
Identifying the Exact Fixing Actions of Static Rule
Violation

Hayatou Oumarou∗, Nicolas Anquetil†, Anne Etien†, Stéphane Ducasse†, Kolyang Dina Taiwe∗
∗University of Maroua, Maroua, Cameroun

hayaty55@yahoo.fr, dtaiwe@yahoo.fr
†RMoD Team, Inria, Lille, France

{firstName.lastName}@inria.fr

Abstract—We study good programming practices expressed
in rules and detected by static analysis checkers such as PMD
or FindBugs. To understand how violations to these rules are
corrected and whether this can be automated, we need to identify
in the source code where they appear and how they were fixed.
This presents some similarities with research on understanding
software bugs, their causes, their fixes, and how they could be
avoided. The traditional method to identify how a bug or a rule
violation were fixed consists in finding the commit that contains
this fix and identifying what was changed in this commit. If the
commit is small, all the lines changed are ascribed to the fixing
of the rule violation or the bug. However, commits are not always
atomic, and several fixes and even enhancements can be mixed in
a single one (a large commit). In this case, it is impossible to detect
which modifications contribute to which fix. In this paper, we are
proposing a method that identifies precisely the modifications that
are related to the correction of a rule violation. The same method
could be applied to bug fixes, providing there is a test illustrating
this bug. We validate our solution on a real world system and
actual rules.

I. INTRODUCTION

Research has been devoted to the study of violations
of good programming practices detected by automatic rule
checkers (e.g., FindBugs1 or PMD2). It often concentrates on
predicting if a violation is a “real” one that should be corrected,
or a false positive (e.g., [1]). We are more interested in studying
whether we could help correcting these violations.

In a related domain, more research focused on understand-
ing how bugs are solved, whether it is possible to provide
foretellers of bugs, or how to automatically fix certain types
of bugs (e.g., [2], [3], [4]). This involves identifying where in
the source code the bugs are located which in turn is typically
done by looking at commits known to fix bugs and consider
that the modified lines of code in one commit were the ones
responsible for the bug it fixes.

If finding the location of a rule violation is trivial because
it is an integrant part of the report provided by the rule checker
tools, finding out how a rule violation was fixed is a topic rarely
studied. Similarly to bug fixes, it could be done by looking at
past violations of the rule that were already fixed, and finding
out in the source code how this was done. We came to work
on this while looking for a way to derive a cost model for
fixing rule violations based on past fixes.

1http://findbugs.sourceforge.net
2http://pmd.sourceforge.net/

All these lines of research therefore share a common
interest in identifying how the bugs or the rule violations are
fixed in the source code. If there is a known solution to achieve
this goal, it suffers from one limitation, it can only work for
small commits that fix exactly one bug or one violation [5],
[6], [7].

A recent study [8] showed that small commits (only one
modification to the Abstract Syntax Tree of the system) are,
in majority, related to bug fixes. However, it also found that
about only 10% of commits were small. It does not mean that
90% of the commits are not related to bug fixes, but rather, that
if they are, it might not be possible to identify exactly what
modification fixed the bug since other modifications (other
bugs, enhancements) could be mixed in the same commit.

In our experiments we found this to be also true for
violations of good programming practices rules. Commits that
fixed exactly one rule violation represented only 4% of all
commits. If we filter the commits that do not fix any rule
violation, then the ones fixing one rule violation still make
only 27% of all commits that fix some rule violation.

Overcoming this problem would provide much more data to
work on and significantly increase the validity and pertinence
of the results on bug or rule violations fixing. In our case it was
simply not possible to consider only commits fixing exactly
one rule violation as there were too few of them leading to any
meaningful result. And even these commits might not be suited
for our studies as we discovered that they could still include
other unrelated modifications. In our examples, we found that,
on average, only 13% of the changes in the commits were
responsible for fixing a given rule violation.

We therefore set to propose an automated solution to
identify precisely the modifications within a commit that are
needed for correcting a rule violation. The same solution could
be applied to bug fixing providing there is a test that exercises
the bug. We validate our approach and discuss its results on a
set of rules applied to real world systems.

The remainder of this paper is divided into six sections and
a conclusion: Section II gives more details on the motivation
of this work; Section III gives an overview of the approach
used to detect the sequence of actions needed to correct a
programming rule violation; This approach is validated in
Section IV and Section V on real world examples; In Section
VI we discuss the threats to validity of the experiment; and
finally, Section VII discusses related work.

978-1-4799-8469-5/15 c© 2015 IEEE SANER 2015, Montréal, Canada

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

371

II. MOTIVATION

This paper aims at helping research in two related areas:
How bugs or good programming rules violations are fixed.

A. Isolating Bug Fixing Actions

In [8], Martinez and Monperrus conducted an extensive
study of 14 open-source Java projects to understand what
kind of bug repair actions were used (e.g., adding a method
invocation, changing an if’s conditional expression), with what
frequency, . . . Their study is based on very large corpus (close
to 90 thousands commits) and thanks to this, they were able
to come with some generic conclusions on the distribution of
change actions.

However, as research in this field progresses, more and
more studies will need to be performed on more and more
specific fields. For example, one might very well imagine that
a particular application field like aeronautics would have also
change actions specific to it. As this happens, it will become
more and more difficult to find relevant corpus, large enough
to draw significant conclusions.

Already, in their study, the authors found that very small
changes, including only one AST change, represented only
11% of the total population of changes. If this does not rule
out the importance of the other 89% of changes as provider
of meaningful information, it would make it very difficult to
exploit with the current approaches (see Section II-C) because
these approaches require that one change fixes one bug.

B. Isolating Rule Violation Corrections

Rule checkers [9], [10], [11], [12], [13] are tools that check
whether source code violates some rules of good programming
practice. For example, rules can specify an upper bound for
method size [14], perform flow analysis to verify that a stream
is properly closed [15], or check the correct use of an array to
avoid out of bound accesses. Rule checkers thus raise alerts (or
warnings) each time one of their rules is violated. Correcting
alerts improves the quality of the target system [16] and may
prevent future bugs [17]. The systematic use of these tools
facilitates and improves software maintenance [18].

However, not all alerts are corrected by the developers.
Some may be ignored because they would be too difficult to
fix or because the developers do not agree that they represent
an instance of bad code. On real systems, a rule checker may
commonly raises thousands of alerts, many of which are never
fixed. In fact, between 35% to 91% [19], [20], [21], [22]
of reported alerts are never fixed. Some approaches assume
that these un-fixed alerts might be false positives and propose
techniques to filter them out. We studied these techniques in
a previous publication [1].

To understand better this issue and work toward proposals
that could improve the situation, we wished to perform a closer
study of the modifications required to fix alerts.

C. Outline of the Envisioned Solution

To automatically find out what modifications are required
to fix a given good programming rule violation, we planned
to use the traditional approach of identifying the source code

responsible for fixing an alert or a bug (used for example in
[4]) by looking into past modifications of a system:

• Take two successive versions3 of a system (i.e., the
versions just before and just after a commit);

• Identify the changes applied on the source version to
obtain the target version.

• Run the rule checker on each version;

• Compare the two resulting sets of violations;

• If one violation is corrected between the two versions
we know the actions required for that are in the set of
changes applied.

A similar algorithm can also be applied to discover the
modifications responsible for fixing a bug in the source code.
This can be useful, for example to build a catalogue of possible
repair actions [8]. To identify what commits contain bug fixes,
two methods can be used, one consists in searching in the
commit messages markers such as: “issue”, “bug”, “fixed”, as
well as references to bug report “#1234” [17], [8]; the second
solution is to have a test that illustrates the bug, and to run
this test on various versions of the software system until one
identifies the commit that makes the test turn green. However,
in either cases, one still needs to identify the changes in the
commit that correct the bug. This might not be as simple as
the preceding algorithm suggests:

1) From one version of the system to another, many
violations or bugs can be corrected (as well as many
new one introduced);

2) Only a small subset of all the changes applied from
one version to the other is typically required to correct
the alert or bug.

We found the first issue to be especially true for alerts
that are not actual bug but good programming practices. It is
not uncommon that, in an effort to improve software quality,
several alerts be fixed in a single commit.

To fight against the second point, one might try to focus
on small changes [5], [6], [7]. In their study [8], Martinez and
Monperrus analysed very small commits that consisted in only
one change to the Abstract Syntax Tree of the system. They
report that 95 of 144 small commits (66%) were bug fixes and
conclude that very small commits can generally be considered
as bug fixes. Yet, in the same study, they found only 6,953 very
small commits out of a total population of 62,179 (11%). This
implies that 89% of the commits would have to be ignored,
even though they might also contain bug fixes or, in our case,
alert fixes. Which brings us back to the problem that in a large
change, only a subset of all modifications might be required
to correct a given violation.

III. OUR APPROACH

A. Some Definitions

Before presenting the approach, we will introduce some
definitions:

3We make no difference, in this paper, between the notions of version and
revision in version control systems

372

Change: The set of modifications made on source code to
go from one version of the source code to the next one.
This could also be termed a patch. In our case, every
commit in the version control system will correspond to
a change.
We are specially considering changes that fix at least one
alert (this is tested by running the rule checker on the
source and target versions of the change). We assume
that a change is complete in the sense that it contains all
the modifications required to fix an alert (even though it
can introduce new unrelated alerts). For example if one
modification adds a parameter to a method definition,
other modifications must alter the invocations of this
method to take the new parameter into account.

Modification: For this first experiment, we worked with
large-grained modifications that do not go below the level
of method. This means changing anything in the definition
of a method will result in only one modification, that of
the method’s body. It will not allow us to identify the
specific Abstract Syntax Tree modification that corrected
a violation, but makes little difference on the validity
of the algorithm. We come back to this below in the
definition of Violation. Note that we will consider adding,
removing or modifying of comments as modifications.
This is suitable because we are working with rule alerts
and some rules do check comments (to see if there
are enough of them for example). If we were working
with bug correction, we would not need to consider
comments as they have no incidence on the behaviour
of the program.

Sequence: An ordered collection of modifications applied
on the source code.

Valid sequence: A sequence (of modifications) that can be
applied without error and that can fix a given alert without
introducing new ones (to some extent to be detailed later
in this paper). Because we work specifically with changes
that fix a given alert, by construction for any change there
is at least one valid sequence that will fix the considered
alert (this valid sequence being, at worst, the change
itself).
Coming back to the definition of change above, our
hypothesis that a change contains all the modifications
required to fix an alert can be translated into: a change is
a valid sequence.

Violation: (or Alert) A violation of a programming rule
detected by a static rule checking tool. Two violations
in two different revisions of the code are considered
equivalent if they pertain to the same programming rule
on the same software artifact. In this first experiment,
it is enough to identify software artifacts by their fully
qualified name (package.class.methodSignature) because
we are working at a large grain of modification. In
the future, we will need to work at the level of AST
modifications which will make it more difficult to pair
together violations in two different revisions. This iden-
tification of software artifact will not allow us to take
into consideration renaming of software artifacts (that will
be considered as one removal and one addition). At this
point, we did not want to deal with renaming. Detection
of renaming is difficult and subject to interpretation, such
additional manipulations could have polluted the result.
An extra filtering that will be discussed shortly (ignoring

removed artifacts) will ensure that renamings will actually
be ignored altogether in the experiment.

Fixed Violation: A violation present in the base revision
of the change but not in the target revision. We distin-
guish two cases: the software artifact responsible for the
violation is found in both revisions of the change (before
and after) or it was deleted in the target revision. We
decided to ignore violation “fixed” because the software
artifact that caused them was removed. As we just saw, for
renaming of entities this will be a desired behavior. The
rationale behind this decision was that research showed
that not all programmers care about rule violations [19],
[20], [21], [22], therefore a rule violation may go un-
noticed for an extended period of time before it simply
vanishes because of unrelated changes in the source code.
We wished to lower this risk by ensuring, at least, that
the software artifact exhibiting the rule violation was still
present, and therefore that the rule violation was actually
corrected in one way or another. Some violations do
require to remove the software artifact on which they
occur, for example for a rule that detects that a method
has the same implementation in a super-class and a sub-
class, but we preferred ignoring them here to provide a
clearer understanding of the properties of our algorithm.
We come back on this issue in Section VI.

B. Overview of the Approach

Our proposed solution consists in applying sequentially,
randomly chosen, modifications from the commit to find out
which one(s) is(are) required to fix an alert. Because the
modifications will be applied in random order, three problems
need to be considered:

1) First, it can be impossible to apply one modification
before applying another one (like trying to create a
method before creating the class that owns it);

2) Second, one might apply some unrelated modifica-
tions to the violation before coming to apply the
modification(s) that are required;

3) Third what are we to do if a modification fixes the
violation and introduces a new one?

Of these three issues, the first one is easy to overcome.
If it is impossible to apply one randomly chosen modification
(because it requires another one to be applied before), we sim-
ply ignore the current sequence and restart generating a new
one from scratch. Another solution would be to backtrack in
the construction of the sequence, choosing other modifications,
but it does not seem worth the effort. Finally, a third solution
would be to compute dependencies between the modifications,
and prohibit in the random selection to pick a modification
that depends on another modification not yet applied. We will
monitor in our formal experiment the existence of such a
problem.

The second problem related to the selection of unwanted
modifications in the sequence before introducing the ones
needed to fix the considered alert. This is solved using a hill-
climbing approach. We start with a change that is known to
be a valid sequence (founding hypothesis) and randomly select
modifications in it to build another valid sequence. If the new
valid sequence is shorter than the preceding one, we use it
as a starting point for the next iteration. If the valid sequence

373

size does not decrease for a given number of iterations (we
chose 20), we assume we found the minimal valid sequence
that fixes the alert.

Note that there are numerous possible ways to fix an
alert, and it is quite possible that in a given change, several
different valid sequences would fix a given alert. Consider for
example an alert stating that some method is not sufficiently
commented, and a change where two different comments are
added to the method. Any one of these two modifications
(adding two comments) could be enough to fix the alert. We
do not see this as a problem as exhibiting any of the two
modifications as a solution to fix the alert would still be true,
even though we would miss another possible solution to the
same alert.

Finally, the third problem to consider was what to do if
a modification fixes the alert considered but introduces a new
one. Our solution consists in not considering valid sequences
that create new alerts or result in non-compilable code. If a
new alert (or a compilation error) is created by a modification
in the sequence being built, we will add this new alert to
the set of alerts we wish to fix, so the sequence will not be
considered valid until this new alert is also fixed. The only
exception is if the new alert also exists in the target version of
the change, because it means that applying the entire change
would, anyway, not remove it.

C. Algorithm

The final algorithm is presented in two parts for the sake
of readability.

We first have a function that given a set of changes and a
violation to fix, will compute a sequence of modifications that
fixes this violation (see Figure 1). In other words, it returns a
valid sequence from a change (but the sequence might not be
minimal). For simplicity the function may also return error, for
example in case it tries to apply modifications in an incorrect
order.

This first function is then called iteratively following an
hill-climbing method to find the Minimal Valid Sequence
(MVS) that fixes the considered violation (see Figure 2). This
part can end on one of two conditions. First if the length of the
change is 1 modification, we know that we have reached the
MVS. Second we set a threshold on the number of identical
sequences returned by FINDVALIDSEQUENCE before deciding
it will not be able to improve it (and therefore it is considered
to be minimal). In our experiments we used a threshold of 20,
so after that number of calls to FINDVALIDSEQUENCE without
diminution in the length of the returned sequence, we stop
looking for a shorter one. Note that fixing this threshold to the
lower acceptable value would be a possible improvement. One
must remember that running the algorithm involves modifying
the source code and recompiling it; what is not a light weight
operation. This is done in the loop of FINDVALIDSEQUENCE
which is called by FINDMINIMALVALIDSEQUENCE. Assum-
ing it does not result in halting the iterations too soon (and
thus not finding the minimal valid sequence), reducing this
threshold of any amount would reduce of the same amount
the total number of calls to FINDVALIDSEQUENCE. This can
be interesting, but may not be all that significant. We will see
that in our experiments, we had several violations requiring

FINDVALIDSEQUENCE

INPUT: chg, a list of modifications from which to extract a
valid sequence

INPUT: viol, a violation of interest to fix
INPUT: src, initial state of the source code (will be modi-

fied by incremental application of modifications)
INPUT: ignore, a set of violations that can be ignored
RETURN: seq, a valid sequence that fixes viol or an ERROR
LOCAL: mod, a modification in chg
LOCAL: toFix, a set of violations that should be fixed

toFix ← { viol }
seq ← {}
while toFix 6= ∅

mod ← a random modification from chg
apply mod on the current source code
if impossible to apply mod

return ERROR
end if
compute violations introduced and/or removed by

applying mod
remove from toFix the violations corrected by mod
add to toFix the set of violations introduced by mod

minus ignore
remove mod from chg
add mod to seq

end while
return seq

Fig. 1. Algorithm to find a valid sequence fixing a given violation from a
list of modifications

more than 100 iterations to find the minimal valid sequence
(see Section V-C, RQ3a). Removing 5 or 10 iterations to these
might not make that much a difference. We will look more in
details into this issue.

We added a condition to prevent the algorithm looping end-
lessly on error condition. We defined that if 100 consecutive
iterations resulted in an error, then we drop the entire commit
and stop looking for valid sequences that would fix any of its
violation(s). Similarly if 200 non consecutive iterations result
in an error, we stop. The idea is that some commits may have
modifications that can appear only in a very specific order. In
theory, given sufficient time and tries, our algorithm should be
able to find the minimal valid sequence fixing the violation(s)
of this commit. However, in practice this would be too long
for a viable experiment. This issue is linked to the way we
choose our modifications randomly and how we treat errors.
Both issues will be treated jointly.

This algorithm assumes we can safely apply changes to
a source code (in FINDMINIMALVALIDSEQUENCE) and then
come back to the initial state of the system (conventional
version control tools could be used for that).

IV. VALIDATION EXPERIMENT

The context of the experiment is real systems for which we
can access the source code history. We chose to experiment
on programming rule violations because they were our initial
target and it is easier to find automatic tools that will check

374

FINDMINIMALVALIDSEQUENCE

INPUT: comit, the modifications of the considered commit
INPUT: viol, a violation of interest fixed by the commit
INPUT: src, initial state of the source code (before applying

the commit)
RETURN: seq, the sequence that fixes viol or an error
LOCAL: chg, the set of modifications from comit still

candidate to be part of seq
LOCAL: ignore, a set of violations that can be ignored
LOCAL: prevSeq, the length of the previous sequence found
LOCAL: thresh, counter checking how many sequence of

same length we found
LOCAL: conseqError, counting how many consecutive

iterations resulted in error
LOCAL: totalError, counting how many iterations

resulted in error

chg ← comit
seq ← {}
thresh ← 1
conseqError ← 0
totalError ← 0
ignore ← set of violations introduced by applying comit

on src
prevSeq ← length(comit)
while ((length(chg) > 1) and (thresh < 20)

and (conseqError < 100) and (totalError < 200))
seq ← FINDVALIDSEQUENCE(chg, viol, src, ignore)
if seq is not ERROR

if length(seq) < prevSeq
thresh ← 1

else
thresh++

end if
chg ← seq
prevSeq ← length(seq)
conseqError ← 0

else
conseqError++
totalError++

end if
end while
return seq

Fig. 2. Algorithm to find the minimal valid sequence fixing a given violation
from a commit

the presence or not (correction) of a violation. Bugs would be
more difficult to experiment with because not all bugs have
an accompanying test that exercises them, and when they do,
it might not be easy to relate a bug (e.g., in an issue tracker
system) to the test. Therefore, we also require a system with
some rule checker tool available as well as rules.

We will validate our solution on Moose [23] an open-
source, real-world, and non-trivial system, with a consolidated
number of developers and users. For us, the system presents the
additional advantage that we are part of the development team
and are able to validate the quality of our solution’s results.
This is not a bias as we are working on past commits, anterior

to this research and we are not influencing how the minimal
valid sequence is extracted, we are only validating it. Since
Moose is written in Pharo4, a Smalltalk inspired language,
we selected SmallLint [14], the most adopted Smalltalk code
analysis tool. We give some statistics on the system in Section
IV-A.

We selected in the history of Moose the commits that
solved some rule violations by systematically exploring all the
revisions of the system during the considered period:

1) load one revision of the system;
2) run the rule checker tool on it (store the rule viola-

tions);
3) apply the commit immediately following this revi-

sion;
4) apply the rule checker again and compare the rule

violations with the previous one;
5) if some violations were removed, then this commit

fixed them in some way
6) further verify that the violation is not removed be-

cause the software artifact carrying it was deleted (see
discussion in Section III on Fixed Violation.)

A. Descriptive statistics

Before presenting the results, we must explain that all
variables measured in our experiments follow a distribution
that is not normal but with a heavy tail5, therefore we report
medians rather than means.

Our case study has more than 2,500 classes, 210 KLOC, 21
known contributors, and a history of development going back
more than 10 years. We will report here on an experiment
during four days, on more than 368 violations coming from
65 commits.

B. Research questions

We validate our approach in three steps: First, we will
validate our initial hypotheses (RQ1), second, we evaluate
whether our approach can actually discover the sequence of
source code changes required to fix a given rule violation
(RQ2), third, we consider additional points on our algorithm
as how we treated errors (RQ3).

For the first question, we have three hypotheses to validate:

RQ1a. A commit may contain more modifications than re-
quired to fix any of the violations?

RQ1b. A commit may fix several violations?
RQ1c. A commit may fix violations of several rules?
RQ1d. Focusing on small commits would discard too much

information?

For the second question (RQ2), we will simply verify
that our algorithm found the correct Minimal Valid Sequence
(MVS).

For the third question we will consider the following
points:

RQ3a. Is our treatment of errors adequate? (When one mod-
ification chosen randomly cannot be applied because

4http://pharo-project.org
5This is very common in software engineering [24].

375

another one is needed that has not yet be applied, we
simply drop the current sequence being built)

RQ3b. Is our threshold of 20 consecutive iterations with the
same solution appropriate to decide that we found the
minimal valid sequence?

RQ3c. Additionally, what is the time required to find a
minimal valid sequence?

Another aspect that we could have considered is whether
more than one source file may be affected by a fix. To
illustrate this, let us consider languages that allow spreading
the definition of a class over several files (ex: C++ with the
.cc/.hh files, or C# with the partial definition of classes). In
such languages, adding a method can imply modifying more
than one file. This is an issue that we are not able to monitor in
this experiment because we used the Pharo environment. In this
environement files are hardly used at all. Classes and methods
are created within the Pharo environment, they are saved when
the environment is saved, and loaded once more when the
environment is loaded. Given the the answers to RQ1b and
RQ1c, we expect that fixes in general could touch several files,
and this would be handled correctly by our algorithm.

V. EXPERIMENT RESULTS

A. RQ1. Validating hypotheses

RQ1a: A commit may contain more modifications than
required to fix any of the violations?

We manually evaluated 87 fixed rule violations chosen
randomly and look at the size of the resulting minimal valid
sequence (Table I). The median size per commit was 131
modifications with a maximum of 133. The median size of
the minimal valid sequences is 1 with a maximum of 11.
These numbers clearly show that commits may contain more
modifications than just the ones required to fix a violation.

TABLE I. SIZE (NUMBER OF MODIFICATIONS) OF COMMITS AND
MINIMAL VALID SEQUENCES

median max.
commit size 131 133
MVS size 1 11

RQ1b: A commit may fix several violations?

We experimented with 65 commits containing fixes for
368 violations. The maximum violations fixed per commit is
75, and the median 2 (see Table II). 21 of the 65 commits
(i.e., 32%) fixed only one violation. This does confirm our
hypothesis that commits may fix more than one violation.
Consequently, it seems to confirm also that there is a need
for a tool to isolate the modifications fixing a given violation
(note that the same modification can fix several violations, as
discussed in [25]).

TABLE II. NUMBER OF VIOLATIONS FIXED PER COMMIT

median max.
total commits 65
total violations fixed 368
commits fixing one violation 21
violations fixed / commit 2 75

RQ1c: A commit may fix violations of several rules?

Based on the 65 commits used for the experiment, we
report in Table III the number of rules fixed by commits. The
minimum is for commits fixing violation(s) from 1 rule, the
maximum is commits fixing violations from 7 different rules,
and the median is commits fixing violations from 2 different
rules. These numbers clearly show that not only do commits fix
more than one violation (see RQ1b), but also these violation
may come from more than 1 rule.

TABLE III. NUMBER OF DIFFERENT RULES FIXED PER COMMIT
(MIN.=1, MEDIAN=2, MAX.=7)

total commits 65

commits fixing violations from 1 rule 29
commits fixing violations from 2 rules 18
commits fixing violations from 3 rules 6
commits fixing violations from 4 rules 5
commits fixing violations from 5 rules 3
commits fixing violations from 6 rules 3
commits fixing violations from 7 rules 1

RQ1d: Focusing on small commits would discard too
much information?

For the 65 commits in our experiment, the median size
of commit is 15 modifications with a maximum of 320. The
numbers show that commits are not small, a median of 15
modifications per commit is very far from the one-AST-change
definition of small commits in [26].

From the results for RQ1, we deduce that our initial
hypotheses are valid and there is a necessity for solutions like
ours to precisely understand the fix of a violation.

B. RQ2. Validating our algorithm

For our main validation, we use again the 87 rule violations
that we evaluated manually. In 84 cases (97%), the algorithm
found the correct minimal valid sequence that fixed the viola-
tion considered. In the remaining 3 cases, the sequence found
was not minimal, but the search stopped because we reached
the threshold of 20 consecutive identical solutions (see RQ3b).

We conclude that our algorithm is working although there
is a balance to reach between ensuring we find the right
minimal valid sequence and not doing too much computation
uselessly.

C. RQ3. Additional discussion on the algorithm

RQ3a: Is our treatment of errors adequate?

This initial algorithm chooses randomly modifications to
put in the sequence and drop the sequence if some modification
cannot be applied. Further more, for experimental reasons, we
dropped all commits that had more than 100 consecutive errors
or more than 200 non consecutive errors. On the 65 commits,
5 (8%) had more than 100 consecutive errors and 5 others
had more than 200 total errors (see also Table IV). These
commits with errors contained 89 violations. Interestingly
enough, for two of these commits, we successfully solved some
of the violations (i.e., they produced less than 100 errors),
and dropped the rest because of too many errors on another

376

violation. We actually dropped 85 violations in total for the 10
commits and 4 violations for these 2 special commits could
find a solution.

TABLE IV. OCCURRENCES OF ERRORS IN OUR EXPERIMENT

total commits 65
total violations 368
total violations solved 283
violations solved with some error 33

commits dropped (too many errors) 10
violations they fixed 89
violations dropped 85
violations solved 4

This shows that dropping the entire commit is not always
a good idea. We did it only for experimental reasons, to gather
enough results in a reasonable amount of time.

On the remaining 55 commits (+ 2 partial) that fix together
283 violations, 33 violations (12%) produce some error when
looking for the minimal valid sequence that fix them. The
median for the violation with some error is 5 errors per
violation, with a maximum of 57.

We conclude that treatment of error is one direction on
which we still need to work. Of course the real discussion
would be how to avoid altogether these errors. We discussed
some possible solution in Section III.

RQ3b: Is our threshold of 20 consecutive iterations
with the same solution appropriate to decide that we found
the minimal valid sequence?

TABLE V. IMPACT OF ERRORS ON OUR EXPERIMENT

violations solved 283
MVS with 1 modification 189
MVS with >1 modification 94

First (table V), 189 of the 283 violations (i.e., 67%) for
which the algorithm proposed a solution have a minimal valid
sequence with only 1 modification. These did not require the
threshold of 20 similar solutions to stop the search because 1
is the absolute lower bound for a valid sequence. We measured
within these violations the longest succession of iterations with
the same valid sequence found. In our experiment, the absolute
longest succession was 17 successive iterations with the same
valid sequence before a shorter one was found. The median
length of such succession is 1.

On the other hand, as we already said in Section V-B 3
of the 87 MVS that we evaluated manually were not correctly
found by the algorithm found because the search stopped on
the threshold of 20 consecutive identical solutions. This seems
to indicate that the threshold might be too low. But the random
nature of our algorithm impedes us to guarantee that we will
always find the minimal valid sequence. Moreover, setting it
at a higher value would me spending more time finding the
exact MVS.

RQ3c: What is the time required to find a minimal
valid sequence?

On the 368 violations in our experiment, the median execu-
tion time of FINDMINIMALVALIDSEQUENCE was 3 minutes

50 seconds and the maximum time 3 hours 58 minutes. Our
experiment with 293 violations lasted about four days on a
current commodity machine.

Obviously the execution time is linked to the number
of iterations (calls to FINDVALIDSEQUENCE). Once again,
it could be improved by improving the treatment of errors
(modifications that could not be applied) and by using a smaller
threshold to accept a recurring valid sequence as minimal.

However, one must consider that this algorithm would be
applied only once at the beginning of a study to get data on
which to work. Therefore, long execution time if it is not
desirable, should not be a blocking issue.

VI. THREATS TO VALIDITY

Apart from the obvious Internal Validity threat from an er-
ror in the tool we programmed, in the historical data extracted,
or in the rule checker program, there are two External Validity
threats:

1) The system studied might not be entirely representa-
tive of a larger population of systems, either from
another application domain, or written in another
programming language. This is always a difficult
threat to mitigate as there is little information on
what property of a system is important to ensure
representativeness. Replication of the experiment for
other systems must be realized.
This said, we strongly believe our approach is in-
dependent of the programming language and the
application domain. We also believe Moose is a
credible, real world, non-trivial, case study. It is a
medium to big system (2,500 classes, 210KLOC6),
and it includes a significant number of versions

2) We disregarded violations that were fixed because
the software artifact where they appeared before the
commits had been removed during the commit. This
was done to eliminate a possible problem with the
obviously simple solution that removing the artifact
that raises an alert is the best way to “fix” any
violation. Some violation can really be fixed this way,
but this would not be the case for all, and we lacked
the mean to tell one from the other.

Although we did not experiment with them, it seems
reasonable to suppose that the same algorithm could be used
to isolate modifications responsible for bug fixes. This would
of course require that we have some oracle (a test exhibiting
the bug) to tell us whether the bug is present or not in a given
version of the system. Yet because we experimented with rule
violation fixes, this claim should be made with some caution.

VII. RELATED WORKS

Different studies have already been done on programming
rules violations and rules checker tools.

Heckman et al. [27], synthesizes available research results
on ranking algorithms that try to estimate whether an alert is a
valid one (that should be corrected) or not. Different algorithms
are presented and compared according to different criteria like

6Moose is written in Pharo which is a concise language

377

information used, or algorithm used. In a related work Allier
et al. [1], compared the same algorithms on their results on
real case studies. This line of research tries to remove false
positives from the alerts raised by the rule checker. It is a
“pre-fixing” approach. We try to identify how a given alert
was corrected.

Some approaches were proposed to study the relation
between alerts and bugs. Boogerd et al. [28], [29] empirically
assess the relation between faults and violations of coding
standard rules raised by MISRA C, using coding standard rules
for embedded C development on industrial cases. They found
that only 10 out of 88 rules for the case study presented in
[29], and 12 out of 72 in rules for the case study presented
in [28] were significant predictors of fault location. Basalaj et
al. [30] studied the link between QA C++ warnings and faults
for snapshots from 18 different projects and found a correlation
for 12 out of 900 rules. Wagner et al. [31] evaluated two
Java bug-finding tools (FindBugs and PMD) on two different
software projects, in order to evaluate their use in defect-
detection. Their study could not confirm this possibility for
their two projects. Couto et al. [2] also showed that overall
there is no correspondence between the static location of the
warnings raised by FindBugs and the methods changed by
software maintainers in order to remove defects. Tracy et al.
[32] show that some code smells have a significant but small
effect on faults. They investigate the relationship between
faults and five code smells. They developed a tool to detect
these smells and built Negative Binomial regression models
to analyse the relationships between smells and faults. In [17],
Hora et al. studied the relevance of generic rules against that of
system (or domain) specific ones. They concluded that system
specific rules where more likely to be fixed. All these studies
concentrate on the usefulness of rule checking to improve the
quality of the code, specifically considering the co-occurrence
of alerts and bugs. Our long term goal is to understand how
alerts were corrected. One possible application of this would
be to establish some cost model for correcting future similar
alerts.

The number and the cost of bug fixes in industrial practice
motivated the search to automatically minimize the effects
of defects in software systems. Program fault repair consists
generally in three steps: fault localization, patch generation,
and patch validation. Automated program fixing is an active
area of research [33], [34], [35], [36]; the goal of this domain
can be to catch faulty behavior of a program just before it
happens and subdue its effects [37], or transform the program
or execute it in a way that excludes certain types of behaviour
[38], or generate patches to the source to prevent a class of
bugs or fix a particular bug [39]. To fulfill this goal number of
approaches to detect repair action was proposed. Martinez et
Monperrus [8] mine program history and related artefacts to
suggest repair patches templates based on a fine-grained AST
level. They filter transactions to retain only those related to
bug fix by mining the messages in the transaction and in this
set they select only the one which contains one modification.
But our approach can find in a transaction with large change
the modification related to programming rule fix. Nguyen et
al. [40] propose an algorithm based on genetic programming
to generate patches. The algorithm maintains a population of
chromosomes (programs), selects a pool of individuals based
on their fitness (score according to number of pass and fail

test), and modifies them with mutation and crossover operators
until reaching a terminating criterion.

Other publications are more related to the pertinence of
the domain. For example, Zheng et al. [18] are following the
GQM approach7 paradigm to determine whether rule checkers
can help an organization to improve the economic quality of
software products. Their results indicate that rule checkers are
an economic complement to other verification and validation
techniques.

VIII. CONCLUSION

In this paper, we have presented the idea that one can mine
violation fix actions from software repositories. In other words,
one can extract from past, a sequence of modifications needed
to fix an alert (e.g., adding a method call, deleting method).
This can be made difficult by three issues:

• One commit can fix several violations and/or introduce
new features. In this case, one has to extract only
those modifications responsible for fixing the alert
considered;

• On modification required to fix an alert might intro-
duce another violation. In this case, one as to decide
whether fixing this new violation is part of fixing the
first one or not;

• The modifications are not independent and one has to
find the correct order in which they need to be applied.

We presented a methodology that answers to these consid-
erations and we applied it on a real system. The results are
that, for 283 out of 368 evaluated violations, we could find
automatically the sequence of modifications that fixed them.
We also identified a solution to deal with the 85 remaining
violations that our algorithm dropped because too many errors
were generated when randomly selecting modifications to be
applied. The solution should be based on constraining the
random choice of modification to apply to those that can
actually be applied at a given time.

Another extension of the work would be to deal with finer
grained modifications, typically at the level of the AST. From
this, we could start to explore whether it would be possible to
build on this knowledge to deduce some suggestion for fixing a
given rule violations. The idea would be to extract an abstract
summary of all the violation fixes for the given rule.

ACKNOWLEDGMENT

This research has been supported by a grant from Inria,
France

REFERENCES

[1] S. Allier, N. Anquetil, A. Hora, and S. Ducasse, “A Framework
to Compare Alert Ranking Algorithms,” in Working Conference on
Reverse Engineering, 2012.

[2] C. Couto, J. E. Montandon, C. Silva, and M. T. Valente, “Static
Correspondence and Correlation Between Field Defects and Warnings
Reported by a Bug Finding Tool,” Software Quality Journal, pp. 1–17,
2012.

7Goal/Question/Metric, a process used to define a set of metrics to answer
an abstract question.

378

[3] C. Couto, P. Pires, M. T. Valente, R. Bigonha, A. Hora, and
N. Anquetil, “Bugmaps-granger: A tool for causality analysis
between source code metrics and bugs,” in Proceedings of the 4th
Brazilian Conference on Software: Theory and Practice (CBSoft’13),
2013. [Online]. Available: http://rmod.lille.inria.fr/archives/papers/
Cout13a-BugMapsGranger-CBSoft13.pdf

[4] A. Hora, N. Anquetil, S. Ducasse, M. Bhatti, C. Couto, M. T. Valente,
and J. Martins, “Bugmaps: A tool for the visual exploration and
analysis of bugs,” in Proceedings of the 16th European Conference
on Software Maintenance and Reengineering (CSMR’12) - Tool
Demonstration Track, 2012. [Online]. Available: http://rmod.lille.inria.
fr/archives/papers/Hora12a-Official-CSMR2012Tools-BugMaps.pdf

[5] A. Hora, A. Etien, N. Anquetil, S. Ducasse, and M. T. Valente,
“APIEvolutionMiner: Keeping API Evolution under Control,” in Soft-
ware Evolution Week (European Conference on Software Maintenance
and Working Conference on Reverse Engineering), 2014, pp. 420–424.

[6] B. Livshits and T. Zimmermann, “DynaMine: Finding Common Error
Patterns by Mining Software Revision Histories,” in European Software
Engineering Conference and the ACM SIGSOFT Symposium on The
foundations of Software Engineering, 2005, pp. 296–305.

[7] Y. M. Mileva, A. Wasylkowski, and A. Zeller, “Mining Evolution of
Object Usage,” in European Conference on Object-Oriented Program-
ming, 2011, pp. 105–129.

[8] M. Martinez and M. Monperrus, “Mining software repair models
for reasoning on the search space of automated program fixing,”
Empirical Software Engineering, pp. 1–30, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s10664-013-9282-8

[9] W. R. Bush, J. D. Pincus, and D. J. Sielaff, “A Static Analyzer for Find-
ing Dynamic Programming Errors,” Software–Practice & Experience,
vol. 30, pp. 775–802, jun 2000.

[10] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata, “Extended Static Checking for Java,” in Conference on
Programming language design and implementation, 2002, pp. 234–245.

[11] D. Evans and D. Larochelle, “Improving Security Using Extensible
Lightweight Static Analysis,” IEEE Software, vol. 19, pp. 42–51, 2002.

[12] D. Reimer, E. Schonberg, K. Srinivas, H. Srinivasan, B. Alpern, R. D.
Johnson, A. Kershenbaum, and L. Koved, “SABER: Smart Analysis
Based Error Reduction,” SIGSOFT Software Engineering Notes, vol. 29,
no. 4, pp. 243–251, jul 2004.

[13] A. Fehnker, R. Huuck, P. Jayet, M. Lussenburg, and F. Rauch, “Goanna
- A Static Model Checker,” in FMICS/PDMC, 2006, pp. 297–300.

[14] D. Roberts, J. Brant, and R. Johnson, “A Refactoring Tool for
Smalltalk,” Theory and Practice of Object Systems, vol. 3, pp. 253–
263, 1997.

[15] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” SIGPLAN Notices,
vol. 39, no. 12, pp. 92–106, 2004.

[16] L. Renggli, S. Ducasse, T. Girba, and O. Nierstrasz, “Domain-
Specific Program Checking,” in Objects, Models, Components, Patterns.
Springer-Verlag, 2010, pp. 213–232.

[17] A. Hora, N. Anquetil, S. Ducasse, and S. Allier, “Domain specific
warnings: Are they any better?” in International Conference on Software
Maintenance, 2012, p. to appear.

[18] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and
M. A. Vouk, “On the value of static analysis for fault detection in
software,” Transactions on Software Engineering, vol. 32, no. 4, pp.
240–253, apr 2006.

[19] S. Heckman and L. Williams, “On Establishing a Benchmark for Evalu-
ating Static Analysis Alert Prioritization and Classification Techniques,”
in International Symposium on Empirical Software Engineering and
Measurement, 2008, pp. 41–50.

[20] S. Kim and M. D. Ernst, “Which Warnings Should I Fix First?” in
European Software Engineering Conference and the ACM SIGSOFT
Symposium on The foundations of Software Engineering, 2007, pp. 45–
54.

[21] T. Kremenek and D. Engler, “Z-ranking: Using Statistical Analysis to
Counter the Impact of Static Analysis Approximations,” in International
Conference on Static Analysis, 2003, pp. 295–315.

[22] C. Boogerd and L. Moonen, “Prioritizing Software Inspection Results
using Static Profiling,” in International Workshop on Source Code
Analysis and Manipulation, 2006, pp. 149–160.

[23] M. U. Bhatti, N. Anquetil, and S. Ducasse, “An environment for
dedicated software analysis tools,” ERCIM News, vol. 88, pp. 12–
13, Jan. 2012. [Online]. Available: http://ercim-news.ercim.eu/images/
stories/EN88/EN88-web.pdf

[24] P. Louridas, D. Spinellis, and V. Vlachos, “Power laws in software,”
ACM Transactions on Software Engineering and Methodology, vol. 18,
no. 1, pp. 1–26, sept 2008.

[25] A. Lozano, G. Arévalo, and K. Mens, “Co-occurring code critics,”
in SATToSE 2014—Pre-proceedings, V. Zaytsev, Ed., July 2014,
pp. 10–13. [Online]. Available: http://grammarware.github.io/sattose/
SATToSE2014.pdf

[26] M. Martinez, L. Duchien, and M. Monperrus, “Automatically extracting
instances of code change patterns with AST analysis,” CoRR, vol.
abs/1309.3730, 2013.

[27] S. Heckman and L. Williams, “A systematic literature review of action-
able alert identification techniques for automated static code analysis,”
Information and Software Technology, vol. 53, pp. 363–387, apr 2011.

[28] C. Boogerd and L. Moonen, “Assessing the Value of Coding Standards:
An Empirical Study,” in International Conference on Software Mainte-
nance, 2008, pp. 277 –286.

[29] ——, “Evaluating the Relation Between Coding Standard Violations
and Faults Within and Across Software Versions,” in Working Confer-
ence on Mining Software Repositories, 2009, pp. 41–50.

[30] W. Basalaj and F. van den Beuken, “Correlation Between Coding
Standards Compliance and Software Quality,” Programming Research,
Tech. Rep., 2006.

[31] S. Wagner, F. Deissenboeck, M. Aichner, J. Wimmer, and M. Schwalb,
“An Evaluation of Two Bug Pattern Tools for Java,” in International
Conference on Software Testing, Verification, and Validation, 2008, pp.
248–257.

[32] D. B. Tracy, Min Zhang and H. Yi Sun, “Some code smells have
a significant but small effect on faults,” ACM Trans. Softw. Eng.
Methodol., vol. 23, no. 4, p. 33, 2014.

[33] A. Arcuri, “Evolutionary repair of faulty software,” Appl. Soft Comput.,
vol. 11, no. 4, pp. 3494–3514, Jun. 2011.

[34] S. Staber, B. Jobstmann, and R. Bloem, “Finding and fixing faults,”
in Proceedings of the 13 IFIP WG 10.5 International Conference on
Correct Hardware Design and Verification Methods, ser. CHARME’05.
Berlin, Heidelberg: Springer-Verlag, 2005, pp. 35–49.

[35] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in Proceedings of the
31st International Conference on Software Engineering, ser. ICSE ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 364–374.

[36] J. A. Jones, “Semi-automatic fault localization,” Ph.D. dissertation,
Atlanta, GA, USA, 2008, aAI3308774.

[37] B. Demsky, M. D. Ernst, P. J. Guo, S. McCamant, J. H. Perkins, and
M. Rinard, “Inference and enforcement of data structure consistency
specifications,” in Proceedings of the 2006 International Symposium on
Software Testing and Analysis, ser. ISSTA ’06. New York, NY, USA:
ACM, 2006, pp. 233–244.

[38] R. L. Alexey and S. Tzi-Cker Chiueh, “PASAN: Automatic patch and
signature generation for buffer overflow attacks,” in In Systems and
Information Security, 2006, p. 165–170.

[39] Bassem and E. Sarfraz Juzi, “A tool for repairing complex data
structures,” in In International Conference on Software Engineering,
2008, p. 855–858.

[40] T. Nguyen, W. Weimer, C. Le Goues, and S. Forrest, “Using execution
paths to evolve software patches,” in International Conference on
Software Testing, Verification and Validation Workshops, ICSTW ’09,
P. McMinn and R. Feldt, Eds., Denver, Colorado, USA, 1-4 Apr. 2009,
pp. 152–153.

379

