug in another method. It is
not clear in this case whether a match between a warning
and a bug at the class level is really meaningful. The same
mismatch happens, to a lesser extent, at the method level.
For this reason, in our research, we work at the level of lines
of code.

To match warnings and defects, we must identify lines
with defects or warnings:

• Identifying lines with defects. This is done by mining
commit messages in the software history to find bug
fix changes. Two approaches for this step are nor-
mally used: searching for keywords such as “Fixed”
or “Bug” [16] and searching for references to bug
reports [17]. Identifying a bug fix commit allows one
to identify the code changes that fixed the bug and
therefore, where the bug was located in the source code.
A line of code is related to a defect if it is modified
by a bug fix change, since to resolve a problem the
line was changed or removed [7]. Such line is marked
as defect related because a single bug (error) may be
caused by several defects (lines of code).

• Identifying lines with warnings. Things are simpler for
warnings as many code checking rules and tools work
at the level of line, therefore, a warning points directly
to the rule breaking line.

That way, each line of code may be marked as warning
and/or defect related. If one considers that warnings should
prevent errors, one is interested in the lines that have both
markers, called a True Positive (TP), the warning truly
identified a defect; a line marked only as defective is a
False Negative (FN), the code checking tool and rules failed
to point to a defect; a line marked only with a warning is
a False Positive (FP), the code checking rule pointed to a
line that has no defect; and, a line with neither warning nor
defect is a True Negative (TN), the code checking tool and
rules correctly ignored a line with no defect. Of course rules
may be actually created with other purposes than detecting

defects, but in this research field we focus on their ability to
prevent bugs. We will come back on this issue later in our
experiment by considering only rules that better correlate
with the presence of bug (top rules). This approach is also
used by [9], [6], [7] to assess the true positives.

B. Unique Lines of Code

Errors (bugs) happen at various moments in software life
and are corrected at different time. One needs to consider
many versions of a system to collect data on various errors
and be able to meaningfully correlate warnings and defects.
During the life of the system, lines are added, removed or
changed for many reasons not all related to bug fixes. Line
based rules will raise (or not) a warning for a line as long as
the line remains unchanged. A defect will be marked on a
line from the time it is corrected (actually, just before) back
to the time it was created in this form. So one works with
unique lines of code (ULoC) [6], [9].

A unique line of code is a line that remains unchanged,
possibly across several versions of the system. It is created at
one point in time (a version of the system) and ends when
it is changed or deleted. Different ULoCs in the system,
even if they are physically contiguous in the code, may have
different extension in time depending when they are created
or ended. To match warnings to defects at the line level,
one needs to identify all the ULoCs in the system during
the whole time period of the experiment. This is done by
creating a graph that represents a method’s history (a method
history contains one or more method versions) in which
each node represents a physical line of code and each edge
represents a non-changed line between two method versions
(see Figure 1). A path in the graph is a ULoC. This approach
is similar to the result of the SVN annotate command, where
it is possible to know in one method version when the line
was last modified. This graph is also close to an annotation
graph [18], [19], but the former just keeps track of non-
changed lines while an annotation graph also keeps track of
modified lines.

Before creating the graph, the source code of the methods
is normalized such that blank lines and formating changes
are ignored. By doing this, we avoid, for example, cases
where a warning points to one line in one version and the
same warning points to two lines in another version, due to
changes of formating between versions.

ULoCs support the computation of true and false positives
and negatives. Figure 1 shows an example of the generated
graph representing a method history with four versions (four
commits). We can see that the first physical line of code
has never been modified in these four versions, therefore
it makes a single ULoC (ULoC-1). The second physical
line of code in version 1 has been modified in version
2, therefore it also makes a single ULoC (ULoC-2), and
another one, ULoC-3, for the same physical line of code
starting at version 2. Numbers in the top left corner of the

boxes are unique identifiers for the ULoCs. There are eleven
of them in total.

c := #('x' 'y').

Version 1 Version 2 Version 3 Version 4

Bug fixBug fix

a ifNotNil: [a ifNotNilDo: [

c := {'x'. 'y'}.

defect

defect

defect

defect

1

2 3

4 5

6 7

8

9

10 11

TP FPFN TN

Figure 1. Example of graph representing a method history with four
versions and with ULoCs marked with warnings and defects

In Figure 1 there are also two bug fixes, in version
2 and 4. The lines changed or removed to correct the
bugs are marked with the word “defect”. For illustration,
the actual line of code is shown in the node just before
and after the bug fix. Warning-only ULoCs (False Positive,
see Section II-A) are presented in strong gray, defect-
only ULoCs (False Negative) in medium gray, ULoCs with
warning and defect (True Positive) in light gray, and ULoCs
with neither markers (True Negative) are left in white. Thus,
in Figure 1 there are 2 TPs, 1 FP, 2 FNs, and 6 TNs. One
can measure the efficiency of a rule from the portion of
warnings predicted correctly over all ULoCs marked with
warnings (e.g. TP/(TP + FP)).

III. RESEARCH QUESTIONS

We want to assess the correlation between generic warn-
ings and defects as well as between domain specific warn-
ings and defects. Also, we want to study if domain specific
rules are better bug predictors than generic rules. As part
of this research we need to replicate previous experiments
([7], [8], [9], [6], [10]) on our case study, showing that
generic coding standard rules generate many false positives
with regard to bug prediction. We rephrase here our three
contributions in the form of three questions. These questions
will then be formalized into more specific research questions
that will allow us to define formal hypotheses.

1) Can generic warnings be used for defect prevention?
2) Can domain specific warnings be used for defect

prevention?
3) Are domain specific warnings more likely to point to

defects than generic warnings?

We derive two versions of such questions. The first simply
considers all generic rules and all domain specific rules. The
second considers a more restricted set of generic and domain
specific rules, the top rules.

A. Evaluating All Rules

The interrogations in this subsection take into account all
rules (generic and domain specific). A first question is about
the relation between generic warnings and defects. We want
to know if these two variables are related or independent.

RQ1 Is there a relation between generic warnings and
defects?

This question has already been answered, mostly neg-
atively, in other papers. We replicate it here because we
work with a language that was not considered previously
(Smalltalk) and with a bug-finding tool similarly not studied
(Smalllint).

We also want to know if there is a relation between
domain specific warnings and defects and this motivates our
second research question:

RQ2 Is there a relation between domain specific warn-
ings and defects?

The previous questions analyze the relation between warn-
ings and defects, but we also want to assess if domain
specific warnings are better than generic warnings with
respect to defect prevention.

RQ3 Are domain specific warnings more likely to point
to defects than generic warnings?

B. Evaluating Top Rules

Considering all rules raises an issue with generic rules.
These rules are somehow easier to define than the domain
specific ones, because one can do it once for all, every
addition is a “definitive” contribution. On the other hand,
domain specific rules must be created for each new domain.
With more generic rules, one should expect more warnings
and consequently, as is typical in information retrieval, one
should also expect better bug coverage (more bugs will be
covered by at least one warning) but also lower precision,
that is to say, each warning will have a lower probability of
indicating a bug. So, we must expect that generic rules will
naturally fare lower (e.g. RQ3) than domain specific ones,
simply because they are more numerous and will give more
hits. To have a fairer comparison, we will perform the same
experiments for the top rules of the two sets, i.e., the rules
that better correlate with the presence of bug.

Thus, given selected groups of top generic and top domain
specific rules we can ask the same questions as RQ1, RQ2,
and RQ3.

RQ4 Is there a relation between top generic warnings
and defects?

RQ5 Is there a relation between top domain specific
warnings and defects?

RQ6 Are top domain specific warnings more likely to
point to defects top generic warnings?

By answering such questions we can define which groups
of rules are worthwhile for defect prevention in the case
study under analysis.

IV. EXPERIMENT SETTING

In this section we plan our experiment as suggested
in [20]. We have two different experiments to setup, to
answer research questions RQ1, RQ2, RQ4, and RQ5 on
one hand, and to answer RQ3 and RQ6 on the other hand.

A. Context

The context of the experiment is real systems for which
source code, commits logs linked to an issue database, and
generic and domain specific rules to detect coding standard
violations are available. We need real systems to ensure
that our experiment is meaningful. Also, we need systems
with commits linked to issue database and generic and
domain specific rules to assess the relation between defects
and warnings. Domain specific rules are defined by domain
experts.

One difficulty of this research is to find systems that
fulfill these requirements, and particularly for which a set
of domain specific rules is defined. We selected Seaside
to perform our empirical studies mainly because of its set
of domain specific rules [14], but also because it has the
advantage of being a real-world and non-trivial application,
with a consolidated number of users and a relevant history
of bugs. Seaside1 is an open-source web application frame-
work written in Smalltalk [21]. This system defines various
internal domain-specific languages to configure application
settings, nest components, define the flow of pages, and
generate XHTML. We analyze the impact of domain specific
rules for defect prevention when compared with generic
rules on a long term evolution of Seaside. We analyze
943 snapshots of Seaside core, which were produced in
almost four years of development (from November 2007 to
September 2011). Table I presents an overview of the size
of our case study.

Table I
OVERVIEW OF SEASIDE CORE SIZE

Number of snapshots 943
Average classes per snapshot 216
Average methods per snapshot 1,592
Average LOC per snapshot 6,428

Seaside includes Slime [14], a Seaside-specific program
checker consisting of a set of rules working at the level
of the abstract syntax tree (AST), that we call the domain
specific rules. Smalltalk includes Smalllint [5], a generic
program checker consisting of rules also working at the level
of the AST, that we call the generic rules. Smalllint can be
compared to other bug-finding tools such as FindBugs [1]
and JLint2 and it comes with rules targeting common bugs
and code smells in Smalltalk.

1http://www.seaside.st
2http://jlint.sourceforge.net

B. Experiment for RQ1, RQ2, RQ4, RQ5

This first experiment is about the relation between warn-
ings and defects. We want to know if these two variables
are related or independent.

1) Hypotheses Formulation: The null and alternative hy-
potheses may be formalized as:

H1,2,4,5
0 Warnings and defects are independent.

H1,2,4,5
a Warnings and defects are related.

2) Variable and Subject Selection: The independent vari-
able is the warnings raised by tools to detect coding standard
violations on lines of code. It is categorical and can take two
values: with warning and without warning. The dependent
variable in this study is the defects, which are raised by bug
fix changes on lines of code. It is also categorical and can
take two values: with defect and without defect.

The subjects for these experiments will be ULoCs from
the case study chosen (Seaside) and we will measure the
number of ULoCs in each of four categories: with warn-
ing/with defect (true positive), with warning/without defect
(false positive), without warning/with defect (false negative),
and without warning/without defect (true negative).

3) Experiment Design: To test the hypotheses H1,2,4,5

we use the Chi2 test, which can be used when there are two
categorical variables, each with two or more possible values.
The null hypothesis is that the frequencies for the dependent
variable (defects) are the same for different values of the
independent variable (warnings). If we cannot reject the null
hypothesis, we must conclude that the variables are in fact
independent. When we can reject the null hypothesis (i.e.,
the variable are dependent), it is also important to understand
how the variables are related. This is done by observing
the Pearson residuals, which measure the difference between
the observed and expected frequencies. When the absolute
value of the residual is greater than two (> 2), one considers
that the observed frequency is significantly higher than the
expected and that more of the independent variable should
induce more of the dependent one.

As is customary, the tests will be performed at the 5%
significance level which means there will be a probability
of 5% or less of erroneously rejecting the null hypothesis.

C. Experiment for RQ3, RQ6

1) Hypotheses Formulation: The null and alternative hy-
potheses may be formalized as:

H3,6
0 Domain specific and generic warnings are equally

precise in identifying defects.
H3,6

a Domain specific warnings are more precise in
identifying defects than generic warnings.

Note that we make a directional (one-tailed) hypothesis.
This should be made when there is evidence to support such
a direction. This evidence will stem from the results of the
first experiments where we will answer negatively to RQ1
(there is no relation between generic warnings and defects)

and positively to RQ2 (there is a relation between domain
specific warnings and defects).

2) Variable and Subject Selection: The independent vari-
able in this study is the group of rules (generic or domain
specific). The dependent variable could have been the pre-
cision of the coding standard rules where precision is the
percentage of ULoC with warning and defect among all
ULoC with warning. However, we will show in the result
section that we do not have enough rules with non-null
precision to perform a test: many rules didn’t give any
warning, so precision is undefined for them, and other got
warnings but not on ULoCs with defects, so precision would
be null for them.

To bypass this issue, we will group ULoCs according to
another criteria. We will consider all ULoCs in the history of
a method as one subject. Another way to see it is to say that
the combined versions of one method will be a subject. We
considered working with “normal” methods as subject, that
is to say one method in one version, but this would have the
drawback that the same ULoC can appear in several versions
of a method (if it does not change between these versions,
e.g. see ULoC-1 in Figure 1), and therefore would have been
counted more than once. By taking the whole history of each
method, we avoid giving more weight to some ULoCs.

The metric used will be the Positive Predictive Value
(PPV) which has the same formula as precision: proportion
of ULoC with defects among those with warning. A high
PPV indicates that the method, in its history, tends to have
defects where it breaks some generic (or domain specific)
coding standard rule.

3) Experiment Design: For this experiment, we use an
unpaired setting, which means the methods composing one
sample may not be the same than those composing the other
sample. This is due to the fact that not all methods break
generic and domain specific coding standard rules, many of
them break either one or the other category of rule, and
even fewer methods would have a non null PPV for both
categories.

We test the hypotheses H3 and H6 with a Mann-Whitney
test which is used for assessing whether one of two samples
of independent observations tends to have larger values than
the other. It can be used when the distribution of the data is
not normal and there is different participants (not matched)
in each condition. The null hypothesis is that the median
PPV is the same for both samples.

Again the tests will be performed at the 5% significance
level.

D. Instrumentation

1) Defects: For our research, we use the prediction at the
level of lines of code because it is a more precise level of
granularity and it also avoids the issues cited in Section II-A.
To identify bug fix changes, we use the technique of search-
ing for keywords, since Seaside has a normal practice of

writing bug fix commits with the keyword “Issue”. Seaside
history contains 14, 416 ULoCs, from which 664 (4.6%)
contained defects.

2) All Rules: With respect to the used rules, we con-
sidered two sets of rules, the first one with 91 generic
rules and the second one with 29 domain specific rules. We
considered only rules that work at the level of lines of code,
excluding, for example, rules like “method too long”. Below,
we briefly describe the groups of generic rules. The number
of individual rules by group is also showed.

• Unnecessary code (20). It targets code that is not
needed or can be avoided (replaced) since other pieces
of code can be more efficient or legible, e.g. an assign-
ment that has no effect.

• Spelling (5). It looks at identifiers to find words wrongly
spelled.

• Possible bugs (20). It targets general code that is
considered likely to cause bugs, e.g. an unconditional
recursion, or modification of a collection while iterating
over it.

• Pharo bugs (7). It searches for code patterns specific to
Pharo3 (Smalltalk dialect used in this work) that could
cause bugs, e.g. debugging code left in a method.

• Bugs (7). Another kind of code that can cause bugs,
e.g. a missing super implementation, a method that
overrides a “system” message.

• Miscellaneous (13). It searches for different patterns
that, for example, a programmer coming from other lan-
guages might produce, e.g. in arithmetic expressions4.

• Intention revealing (19). It searches for code related to
the intention revealing pattern, e.g. a code that breaks
the Law of Demeter, variable capitalization, or code
using the wrong iterator.

The domain specific rules are separated into the following
groups:

• Portability (8). Seaside runs without modification on
7 different platforms which differ slightly in both
the syntax and the libraries they support [14]. Thus,
this category targets code patterns specific to some
platforms, e.g. code that uses dynamic arrays, or some
specific methods/classes not portable across different
Smalltalk dialects.

• ANSI compatibility (8). It targets code that is not ANSI
compatible and is also related to the portability of
Seaside.

• Possible bugs (12). It targets Seaside-specific code that
is likely to cause bugs, e.g. code in which a given
message is not the last in a specific sequence of method
calls.

3www.pharo-project.org
4In Smalltalk arithmetic operators are normal methods, so “arithmetic

expressions” are evaluated from left to right without operator precedence,
1+2∗3 is interpreted as (Java like notation) 1.add(2).times(3)=3.times(3)=9

• Formatting (1). It targets code in which a specific
pattern must be followed, e.g. a correct pattern to
deprecate an API protocol.

Some of these rules would clearly not be related to bug
prevention (for example the spelling group), so we also
experimented with the top rules as already introduced in
Section III-B and are detailed in the next subsection.

Table II presents the number of warnings raised by all
rules as well as the percentage of ULoC impacted.

Table II
SEASIDE WARNINGS FOR ALL RULES

Group #Warnings ULoC with warnings
All generic 1,118 7.7%
All domain specific 312 2.1%

3) Top Rules: Here we detail the approach used to
determine the top rules. Table III shows all the rules that
generate some warnings and for which at least one warning
coincide with a defect, that is to say the rule for which
TP > 0. This result confirms previous works, in which a
subset of rules performs better than others [7], [9], [6], [10].
Rules prefixed by “GR” are domain specific rules and those
prefixed by “RB” are generic rules.

Table III
RULES WITH TP > 0. RULES IN BOLD PERFORMED SIGNIFICANTLY

BETTER THAN RANDOM (TOP RULES)

Rule #Warning #TP
GRAnsiCollectionsRule 8 1
GRAnsiConditionalsRule 118 18
GRAnsiStreamsRule 11 1
GRAnsiStringsRule 40 10
GRDeprecatedApiProtocolRule 56 3
GRNotPortableCollectionsRule 7 4
RBBadMessageRule 16 1
RBGuardingClauseRule 19 2
RBIfTrueBlocksRule 7 2
RBIfTrueReturnsRule 14 3
RBLawOfDemeterRule 224 18
RBLiteralValuesSpellingRule 232 10
RBMethodCommentsSpellingRule 216 8
RBNotEliminationRule 58 1
RBReturnsIfTrueRule 72 3
RBTempsReadBeforeWrittenRule 16 3
RBToDoRule 38 6

In fact, any random predictor, marking random lines
with warnings, would, with a sufficient number of attempts,
end up with a number of true positives higher than zero,
but would not be very useful. Therefore, we can assess
the significance of a rule by comparing it to a random
predictor [9]. As suggested by [9], [6], this problem can
be modeled as follows: the project is viewed as a large
repository of lines, with a certain probability (p= #ULoC
with defects / #ULoC) of those lines being defect related.
A rule marks n lines with warnings. A certain number of

these warnings (r) are successful defect predictions. This is
compared with a random predictor, which selects n lines
randomly from the repository. We can model the random
predictor as a Bernoulli process (with probability p and
n trials). The number of correctly predicted lines r has
a binomial distribution; using the cumulative distribution
function P (TP ≤ X ≤ n) we compute the significance of
the rule [6]. In conformance with our other statistical tests,
we choose a 5% threshold5. When the random predictor
has less than 5% probability to give a better result than
the rule, we call this one a top rule. For example, for
Seaside we have 14, 416 ULoCs and 664 with defects, so
the probability of randomly picking a line with defect is
p = (664/14416) = 0.046. For rule GRNotPortableCollec-
tionsRule (Table III), n = 7 and the cumulative distribution
function P (4 ≤ X ≤ 7) is 0.0001, therefore we consider it
a top rule. The top rules are presented in bold in Table III.

Table IV presents the number of warnings raised by the
top rules as well as the percentage of ULoC impacted.

Table IV
SEASIDE WARNINGS FOR TOP RULES

Group #Warnings ULoC with warnings
Top generic 299 2.0%
Top domain specific 165 1.1%

V. EXPERIMENT RESULTS

In this section we present the results of our empirical
study. We first present the results for all rules and answer
RQ1, RQ2, and RQ3. We follow with the results for top
rules and answer RQ4, RQ5, and RQ6.

A. Evaluating All Rules

The hypotheses for the Chi2 test are derived from the one
presented in Section IV-B.

RQ1 Is there a relation between generic warnings and defects?
H1

0 Generic warnings and defects are independent.
H1

a Generic warnings and defects are related.

Table V shows the contingency table for generic warnings.
The Chi2 test gives a p-value = 0.65 (> 0.05 significance
level), therefore, we cannot reject the null hypothesis that
generic warnings and defects are independent, i.e., the
proportions of lines with and without generic warnings are
the same in lines with and without defects.

Table VI shows the residuals for generic warnings, the
values close to 0 indicate that there is no significant dif-
ference between the observed frequencies and the expected
ones.

Results for all domain specific rules follow.
RQ2 Is there a relation between domain specific warnings and

defects?

5Note however that this is not a statistical test of significance.

Table V
CONTINGENCY TABLE FOR GENERIC WARNINGS (#ULOCS)

with defect without defect total
with warning 55 1,063 1,118

without warning 609 12,689 13,298
total 664 13,752 14,416

Table VI
RESIDUALS FOR GENERIC WARNINGS

with defect without defect
with warning 0.48 -0.10

without warning -0.14 0.03

H2
0 Domain specific warnings and defects are independent.

H2
a Domain specific warnings and defects are related.

Table VII shows the contingency table for domain specific
warnings. The Chi2 test gives p-value < 0.001. We can reject
the null hypothesis with a very small probability of error,
we conclude that domain specific warnings and defects are
related, i.e., the proportions of lines with and without generic
warnings are not the same in lines with and without defects.

Table VII
CONTINGENCY TABLE FOR DOMAIN SPECIFIC WARNINGS (#ULOCS)

with defect without defect total
with warning 37 275 312

without warning 627 13,477 14,104
total 664 13,752 14,416

The effect size is 0.051. Table VIII shows the residuals
for domain specific warnings. One can see that condition
with warning and defect is over-represented (> 2) and is
the major contributor to the rejection of the null hypothesis.

We further conclude that defects appear more frequently
on lines with domain specific warnings than on lines without
warning.

Table VIII
RESIDUALS FOR DOMAIN SPECIFIC WARNINGS

with defect without defect
with warning 5.97 -1.31

without warning -0.88 0.19

We now test whether domain specific warnings are better
than generic warnings with respect to defect prevention. An
evidence to support such a direction is the fact that we
answered negatively to RQ1 and positively to RQ2.

RQ3 Are domain specific warnings more likely to point to
defects than generic warnings?

H3
0 Domain specific and generic warnings have the same

PPV.
H3

a Domain specific warnings PPV is higher.

From all method histories, 509 had at least one generic
warning and 175 had at least one domain specific warning.
These will be our two samples in this test, the other methods
having no warning have undefined PPV (TP/(TP+FN) =
0 / 0).

Applying the Mann-Whitney test for such samples we
have p-value = 0.003. The effect size is 0.1. We can reject
the null hypothesis and say that domain specific PPV is
higher than generic PPV, methods with domain specific
warnings have more chance to have defects on these lines
than those with generic warning.

We conclude that it is better to use domain specific
warnings to point to defects than generic warnings.

B. Evaluating Top Rules

We also performed the same experiments on top rules.
RQ4 Is there a relation between top generic warnings and

defects?
H4

0 Top generic warnings and defects are independent.
H4

a Top generic warnings and defects are related.
RQ5 Is there a relation between top domain specific warnings

and defects?
H5

0 Top domain specific warnings and defects are indepen-
dent.

H5
a Top domain specific warnings and defects are related.

Table IX and X show the contingency tables for top
generic and domain specific warnings, respectively. The Chi2

tests give p-value < 0.001 for both. We can reject null
hypotheses H4

0 and H5
0.

We conclude that top generic warnings and top domain
specific warnings are related to defects.

Table IX
CONTINGENCY TABLE FOR TOP GENERIC WARNINGS (#ULOCS)

with defect without defect total
with warning 32 267 299

without warning 632 13,485 14,117
total 664 13,752 14,416

Table X
CONTINGENCY TABLE FOR TOP DOMAIN SPECIFIC WARNINGS

(#ULOCS)

with defect without defect total
with warning 32 133 165

without warning 632 13,619 14,251
total 664 13,752 14,416

The effect size is 0.042 for top generic and 0.076 for
top domain specific warnings. Table XI and XII show the
residuals for top generic and top domain specific warnings.
We see that category with warning and defect is over-
represented (> 2) and is the major contributor to the
rejection of the null hypotheses.

We further conclude that defects appear more frequently
on lines with top generic or top domain specific warnings
than on lines without such warnings.

Table XI
RESIDUALS FOR TOP GENERIC WARNINGS

with defect without defect
with warning 4.91 -1.07

without warning -0.71 0.15

Table XII
RESIDUALS FOR TOP DOMAIN SPECIFIC WARNINGS

with defect without defect
with warning 8.85 -1.94

without warning -0.95 0.20

Finally, we test whether top domain specific warnings
are better than top generic warnings with respect to defect
prevention. An evidence to support such a direction is the
fact that residual of the category with warning and defect is
higher for the former than for the later.

RQ6 Are top domain specific warnings more likely to point to
defects top generic warnings?

H6
0 Top domain specific and top generic warnings have the

same PPV.
H6

a Top domain specific warnings PPV is higher.

From all method histories, 77 had at least one top generic
warning and 67 had at least one top domain specific warning.
These will be our two samples in this test.

Applying the Mann-Whitney test we have p-value =
0.047. The effect size is 0.14. There is a significant dif-
ference between both samples and we can reject the null
hypothesis.

We conclude that it is better to use top domain specific
warnings to point to defects than top generic warnings.

VI. DISCUSSION

In this section we discuss the results of our experiments.
We also present the threats to the validity of these experi-
ments.

A. Evaluating All Rules

We studied the relation between warnings and defects.
The outcome of our experiments is that generic warnings
are not efficient to identify lines with defects (RQ1). This
is coherent with the conclusions of previously published
results [7], [9], [6], [10]. The fact that different bug-finding
tools and programming languages were considered in other
experiments and ours, reinforce the general validity of this
conclusion.

This results is due to the great amount of false positives
generated by generic rules. It hints at the importance of
tailoring coding standard rules to a specific domain, which is

confirmed by RQ2, showing that domain specific warnings
and defects are dependent for the case study under analysis.
In this case, we see a reduction of the amount of false
positives.

Since RQ1 was rejected, and RQ2 accepted, the result
provided by RQ3 is expected: PPV measured for domain
specific rules is higher than for generic rules. We conclude
that, for the case study under analysis, generic rules are not
effective enough to be used for defect prevention. Domain
specific rules give more relevant information on how to avoid
bugs and therefore they are effective to be used for defect
prevention.

B. Evaluating Top Rules

We also studied the relation between top warnings and
defects. With this experiment, we are fairer to both groups of
rules, since we select just the most effective rules for defect
prevention, thus producing less false positives. The results of
RQ4 and RQ5 show that both top generic and top domain
specific warnings are related to defects, and thus can be
used for defect prevention. This result is also confirmed by
previous work, in which a subset of rules performed better
than others [7], [9], [6], [10].

Contrary to RQ3, the result of RQ6 was not clear before
hand because both RQ4 and RQ5 were accepted. Testing
RQ6 shows that top domain specific PPV is (statistically)
significantly higher than top generic PPV. Therefore, we can
say that it is better to use top domain specific warnings to
point to defects than top generic warnings. We conclude that,
for the case study under analysis, top domain specific rules
are more effective to be used for defect prevention than top
generic rules.

C. Threats to Validity

1) Internal Validity: The matching between warnings and
defects may be an underestimation: some bug fixes only
introduce new code, such as the addition of a previously
forgotten check clauses.

Overestimation is less likely: although not all lines that
are part of a bug fix may be directly related to the bug,
warnings on such lines still point out the area in which the
bug occurred. These possible problems are also pointed out
by [6], [9] since they also study defect prevention at the
level of line of code.

Warnings might point to defects that have not been found.
The influence of such dormant defects is minimized in the
case of a long-running project as the one analyzed, where
most of the defects will have been found.

Finally, we have not tried to identify instances of method
renaming to receive the propagation of defects and warnings.
If a method foo had previously been named bar, bar will
not receive the propagation of defects and warnings from
foo. However, 475 methods have been renamed during the
experiment time frame (943 versions and 1, 592 methods per

version on average). Thus, 0.5 method renaming per version.
Therefore, there is a very small amount of method renaming,
which is hardly likely to impact on the validity of the results.

2) External Validity: We believe Seaside is a credible
case study. It includes a large number of versions (943
collected over a time frame of almost four years), classes and
methods representing real-world and non-trivial application,
with a consolidated number of users and a relevant history
of bugs. Despite this observation, our findings – as usual in
empirical software engineering – cannot be directly general-
ized to other systems, specifically to systems implemented in
other languages or to systems from different domains, even
if a comparison with previous works [7], [8], [9], [6], [10]
(which analyze systems implemented in other languages and
from different domains) yielded similar results.

There are two requirements for the used approach that
should be considered when replicating this study. The first is
the existence of domain specific rules, the second is the pos-
sibility to link software repository and issue database. Many
studies have successfully extracted such links before [7],
[17], [19], [9], [6], suggesting that there is a general habit
of clearly identifying bug fixes in many projects. In our
experiment, we only considered defects stemming from bug
fix commits. Note that in [7] the authors considered defects
coming from bug fix and ordinary commits.

VII. RELATED WORK

In recent years, some approaches have been proposed
to study the relation between generic warnings and bugs.
Boogerd et al. [6], [9] empirically assess the relation be-
tween violations of coding standard rules raised by MISRA
C and faults, using coding standard rules for embedded C
development on industrial cases. The authors have found
that only 10 out of 88 rules for the case study presented
in [9], and 12 out of 72 rules for the case study presented
in [6] were significant predictors of fault location. From the
set of found rules, both case studies agree only on one rule.
These results suggest the importance of tailoring a coding
standard to a specific domain, as the observed violation
severity differs between projects [9]. This reinforces our
results. Although the idea of our research is similar to their
research, our focus is different. While the authors used
generic rules to check the relation between warnings and
bugs, we used and compared generic and domain specific
rules.

Basalaj et al. [10] studied the link between QA C++
warnings and faults for snapshots from 18 different projects
and found a correlation for 12 out of 900 rules. Wagner et
al. [22] evaluated two Java bug-finding tools (FindBugs and
PMD) on two different software projects, to evaluate their
use in defect detection. Their study could not confirm this
possibility for their two projects. More recently, Couto et
al. [8] also showed that, at the level of methods, overall

there is not a correspondence between the warnings raised
by FindBugs and the methods changed to remove defects.

Another research close to our work is proposed by Kim
and Ernst [7]. It aims at improving the ranking mechanism
for warnings by mining software histories. For that the
authors make use of annotation graphs [18], [19] to build the
marking approach. Although they use the software history as
input to the proposed algorithm, the empirical data reported
take into account a simple version, differently from our
approach that takes into account the whole history of the
system. The approach was evaluated using three Java bug-
finding tools (FindBugs, JLint and PMD) on three open
source Java projects. Even though it is not the main goal of
their work, they showed that a small subset of rules perform
better than others in the context of bug prevention.

We note that even though several bug-finding tools are
analyzed in different languages, related work agrees to
conclude that, overall, bug-finding tools do not prevent the
introduction of bugs in software. But we are not aware of any
other work that study the relation between domain specific
rules and defects.

In the context of domain specific rules, Renggli et al. [14]
advocate their use to check domain-specific practices. Their
empirical validation demonstrates that domain-specific pro-
gram checking significantly improves code quality when
compared with generic program checking [14]. The demon-
stration is done with two different rule sets working at
different levels of domain abstraction in two long term
evolution case studies (Seaside and Magritte) written in
Smalltalk. In the context of generic rules, Araujo et al. [23]
study the relevance of the warning reported by FindBugs
and PMD in several Java systems. They conclude that
better relevance (less false positives) can be achieved when
FindBugs is configured in a proper way, i.e., when the tool is
configured to report warnings that make sense for the system
under analysis. This matches our experiment with top rules.
However, relating warnings and defects is also beyond the
scope of their research.

VIII. CONCLUSION

To the best of our knowledge, this work is the first to
study the use of domain specific rules for defect prevention.
In this paper, we performed a systematic study to investigate
the relation between generic or domain specific warnings
and observed defects. The study was performed on Seaside,
a real software, that has been used and maintained for years
and for which domain specific rules have been created.
Two groups of research questions were created to assess
whether domain specific rules would be better bug predictors
than generic rules. The first questions were about generic
and domain specific rules, the second considered the top
rules, a more focused set of generic and domain specific
rules. All the results reported in this works were statistically
significant, and not due to chance.

We conclude that, for the case study under analysis,
generic rules were not effective enough to be used for defect
prevention. This was also reported in previous publications.
Domain specific rules give more relevant information on
how to avoid bugs and therefore they are more effective to
be used for defect prevention. Moreover, the top domain
specific rules were more effective to be used for defect
prevention than top generic rules. Therefore, the results
showed that domain specific rules provide a better defect
prevention than generic ones. With the results reported in
this work, we expect domain specific rules to be created
and used by developers in complement to generic ones for
defect prevention.

As future work, we plan to expand this research to other
systems. Yet finding systems with domain specific rules
implemented is not an easy task, therefore we plan to
invest in the creation of such rules according to the domain
of some systems and based on experts opinions. We also
plan to compare warnings and defects taking into account
categories of rules, in complement to the overall and top
rules comparison provided in this research.

ACKNOWLEDGMENT
This research has been supported by grants from Agence

Nationale de la Recherche (ANR-2010-BLAN-0219-01).

REFERENCES

[1] D. Hovemeyer and W. Pugh, “Finding Bugs is Easy,” in
Object Oriented Programming Systems Languages and Ap-
plications, 2004, pp. 132–136.

[2] D. Engler, B. Chelf, A. Chou, and S. Hallem, “Checking
system Rules Using System-specific, Programmer-Written
Compiler Extensions,” in Symposium on Operating System
Design & Implementation, 2000, pp. 1–16.

[3] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,
J. B. Saxe, and R. Stata, “Extended Static Checking for
Java,” in Conference on Programming Language Design and
Implementation, 2002, pp. 234–245.

[4] S. C. Johnson, “Lint, a C Program Checker,” in Unix Pro-
grammers Manual, 1978, pp. 292–303.

[5] D. Roberts, J. Brant, and R. Johnson, “A Refactoring Tool for
Smalltalk,” Theory and Practice of Object Systems, vol. 3, pp.
253–263, 1997.

[6] C. Boogerd and L. Moonen, “Assessing the Value of Coding
Standards: An Empirical Study,” in International Conference
on Software Maintenance, 2008, pp. 277 –286.

[7] S. Kim and M. D. Ernst, “Which Warnings Should I Fix
First?” in European Software Engineering Conference and the
ACM SIGSOFT Symposium on The foundations of Software
Engineering, 2007, pp. 45–54.

[8] C. Couto, J. E. Montandon, C. Silva, and M. T. Valente,
“Static Correspondence and Correlation Between Field De-
fects and Warnings Reported by a Bug Finding Tool,” Soft-
ware Quality Journal, pp. 1–17, 2012.

[9] C. Boogerd and L. Moonen, “Evaluating the Relation Be-
tween Coding Standard Violations and Faults Within and
Across Software Versions,” in Working Conference on Mining
Software Repositories, 2009, pp. 41–50.

[10] W. Basalaj and F. van den Beuken, “Correlation Between
Coding Standards Compliance and Software Quality,” Pro-
gramming Research, Tech. Rep., 2006.

[11] T. Kremenek, K. Ashcraft, J. Yang, and D. Engler, “Cor-
relation Exploitation in Error Ranking,” in Symposium on
Foundations of Software Engineering, 2004, pp. 83–93.

[12] S. Kim, K. Pan, and E. E. J. Whitehead, Jr., “Memories of
Bug Fixes,” in International Symposium on Foundations of
Software Engineering, 2006, pp. 35–45.

[13] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai, “Have
Things Changed Now? An Empirical Study of Bug Charac-
teristics in Modern Open Source Software,” in Proceedings
of the 1st workshop on Architectural and system support for
improving software dependability, 2006, pp. 25–33.

[14] L. Renggli, S. Ducasse, T. Grba, and O. Nierstrasz, “Domain-
Specific Program Checking,” in Objects, Models, Compo-
nents, Patterns, 2010, pp. 213–232.

[15] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Where the
Bugs Are,” in ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2004, pp. 86–96.

[16] A. Mockus and L. G. Votta, “Identifying Reasons for Software
Changes using Historic Databases,” in International Confer-
ence on Software Maintenance, 2000, pp. 120–130.

[17] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do
Changes Induce Fixes?” in International Workshop on Mining
Software Repositories, 2005, pp. 1–5.

[18] T. Zimmermann, S. Kim, A. Zeller, and E. J. Whitehead,
Jr., “Mining Version Archives for Co-changed Lines,” in
International Workshop on Mining Software Repositories,
2006, pp. 72–75.

[19] S. Kim, T. Zimmermann, K. Pan, and E. J. J. Whitehead,
“Automatic Identification of Bug-Introducing Changes,” in In-
ternational Conference on Automated Software Engineering,
2006, pp. 81–90.

[20] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell,
and A. Wesslén, Experimentation in Software Engineering:
An Introduction. Kluwer Academic Publishers, 2000.

[21] S. Ducasse, A. Lienhard, and L. Renggli, “Seaside: A Flexible
Environment for Building Dynamic Web Applications,” IEEE
Software, vol. 24, pp. 56–63, 2007.

[22] S. Wagner, F. Deissenboeck, M. Aichner, J. Wimmer, and
M. Schwalb, “An Evaluation of Two Bug Pattern Tools
for Java,” in International Conference on Software Testing,
Verification, and Validation, 2008, pp. 248–257.

[23] S. S. Joao Araujo Filho and M. T. Valente, “Study on the
Relevance of the Warnings Reported by Java Bug-Finding
Tools,” Software, IET, vol. 5, no. 4, pp. 366–374, 2011.

