
Practical, Pluggable Types for a Dynamic

Language ?

Niklaus Haldiman Marcus Denker Oscar Nierstrasz

Software Composition Group
IAM — Universität Bern, Switzerland

Abstract

Most languages fall into one of two camps: either they adopt a unique, static type
system, or they abandon static type-checks for run-time checks. Pluggable types
blur this division by (i) making static type systems optional, and (ii) supporting
a choice of type systems for reasoning about different kinds of static properties.
Dynamic languages can then benefit from static-checking without sacrificing dy-
namic features or committing to a unique, static type system. But the overhead of
adopting pluggable types can be very high, especially if all existing code must be
decorated with type annotations before any type-checking can be performed. We
propose a practical and pragmatic approach to introduce pluggable type systems
to dynamic languages. First of all, only annotated code is type-checked. Second,
limited type inference is performed on unannotated code to reduce the number of
reported errors. Finally, external annotations can be used to type third-party code.
We present TypePlug, a Smalltalk implementation of our framework, and report on
experience applying the framework to three different pluggable type systems.

1 Introduction

Any static type system attempts to reduce the number of errors that may
occur at run-time by restricting the programs that one is allowed to write.
Statically-typed programming languages implicitly take the position that this
is a good deal. In return for the minor inconvenience of not being able to write

? This work is based on an earlier work: Practical, Pluggable Types, in Proceedings
of the 2007 International Conference on Dynamic Languages (ESUG/ICDL 2007)
http://doi.acm.org/10.1145/1352678.1352690 c© ACM, 2007.

Email addresses: nhaldimann@gmx.ch (Niklaus Haldiman),
denker@iam.unibe.ch (Marcus Denker), oscar.nierstrasz@iam.unibe.ch
(Oscar Nierstrasz).

Computer Languages, Systems & Structures vol. 35, Issues 1 (2009), pp. 48–64



certain kinds of relatively uncommon programs, we obtain guarantees that no
catastrophic run-time errors will occur.

Dynamically-typed languages assume the opposing standpoint. Precisely those
interesting programs — for example, those exploiting behavioural reflection—
would be rejected. Furthermore, although there are many different approaches
to static typing, a statically-typed programming language must commit to one.
Dynamic languages do not need to make this kind of premature commitment.
Finally, static type systems can generate a false sense of security. Although
certain kinds of catastrophic errors can be detected, others cannot.

Gilad Bracha has argued that it is possible to have one’s cake and eat it too [1].
Instead of static type systems being mandatory, they should be optional. This
means that a type system should neither require syntactic annotations in the
program source, nor should it affect the run-time semantics of the language.
An optional type system would report possible errors, but would not prevent
the program from being run (and possibly failing at run-time). In addition,
type systems should be pluggable, that is, one should be able to choose the
kind of static checks one would like to perform. This is especially interesting
given the relatively recent emergence of more exotic type systems for reasoning
about confinement [2], aliasing [3], scopes [4] and so on.

A number of pluggable type systems have been proposed over the last years
[5–7]. The key difficulty with pluggable types, however, is a practical one: In
the presence of a large, existing software base, how can one benefit from a
pluggable type system without annotating the legacy code?

We present a practical and pragmatic approach to pluggable types that sig-
nificantly reduces the overhead of adopting a new type system. TypePlug is
a framework supporting pluggable types implemented in Squeak Smalltalk.
Type systems are defined by specializing the framework. Types are declared
using an annotation framework. The contribution of TypePlug is to reduce
the cost of adopting a type system by means of the following techniques:

(1) Only annotated code is type-checked.
(2) Type inference is applied to unannotated code to reduce propagation of

errors.
(3) Explicit type casts shortcut type-checking.
(4) External annotations are supported to declare types for third-party code.

Section 2 provides a brief introduction to TypePlug using an example of a non-
nil type system. In Section 3 the TypePlug framework is described in some
detail. Section 4 discusses experience using TypePlug to define a class-based
type system and a confinement type system. Section 5 discusses the results
obtained in the context of related work. We conclude in Section 6 with some
remarks on future work.

2



This article is an extension of our previous work [8]. The current paper adds
an in-depth presentation of the confinement type system (Section 4.2).

2 TypePlug in a Nutshell

TypePlug provides a framework to optionally annotate code with type decla-
rations and to type-check annotated code. We will demonstrate how optional
types and type checking can be used in a typical coding session. All code ex-
amples shown are using the Squeak dialect of Smalltalk [9] extended with a
syntax for textual annotations.

To keep the presentation as simple as possible, we use the example of a non-
nil type system. This type system has exactly one type, the nonNil type. If a
variable has the nonNil type it cannot hold the value nil. Anything not typed
nonNil is considered to potentially evaluate to nil (there is no explicit nil type).

To declare a variable to be of type nonNil we add the annotation <:nonNil :>

to it. In the following class definition of a two-dimensional line we declare the
instance variable endPoint to be nonNil:

Object subclass: #Line
uses: TReflectiveMethods
typedInstanceVariables: ’startPoint endPoint <:nonNil :>’
typedClassVariables: ’’

Notice the trait 1 TReflectiveMethods that we use in this class. It imports the
annotation framework that we need to annotate its methods. We assume that
we have not added any other annotations yet to the methods of this Line class.
If we now browse the source of one of the methods we can experience type
checking in action. Here is a method of a line that moves it horizontally by a
number of units:

moveHorizontally: anInteger
startPoint := self movePoint: startPoint horizontally: anInteger.
endPoint := self movePoint: endPoint horizontally: anInteger <− type ’TopType’

of expression is not compatible with type ’nonNil’ of variable ’endPoint’.

When the source of a method is displayed it is type-checked and type errors are
shown inline. The type error found in the above method is highlighted. What
it says is that the expression self movePoint: endPoint horizontally: anInteger was

1 A trait is a set of methods that can be included in the definition of a class [10].

3



found to have the top type which means that its type is unknown. Since the
instance variable endPoint requires the type nonNil, this results in a type error.

To fix this error we have to examine the method movePoint:horizontally: and
declare its return type to be nonNil. This is what it looks like:

movePoint: aPoint <:nonNil :> horizontally: anInteger
↑ (aPoint addX: anInteger y: 0) <:nonNil :>

A return type annotation must be added to the return statement expression.
Notice how parentheses are needed here to apply the annotation to the whole
expression. Adding a return type to a method has two repercussions: in call
sites of the method the message send expression will be typed accordingly and
within the method its return statements will be type-checked. In this example
it means that the expression aPoint addX: anInteger y: 0 must be of type nonNil

(assume we annotated the addX:y: method with a nonNil return type already,
so no type error occurs here).

To show an example of an argument type we have annotated the first argument
of movePoint:horizontally: with a nonNil type as well. Adding an argument type
declares the argument to be of that type within the method, and it also poses
a requirement to arguments passed when the method is used. Because of this
requirement we now get a different type error when we look at moveHorizontally:

again:

moveHorizontally: anInteger
startPoint := self movePoint: startPoint horizontally: anInteger <− in message

’movePoint:horizontally:’ of class ’Line’ argument ’TopType’ is not
compatible with expected type ’nonNil’.

endPoint := self movePoint: endPoint horizontally: anInteger.

The startPoint instance variable does not have an annotation so its type is the
default, the top type, which is not what is required for the first argument to
movePoint:horizontally:. The obvious fix to this type error is to declare startPoint

to be nonNil as well. A different strategy that TypePlug offers is to cast an
expression to an arbitrary type, in this example by adding the annotation
<:castNonNil :>.

moveHorizontally: anInteger
startPoint := self movePoint: startPoint <:castNonNil :> horizontally:

anInteger.
endPoint := self movePoint: endPoint horizontally: anInteger.

With a cast a programmer asserts to the type checker that the type of a given

4



expression is known. Casts are useful to resolve the type of errors where more
type annotations would be overkill or impossible, for example because the cast
expression uses untyped third-party code.

Let’s annotate one more method of Line with a return type:

hasStartPoint
↑ (startPoint notNil) <:nonNil :>

We are still operating under the assumption that no type annotations have
been made other than those previously discussed. We surely have not anno-
tated any notNil method with types, so how come we don’t get a type error
here because the expression startPoint notNil can’t be proven to be nonNil? The
reason is that the type checker tries to infer return types of methods if they are
not explicitly annotated. The notNil method has two implementations, one in
the base class Object — returning false —and one in UndefinedObject — return-
ing true. So obviously invocations of notNil will always return a nonNil boolean
value, which is what the type checker figured out in this case, sparing us from
explicitly annotating the notNil method with a return type.

While this preceding coding session serves as a lightweight introduction to
TypePlug, it also illustrates an important issue when programming with op-
tional types. Once one adds just one type to previously untyped code the need
usually arises for more type annotations to type-check other parts of the code.
Most likely, these additional types prompt for even more type annotations.
This means that quite a bit of work is usually required from a programmer
if he introduces types in a section of his code. A framework for optional typ-
ing should be aware of this problem and minimize the work required by the
programmer. As demonstrated in the coding session, two of our strategies
in this area are type inference and casts, reducing the need for explicit type
annotations.

3 The TypePlug Framework

A type system in TypePlug is specified by first defining the types of the system
and then the properties of the types. This mainly consists of defining mappings
from Smalltalk elements to types as well as operations on types. Since a key
goal of TypePlug is to enable the creation of new type systems without much
effort, the number of properties that have to be defined is kept to a minimum
while retaining considerable flexibility.

Concretely, a new type system is created by subclassing the TPTypeSystem

class and overriding some of its methods. As a quick reference and overview,

5



Table 1 lists all of the methods of TPTypeSystem that can be overridden when
implementing a new type system. In the following discussion we will touch on
the details of the most important of these methods.

systemKey unique key for this system. Defined as
class method.

annotationValueToType:inContext: converts annotations to types. Ab-
stract, must be overridden.

is:subtypeOf: defines the subtyping relation. Ab-
stract, must be overridden.

unifyType:with: defines the type unification operation.
Abstract, must be overridden.

typeForArray: maps arrays to types.

typeForBlock: maps blocks to types.

typeForGlobal:value: maps global variables to types.

typeForLiteral: maps literals to types.

typeForPrimitive: maps primitives to types.

typeForPrimitiveNamed:module: maps named primitives to types.

typeForSelfInClass: maps self pseudo-variables to types.

typeForSuperInClass: maps super pseudo-variables to types.

methodsForMessage:... customizes the set of methods to be
considered when type checking message
sends.

transformMethodType:... transforms methods type before they
are used in the type checker.

transformType:... transforms types before they are used
in the type checker.

assignmentTo:... customizes type checking for assign-
ments

displayClass: creates a custom string version of
classes.

displayMethod:in: creates a custom string version of
methods.

Table 1
Methods of TPTypeSystem to override in subclasses

6



3.1 Defining a Type System

3.1.1 Persephone.

Persephone [11, 12] brings sub-method reflection to Squeak. The standard
model of Squeak and generally any Smalltalk system does not provide a model
for sub-method structure. Methods are just represented as text and bytecode.

Persephone enhances Squeak with a model for methods based on an abstract
syntax tree (AST). Any entity of the AST can be annotated with metadata.
Annotations can be visible in the source code, they can be added in various
places in a method, namely to instance and class variables, method arguments,
return statements, local variables and block variables. For example, the ex-
pression anExpression <:aSelector: anArgument:> attaches an annotation with
one argument to the expression anExpression.

The argument of an annotation can be any Smalltalk expression. In the sim-
plest case, when the argument is just a literal object, the value of the anno-
tation is set to this literal object. When the argument is an expression, the
value of the annotation is the AST of this expression. We can specify when
this AST is evaluated, either at compile time or later at run-time. In addition
we provide a reflective interface to query and set annotations at runtime.

3.1.2 Annotations, Types and Their Representation.

TypePlug gathers type information from annotations made in Squeak source
using the Persephone framework. Such an annotation places the requirement
that the annotated subexpression should have the given type.

In addition to type annotations TypePlug supports cast annotations. Casts are
unchecked— they always succeed, regardless of whether they can statically be
proven type safe. Cast annotations are formed by preceding a type annotation
with cast and capitalizing its first character, e.g., <:castNonNil :> is a cast to
type nonNil.

Since TypePlug supports an arbitrary number of coexisting pluggable type
systems, any expression can have several annotations, one per type system.
In the source code, annotations are simply added one after the other. For this
to work we need a way to distinguish annotations for different type systems.
Every type system defines a unique system key that is used to identify its
annotations. The system key is a symbol returned from the class method
systemKey.

For the non-nil type system, the key is nonNil, thus an annotation for the

7



unique type in the system is <:nonNil :>. This is a special case —usually a
type system will have more than one single type, and keys will usually have
a colon at the end to signal that. For example, the confinement type system
discussed in Section 4.2 has the key confine:. In an annotation for that system,
the actual type appears as the annotation value after the key, e.g., <:confine:

toClass :>.

The type system must define its valid annotation values and thus its valid
types. It does so by defining a method annotationValueToType:inContext: which
returns instances of its types (types in TypePlug are instances of subclasses
of the class TPType). The annotationValueToType:inContext: method takes as the
first argument an abstract syntax tree of such an expression. This is a great
help for type systems which might have complex annotation values, so they
do not need to do their own parsing. The second argument is an instance of
TPContext which describes the context of the annotation, i.e., in which method
the annotation at hand is located. In a type system, the interpretation of an
annotation might depend on where it is found.

3.1.3 The Top Type.

One type is predefined and shared by all type systems: the top type. It is
assumed to be a supertype of every other type in a type system. Within the
TypePlug framework, the top type can appear in many places where a type
is expected, and if it does it means one of two things:

(1) This can be any type.
(2) Nothing is known about this type.

An example of the first meaning is the default argument type for methods:
by default, if a method argument is not explicitly annotated with a type, it
is assumed to have the top type. The second meaning can be observed in the
typing methods discussed in the next section: all of these by default return the
top type to state that, e.g., the type of literals (defined by typeForLiteral:) is
unknown —unless, of course, they are defined differently by the type system.

Generally speaking, every typed thing has the top type if it is unannotated
or has an unknown type. This may seem like an insignificant implementation
detail but the top type is an important device to usefully type check only
partially annotated source. With its property of being a supertype of every
other type it guarantees that, e.g., unannotated source code type-checks safely.

8



3.1.4 Typing Elements of Smalltalk Syntax.

Type systems can define the types of a range of basic constructs of Smalltalk
syntax: types for literals, global variables, primitives, arrays, blocks and pseudo-
variables such as self and super. This is achieved by implementing any of the
typeFor* family of methods defined on type systems, as listed in Table 1. By
default all of these methods return the top type.

In the non-nil type system, the implementation of the typing methods is very
simple. Here are two of the more interesting ones:

typeForLiteral: aValue
↑ aValue ifNotNil: [self singleType] ifNil: [self topType]

typeForSelfInClass: aClass
↑ (UndefinedObject includesBehavior: aClass)

ifTrue: [self topType]
ifFalse: [self singleType]

Obviously, the type for a literal is always nonNil except when the value is nil.
To assess the type of self we need to be slightly cautious since within nil’s class,
UndefinedObject, we cannot say that self is nonNil. But the same is true for all
superclasses of UndefinedObject since their methods could be called from the
nil instance (the includesBehavior: method returns true if the argument is the
receiver or a superclass of the receiver).

3.1.5 Subtyping and Unification.

The two most important operations a type system must define in our model are
a subtyping relation and a type unification operation. Each of these is heavily
used at the core of the type-checking algorithm as described in Section 3.2.
Responsibilities for subtyping and unification are assigned to the type system
rather than to types, though the implementation of a particular type system
may delegate these responsibilities to the types themselves.

The subtyping relation is defined by implementing the is:subtypeOf: method
which takes two types as arguments. It should return true if the first type is
a subtype of the second in the context of this type system, false otherwise.
While type systems are free to define whatever subtyping relation they please,
it should usually be reflexive and transitive to be of practical use. The second
argument may be the top type, representing an unknown type. The top type
is considered to be a supertype of every other type of any type system by
definition, so is:subtypeOf: is never called with the first argument being the top
type.

9



The unification operation creates a type that represents the union of two
types. Again, type systems are completely free to define this in any way that
is appropriate. Generally, the union of two types should be the most specific
common supertype, but a type system can also work with an explicit union
type that it defines. In code, the unification operation is defined by imple-
menting the unifyType:with: method which should return the result of unifying
the two types passed as arguments.

Since the non-nil type system only knows a single type, subtyping and uni-
fication are absolutely trivial. The nonNil type is a subtype of itself and the
nonNil type unified with itself gives the nonNil type again:

is: aType subtypeOf: anotherType
↑ (self isNilType: aType) and: [self isNilType: anotherType]

unifyType: aType with: anotherType
↑ ((self isNilType: aType) and: [self isNilType: anotherType])

ifTrue: [self singleType]
ifFalse: [self topType]

3.1.6 The Built-in Static Type System.

Although Smalltalk is dynamically typed, its source code nevertheless contains
some inherent static type information. For example, the class of an object is
statically known if it appears as a literal in the source code. Static type infor-
mation such as this can be very valuable to the type-checking algorithm and to
any given pluggable type system. It is therefore important to capture this in-
formation and make it available in a convenient form. TypePlug achieves this
with a built-in static type system which is itself implemented as an ordinary
pluggable type system.

Every expression is assigned one of the following static types:

• The self type, the type of the pseudo-variable self.
• The super type, the type for the pseudo-variable super.
• Class types, the types for expressions whose class is known.
• Object types, the types for expressions whose exact value is known, e.g.,

literals and globals.
• Block types, the type for literal blocks.
• The top type, meaning that nothing is known about the static type of that

expression.

Object types of a given class are all subtypes of the corresponding class type,
e.g., the object type for the integer literal 42 is a subtype of the class type for

10



SmallInteger.

Block types are composites: they describe the types of arguments and a return
values of blocks. The block type is a class type, since the class of a literal block
is obviously known. The same goes for the super type. The self type, however,
is not a class type — in class hierarchies the pseudo-variable self can refer to
any of the subclasses of the class it appears in.

In contrast to user-defined pluggable type systems, the static type system is
always present underneath every other type system. The built-in static types
are available to implementors of pluggable type systems, and can be exploited
when defining subtyping and unification for those systems. As a general prin-
ciple, whenever an implementation gets ahold of a type of some expression
(e.g., the two types passed as arguments into the unification operation) it can
also access the static type of that same expression.

3.2 Type Checking

The heart of TypePlug is its approach to type-checking. The type-checking
algorithm has been designed to make it easy to plug in a new type system.
Furthermore, since type annotations in pluggable type systems are optional,
the algorithm must deliver useful results in the face of an only partly annotated
codebase. As a consequence of these considerations we established two guiding
principles for the approach to type checking:

(1) Only code that contains type annotations or uses annotated methods will
be type-checked.

(2) Where code to be type-checked refers to unannotated code, static types
and type inference will be used.

The combination of these two principles makes it possible to deal well with a
mix of typed and untyped code.

3.2.1 Ensuring Type Safety.

Type checking in TypePlug is applied per method and per type system. The
type checker takes a type system and a method as input, statically checks the
method for type safety and returns detailed results about a type error if there
is one.

Source code is analyzed by traversing its abstract syntax tree (AST) repre-
sentation. A type is assigned to every expression node in the AST. The type
of an expression is determined by the typing methods of the type system

11



and—where possible —by type inference, taking into account the type and
cast annotations in the source.

While the type checker traverses the AST, at certain points type safety is
ensured by doing subtyping checks. The three points are assignments, return
statements and message sends. Type safety checks for assignments and return
statements are trivial, but message sends deserve an extended discussion.

3.2.2 Checking Message Sends.

Ensuring the type safety of message sends is the most difficult problem in
type checking Smalltalk. In general, the class of a receiver of a message is
not statically known, so there is usually no way to statically determine which
method will be invoked at runtime or if a matching method even exists. Clearly,
any static type-checking algorithm relying on partial type annotations must
be pragmatic here and make some compromises.

One possible solution to improve the situation is to extensively use type in-
ference to determine the class of message receivers. We do utilize some simple
forms of type inference but in the context of a specific pluggable type system,
not to determine the class of expressions.

We use a simple scheme that nevertheless yields useful results. Our approach
tries to look up the set of methods that could be invoked for a specific message
send and involve the whole set during type checking. The static type system
is used to make this set as small as possible. Thus our approach is similar
to standard type inference techniques [13], but with a far simpler reduction
strategy.

Three cases are distinguished based on the static type of the receiver:

(1) If the receiver class is statically known, i.e., the receiver has a static class
type, the method invoked at runtime can be looked up precisely and the
set consists of that one method. Note that object types, block types and
super types all fall under this case since they are class types.

(2) If the receiver has a self type we need to consider the class the method
being type-checked belongs to. The set consists of all implementors of
the message in this class and its subclasses. It is necessary to include
subclasses because the self pseudo-variable can refer to an instance of a
subclass if the method is called from a subclass.

(3) If the receiver does not have a static type, i.e., its static type is the
top type, we have to resort to a very broad strategy: the set consists of
all implementors of a message, i.e., all methods of the message’s name
implemented in the whole system. This case is the most common, unfor-
tunately.

12



A pluggable type system might carry information that can be used to
further reduce the set of methods in this case. That is why type systems
get the chance to implement their own strategy for this third case (by
overriding the methodsForMessage method).

Once the set of methods to be considered has been fixed, the actual type
check of the message send consists of asserting that the types of the arguments
are subtypes of the respective types of the methods parameters. If a method
parameter does not have a type it is assumed to have the top type which
means that untyped parameters effectively are not type-checked. If the set of
methods is empty a type error is raised.

This approach as a whole has the desirable property of catching most type
errors. But it has the undesirable property of possible raising too many type
errors. When unrelated classes have methods with the same name but with
different parameter types, the “all implementors” strategy might label a mes-
sage send as a type error even though at runtime the error would never occur.
This drawback becomes less problematic when one considers what actually
happens when type checking arguments in a message send. If a method does
not have any type annotations argument type checking is always successful.
Only methods that declare types on their arguments can provoke type er-
rors. Since we do not expect to operate in a fully annotated code base these
questionable type errors should not occur often.

One problem remains: This approach cannot guarantee that a receiver actually
responds to a message at runtime, i.e., that a receiver actually implements a
method of that name. We only guarantee type safety for the case that a receiver
actually responds to a message.

3.3 Type Inference

We treat type inference as a crucial tool to enhance the user experience of
TypePlug. It spares a programmer from exhaustively annotating source code
with types.

Our type checker has two specific limited forms of type inference built in, for
local variable types and for method return types. Both of those are optional,
insofar as the type checker just tries to infer types but does not depend on
a conclusive result. What is more, the pluggable type systems themselves do
not have to care about type inference— it emerges from our model of type
systems and does not restrict expressiveness within that model.

Type inference for local variables is not particularly novel or interesting, so
we will only discuss our approach to return type inference here.

13



3.3.1 Return Type Inference.

When the returned result of a message send is used, the type checker needs
to make a useful assumption about the return type of the message. Again,
Smalltalk’s dynamic properties make it impossible to know which method will
actually be invoked at runtime. So we use the same rules as with argument
type checking described in Section 3.2 to get a set of methods to be considered.
The return type of the message is then the union of all return types of those
methods.

If a method was not annotated with a return type, its return type is by default
considered to be the top type. But to improve the quality of type checking
and comply with the requirement to infer as many types as possible, the
type checker will try to infer the return type of an unannotated method. Our
simple-minded type inference basically works the same way as type checking
(implementation-wise it is in fact identical): we walk the AST of the method
and keep track of the types of AST nodes. The inferred return type simply
becomes the union of the types of all return statements in the method. If
the method’s last statement is not a return statement, the type defined by
the type system for self is also part of this union since by default Smalltalk
methods return self.

When inferring the return type of a method the result can obviously be im-
proved by inferring the return types of message sends within that method as
well. In fact the inferencer could drill even deeper and walk the whole graph
of method calls to make the result as precise as possible. With our simple
inference strategy, this is not realistic for performance reasons, so we limit the
inferencer to an inference depth. It defines how deep the inferencer looks into
the call graph.

Increasing the inference depth is very costly in terms of performance, since the
total number of methods considered grows very fast. While using TypePlug
with real world code we discovered that 3 is about the highest tolerable infer-
ence depth. We use various caching strategies to improve performance, but in
general inferred return types can’t be kept in a cache very long because the
conditions that lead to a cache invalidation are very costly to detect, especially
with a high inference depth (i.e., when the the return type annotation of a
method changes, the inferred return types of all its callers might change).

3.3.2 The Impact of Return Type Inference.

To assess the impact of return type inference, we carried out the following
experiment. In a stock Squeak image without any explicit type annotations
we tried to infer the return type of all methods of classes in the category
Files−Directories. This category contains Squeak’s abstraction of file system

14



directories, with a total of 8 classes with 210 methods. This serves as an
example of a typical small package of user code that one would want to type
check.

In the second stage of the experiment, we added as many return type anno-
tations to methods of the Object class as possible. Object is the base class for
almost all other classes in Smalltalk; it implements some heavily used methods
such as = (equality), class and copy, so annotating those should improve return
type inference (because overridden methods inherit types from superclasses).
With this small set of type annotations we again tried to infer all return types
in the Files−Directories class category We used an inference depth of 1, meaning
that the type inferencer is allowed to dive one level deep into messages used
in an examined method, but not further. We ran this experiment for both the
non-nil and the class-based type system (discussed in Section 4.1). The results
are summarized in Table 2.

Non-nil Class-based

Total methods 210 210

Inferred, without annotations 67 66

in percent 31.9% 31.4%

Inferred, with annotations 73 77

in percent 34.8% 36.7%
Table 2
Return type inference for class category Files−Directories in a stock Squeak image,
version 3.9 final

In both type systems, for about 31% of all methods the return type could
be inferred even without any type annotations present in the image. This
shows that return type inference does add significant value to the system as
a whole, since in this package for more than 30% of methods explicit return
type annotations are not even needed. 39 methods (19% of all methods) do
not contain a return statement, so their return type is trivially inferred to be
the type of self.

With type annotations for Object, inferred return types are about 3% more for
the non-nil type system and 5% more for the class-based type system. This
improvement is quite impressive considering that only a few annotations were
added to Object. These results suggest that the cumulative effect of additional
annotations to other commonly used classes such as numbers, strings and
collections should be good.

15



3.4 Programming Environment Integration

In Smalltalk IDEs, browsers are traditionally used to navigate and modify
the source code in an image. Part of TypePlug is a type browser for Squeak,
a browser that enhances a standard browser with some type-specific behav-
ior. The type browser has three main features: it integrates type checking, it
provides an alternative way of introducing type annotations without changing
source code (external type annotations) and it exports types to a distributable
form.

Fig. 1. The Type Browser

Figure 1 shows the type browser in action. Compared to a standard browser,
the type browser has an extra panel to the right of the list of methods. This
panel shows the method type of the currently selected method, i.e., its argu-
ment and an up arrow (↑) to represent the return statement, including types
if there are type annotations. Selecting one of these types brings up the type
in the bottom (source code) area of the browser where it can be edited.

3.4.1 External Type Annotations.

For a type system to support useful type checking it is often necessary to
annotate at least a minimal set of methods of the standard Smalltalk classes
with types. For example, you may want to annotate the return type of the hash

method of Object with a nonNil type. But normally it is not a good idea to add
such an annotation by modifying the source of a method. Redefining methods
in standard classes such as Object works well locally in an image, but problems
arise when the code or the types should be packaged up for distribution, reside
in a version control system, or undergo any other form of migration between
images.

16



To address these issues, the type browser offers a way to add external type
annotations which are separate from the source code of a method. External
types can simply be added and modified through the extra types panel of the
browser, which registers types with an external cache but does not change the
source code of a method. Additionally, the type browser offers the option to
export the types of all methods of a class, including both external and in-source
types. Exported types of several classes can easily be bundled, distributed and
imported into any image. External type annotations are taken into account for
doing type checking and inferencing just like type annotations that are part
of the code.

The external type annotation support of the type browser is an important tool
for the development and use of pluggable type systems. It allows developers
of a type system to distribute a set of types for a Squeak base image, but it
also allows other parties to create and distribute type packages for arbitrary
type systems.

4 Case Studies

In addition to the non-nil type system presented in Section 2, we used Type-
Plug to implement a class-based type system and a confinement type system.
The description focuses on how to implement type systems using TypePlug,
we do not provide formal definitions for the type systems used as case studies.

4.1 A Class-Based Type System

We use TypePlug to implement an expressive class-based type system, sport-
ing many features of modern statically typed languages. It supports generic
types, polymorphic methods, type unions and typed blocks. The syntax for
type annotations in this system is summarized in Table 3. This is expressive
enough to meaningfully annotate most Smalltalk code with class-based types.

The type of instances of a class is simply the name of that class, e.g., booleans
and integers have the types Boolean and Integer respectively. Classes themselves
(as opposed to their instances) have a type, too. Such a class type is formed
by appending class to the name of the class, e.g., Boolean class for the type of
the class Boolean.

We will not discuss all other kinds of types in detail. Instead we will look
closely at the important subtyping relation and the polymorphism features of
the type system.

17



Class ::=

ClassName

Self

Instance

Type ::=

Class (Simple type)

Class class (Class-side type)

Type | Type (Union type)

Block args: {Type*} return: Type (Block type)

Class (ParamName: Type)+ (Generic type)

Param ParamName (Type parameter)

MethodParam ParamName (Type parameter)
Table 3
Grammar for class-based types

4.1.1 Subtyping.

The usefulness of a class-based type system such as this one depends largely
on the definition of subtyping. Smalltalk code in general is not well suited
to be typed using classes. For example, classes might override methods while
breaking assumptions about types made in the superclass, and other classes
might “delete” methods defined in superclasses. All of these things function
well considering Smalltalk’s dynamic properties, but are not readily compati-
ble with the notion of subtyping.

On the basis of these considerations we define a subtyping relation that is
based on the type interface of a class. We define this to be the set of class
method types that have some type annotation (a method type is a method’s
name with its argument and return types). Figure 2 demonstrates this with
an example. The type interface of the type Fruit is the method type of mixWith:

(with argument Fruit and return type Array E: Fruit, which is a generic type.
We discuss generic types in Section 4.1.2) plus of course any method types
inherited from superclasses. isVegetable is not part of the type interface since
it does not have any type annotations.

The definition of our subtyping relation consists of two clauses. The first clause
forms the basis for the relation with a standard contravariant definition for
structural subtyping:

1. Type A is a subtype of type B if the type interface of B is a subset of the
type interface of A and for all method types mB of the interface B and

18



the corresponding method type mA of the interface A it is true that: the
argument types of mB are subtypes of the respective argument types of mA

and the return type of mA is a subtype of the return type of mB.

Taken in isolation, this is a standard subtyping relation from the literature
(e.g., [14, page 182]) based on structural interfaces, using the usual contravari-
ant subtyping rule for arguments.

According to this first clause, in the fruit example from Figure 2 it is clear
that both types Apple and Orange are subtypes of the type Fruit; their type
interface contains the (inherited) mixWith: method with types. Also, more sur-
prisingly, the Apple and Orange types are both subtypes of each other— their
type interfaces are identical since they both implement an annotated color

method.

There is one obvious problem with subtyping based only on the above first
clause: if this were the complete subtyping rule then every simple type would
be a subtype of every other simple type in a codebase without any type an-
notations. This would not be useful, which motivates the second clause of our
definition:

2. We consider the type B of the class B which is a subclass of A. If the type
interface of B is identical with the type interface of A (i.e., the methods of
class B do not add or change any type annotations compared to A), then
the type B has no subtypes except itself.

This means that for types based on classes that do not define any typed
methods, subtyping is based on type identity only. As a consequence of this

class Fruit subclassing: Object
mixWith: aFruit <:type: Fruit :>

↑ (Array with: self with: aFruit) <:type: Array E: Fruit :>
isVegetable

↑ false

class Apple subclassing: Fruit
color

↑ (Color red) <:type: Color :>

class Orange subclassing: Fruit
color

↑ (Color orange) <:type: Color :>

Fig. 2. Fruit bowl code

19



rule, if Apple and Orange introduced no type annotations of their own, then
they would be considered to be distinct types, unrelated to each other. This
rule prevents unannotated classes from collapsing to a common type.

This rather unusual subtyping definition has some interesting implications.
First, thanks to the second clause, it works well with untyped classes. Second,
it puts a lot of responsibility into the hands of the programmer who makes
type annotations. For example, a newly created class is not a subtype of its
superclass. The programmer must add at least one method with a type an-
notation to the new class (while not violating subtyping rules) to make the
new class a subtype of its superclass. In general, to get subtyping relations
in a class hierarchy, type annotations must be added to all the classes in the
hierarchy that should participate in the subtyping relation.

4.1.2 Genericity.

Generic types are types parameterized by at least one named type parameter.
A generic type parameter consists of a name followed by a colon and the type
it should be bound to. A typical example of generic types are collections, e.g.,
the type of an OrderedCollection. This type has a single parameter E referring
to the type of the elements of the collection. An OrderedCollection of integers
then has the type OrderedCollection E: Integer.

In the context of a class with a generic type, type parameters can be used
just like any other type: the type Param E refers to the type that the param-
eter E takes in a generic type. By using a type parameter in any method a
type implicitly becomes generic, i.e., there is no explicit declaration of type
parameters. For example, the type of an OrderedCollection is generic because
the parameter Param E appears in the methods of the class OrderedCollection,
e.g., as the argument type of the add: method.

Apart from type parameters with class scope as used in generic types, our
class-based type system also supports type parameters with method scope.
Methods making use of such type parameters are polymorphic methods. The
quintessential and most simple example of a polymorphic method is the id:

method which takes an argument and does nothing but return that argument
again. To type id: we can give its argument the type MethodParam A, a type
parameter named A with method scope. As the return type of id: we use the
same type parameter again, MethodParam A. This expresses that we expect the
return type of id: to be the type of its argument.

During type checking of code invoking a polymorphic message, the type checker
infers the value of all type parameters from the type of the concrete argu-
ments passed (in the type system implementation, this is achieved via the
hook method transformMethodType:...).

20



An interesting example of a polymorphic method is ifTrue:ifFalse: in the class
Boolean:

ifTrue: aBlock <:type: Block args: {} return: MethodParam R :>
ifFalse: anotherBlock <:type: Block args: {} return: MethodParam R :>

...
↑ (...) <:type: MethodParam R :>

This example demonstrates that polymorphic methods are needed to type
some crucial innards of Smalltalk and also illustrates block types.

4.2 A Confinement Type System

As an example very different from the non-nil and class-based type systems
we also define a confinement type system. This type system implements a
very specific kind of confinement: confined instance variables. References to
mutable objects such as a collection are often considered to be private to a
class when they are stored in an instance variable; these references should
not be shared with other classes. The confinement type system can guarantee
that such confined instance variables do not leak from their class and thus
are not modified outside their class. In Smalltalk, all instance variables are
always private, encapsulated by the instance, but nothing prevents an object
from leaking a reference to its private state as the return value of a public
method. In a way, this type system expresses an extended form of privateness
for instance variables.

The confinement type system demonstrates how TypePlug enables type sys-
tems with fairly complex semantics to be implemented succinctly. The imple-
mentation consists of only 4 classes with a total of about 110 lines of code.

This type system exploits TypePlug’s type inference in an unusual way: whether
a method possibly returns a confined reference is determined only by return
type inference, not by explicit return type annotation. Confined type annota-
tions are added only to instance variables. During type checking, type infer-
ence automatically takes care of analyzing the flow of these confined references
through methods.

A further interesting aspect concerns the unconfined types supported by our
confinement system. Unconfined annotations are a pragmatic tool for a pro-
grammer to signal to the type checker that he knows the annotated expression
does not evaluate to a confined value. The confinement type system is conser-
vative in that it considers the result of any message sent to a confined reference
to be confined as well. But some methods (such as copy to copy an object)

21



will always return new and thus unconfined references. The return types of
such methods can be annotated with an unconfined type. Unconfined types
effectively “override” the effect of confined types — this use of overriding could
be a pattern useful in other type systems.

4.2.1 Working with Confined Instance Variables

In this section we explain our confinement type system through a usage sce-
nario. As an example we consider a class Directory that defines a file system
directory containing a number of files stored in the instance variable files.

Object subclass: #Directory
typedInstanceVariables: ’files <:confine: toClass :>’
...

Since the instance variable files holds a mutable list of files, it better not be
modified outside the class. This constraint is expressed by annotating the
variable with <:confine: toClass :>.

We assume the class has an accessor method files that simply returns the
instance variable files. A user of this accessor is the class Archive representing
a compressed archive containing several files (e.g., a ZIP file). The class has a
method addDirectory: to add all files of a directory to an archive.

Directory�files
↑ files

Archive�addDirectory: aDirectory
members

ifNil: [members := aDirectory files]
ifNotNil: [members addAll: aDirectory files]

When the type checker is run on the addDirectory: method it complains about
the first files message send with the error message “method is returning a
confined value of Directory”. Through return type inference it discovered that
the result of the message send might have a confined type, which is not allowed
in a class other than Directory. The potentially damaging side effects of such a
leak of a confined instance variable can be observed in this example: adding
a directory to a new archive sets its members instance variable to the same
collection that contains the directory’s files, and later calls to addDirectory: will
thus modify both the archive and the first directory added to it. One could
argue that the code in addDirectory: is bad style and that members should be
initialized to an empty collection anyway—but the type system is meant to
detect exactly these kinds of oversights.

22



Confinement violations such as the one detected here can usually be fixed
by operating on copies of the confined values. Here, one would have the files

accessor return a copy of the instance variable:

Directory�files
↑ files copy

This eliminates the type error since files now has a neutral return type. The
reason why this works is a bit more subtle than it may appear at first sight and
needs an explanation about how the return type is determined in this case. By
default, the return type of a message sent to a receiver with a confined type
is considered to be that same confined type. The only exception are methods
where the static type system can prove that the return type is not a static self
type. The rationale behind these rules is that any method could be returning
self, a reference to the receiver which of course keeps the receiver’s confinement
restrictions.

But some methods such as copy inherently always return a new and thus
unconfined reference, even though this might not be statically provable. To
allow such methods to be tagged accordingly by the user the confinement
type system knows about the type unconfined. In our directory example, the
copy method’s return type was annotated as <:confine: unconfined :>. The
unconfined return type will always override any confinement restrictions that
might have been inferred for a method.

There is another important use case for the unconfined type, in casting. Con-
sider the following method from the Directory class:

Directory�copyAllTo: aDirectory
aDirectory addAll: files <:castConfine: unconfined :>

The confinement type system forbids the usage of confined references as ar-
guments in a message send. This is necessary because the type checker has
no way to tell whether anything unwanted happens to a confined reference
once it is passed to a method. But since there are legitimate and safe uses of
confined references as message arguments, they can be explicitly cast to the
unconfined type. This is a strategy that many type systems implemented with
TypePlug might adopt: better generate too many type errors to be safe, but
let the user control these type errors through casts.

4.2.2 Keeping References Confined

Usually important logic of a type system is contained in the subtyping relation
and unification operation, but here they are rather simple and we won’t discuss

23



them. The interesting aspect of this type system is how we make sure that
confined references do not leak from a class. In general, references only leave
the bounds of a class through message sends, so most violations of “type
safety” in this type system happen there. There are two conditions that make
a message send unsafe:

(1) The return type of the message send is a confined type associated with a
class A not compatible with the current context class B (meaning A and
B are not identical or B is not a subclass of A).

(2) One of the arguments has a confined type.

Examples of both of these type errors were given during the scenario in the
previous section.

Another kind of message send needs special attention: those where the receiver
has a confined type. To be on the safe side, we must assume that a message
sent to a confined receiver returns a reference to self, meaning that the return
result is confined as well (except if the return type is explicitly unconfined).
For some cases, return type inference can statically determine (using the static
type system) that the return type of a message send is definitely not self. But
unfortunately the framework and hooks into the type checker do not currently
offer a way to make decisions based on the inferred return type of a method,
so we cannot single out this special case.

There is another potential source of type errors: assignments. When an con-
fined reference is assigned to a variable, the variable would have to become
confined if it is not already. But our type checking algorithm does not offer
the option to change the type of an instance variable during type checking.
So we explicitly forbid assignments where a confined reference is assigned
to an untyped instance variable, class variable or global variable. These re-
strictions on message sends and assignments are implemented within the
transformMethodType:... and assignmentTo:... hooks, raising custom type errors.
In the case of assignments, the error message will suggest that the left hand
side variable be declared as confined as well.

4.2.3 Drawbacks of the Approach

The type system works remarkably well in confining instance variables, partly
by being conservative (e.g., considering the result of messages sent to a con-
fined reference to be confined). But there is one caveat: this confinement
type system relies on the type inference capabilities of TypePlug. Whether
a method returns a confined reference or not is determined solely by inference
of return types, not by explicit type annotations as in, e.g., the non-nil type
system. But return type inference is mostly just a tool to enhance the qual-
ity of type checking; it is not supposed to (and, in fact, cannot) work for all

24



methods.

In this type system, problems arise if a confined reference enters a method
through multiple levels of indirection. Return type inference only walks the
tree of message sends to a fixed inference depth— if some method past that
depth returns a confined reference that reference is not considered during
return type inference. Here is an example to illustrate this point.

Directory�files
↑ files

Directory�firstFiles: anInteger
↑ (self files size > anInteger)

ifTrue: [self files first: anInteger]
ifFalse: [self files]

Device�directorySneakPeeks
↑ directories collect: [:dir | dir firstFiles: 3]

Provided the instance variable files of Directory is confined, it is leaking from
Directory�firstFiles: and thus violates confinement in Device�directorySneakPeeks.
But if we are type checking directorySneakPeeks with an inference depth of just
one no type error is detected, since the type checker will not try to infer the
return types of methods within firstFiles: and not find out that the files method
returns a confined reference.

The way to minimize missed confinement violations due to this problem is
obviously to use a large inference depth. Increasing the inference depth does
however slow down type checking considerably. With the current state of Type-
Plug a depth of about 3 is empirically the highest tolerable value. We recom-
mend to develop using a low value and occasionally let the type checker run on
all methods in relevant packages with a higher inference depth (some support
for this is provided with the TPImageChecker class). This occasional exhaustive
type checking could for example be part of a build process.

There is one other caveat: the confinement in this type system is based on
classes, not on instances. This means that it can’t prevent two separate in-
stances of a class from sharing confined references. There is not much that
can be done about this, since bounds between instances cannot generally be
determined statically. Runtime checks, complementing TypePlug’s static type
checking, would be necessary to implement instance-based confinement.

25



5 Discussion and Related Work

5.1 Reflection and Exceptions

In a dynamically-typed language like Smalltalk there are programming idioms
that our type checker simply is not capable of handling. We discuss two prob-
lems of our approach: typing code that uses the reflective features of Smalltalk
and exception handling.

Reflection. Static type checking is about deducing static properties of a sys-
tem before it is run, whereas reflection (not just introspection) means changing
the structure and behavior of a system at runtime. Typing reflective systems
thus poses many problems [15].

The perform: method is used to send a message to an object with the message
name determined at runtime. It takes a message name as its argument and
sends that message to the receiver. The return type depends on the value
of the argument which in general is not known statically, so there is no way
to reasonably type check a perform: message, its arguments and its return
value. However, in many cases we can add an explicit type cast to a perform
expression, thus providing the type checker with the information needed to
check a perform expression.

The doesNotUnderstand: idiom poses a more severe problem for our type check-
ing algorithm. The doesNotUnderstand: method allows classes to intercept run-
time errors occurring when a message was sent that is not understood by the
receiver. This means any object possibly accepts a message sent to it even
though its class does not explicitly implement a method of the same name.
This is a problem because type checking by default assumes that it can find
all implementors of a given message name. To avoid false positives when type-
checking, the only recommendation we can make is to avoid this idiom in areas
of code that should be type safe.

Exceptions. TypePlug currently does not model exceptions. In general, every
message send in Smalltalk could result in an exception being signaled. The
concept of exceptions is fortunately orthogonal to our notion of type safety.
For our purposes, if an exception is signaled it simply means that the execution
of a method stops at that point; it does not in any way affect the types of
variables or other expressions. TypePlug simply does not deal with exceptions
at the moment, not diminishing the usefulness of type checking.

26



5.2 Related Work

In the following, we give an overview of related work. After a short presentation
on relevant general work on type systems and type inference in the context of
Smalltalk, we focus on related work on pluggable type systems.

5.2.1 Type Systems and Type Inference for Smalltalk.

Smalltalk as a practical dynamically typed system has seen many proposals
for adding static type systems [16–19]. The most recent effort at conceiving
and implementing a practical type system for Smalltalk was Strongtalk [20].
Some of these type systems support optional typing, but they provide just a
single type system, not addressing pluggability.

Type Inference was originally researched in the context of functional lan-
guages [21]. Type inference then was applied to Smalltalk [22]. Palsberg and
Schwartzbach presented the first algorithm that can type check completely
untyped Smalltalk code [13]. The Cartesian product algorithm (CPA) by Age-
sen [23] provides a substantial improvement in both precision and efficiency.
Even with this advanced algorithm, type inference does not scale to larger pro-
grams. Efficiency and scalability thus is a focus of current research. Demand-
driven type inference (DDP) [24] provides scalability by analyzing type in-
formation on demand and selectively reducing precision. RoelTyper [25] uses
heuristics for providing type information of instance variables. RoelTyper, like
DDP, provides high performance at the cost of reduced precision.

5.2.2 Pluggable Type Systems.

Pluggable type systems were originally proposed by Gilad Bracha [1]. A num-
ber of implementations of pluggable type systems have been published.

JavaCOP [7] is a program constraint system for implementing practical plug-
gable type systems for Java. The authors present a framework that allows
additional types to be added to Java source code, based on Java’s annotation
facilities. They then define a declarative, rule-based language that can ex-
press rules as constraints on AST nodes, making use of the information from
annotations as well as from Java’s static type system. These rules form the
semantics of pluggable type systems and can be enforced by a type checker
that hooks into the compile process.

Annotations in JavaCOP are similar to TypePlug’s, but are restricted to
class and variable declarations by the Java language, so something like our
casts on arbitrary expressions cannot be supported. The way type systems are

27



implemented with rules in a domain-specific language is very different from
TypePlug’s type system model. The rule language enables very fine grained
control over type checking. The authors prove the validity and versatility of
this approach by implementing an impressive number of pluggable type sys-
tems, ranging from confined types to reference immutability and checks of the
kind usually done by coding style analyzers. On the other hand, our approach
with a rather fixed type checking algorithm and customization is arguably a
bit simpler and results in simpler implementations at least for some applica-
tions. For example, our non-nil type system is extremely simple with about
30 (mostly very trivial) lines of code while JavaCOP’s equivalent presumably
needs several non-trivial rules. JavaCOP does not provide any special support
for working with untyped legacy code. We consider simplicity of implementa-
tion to be important in order to be able to experiment with different kinds of
type systems and typing strategies.

Fleece [6] also explores the notion of pluggable type systems, but explic-
itly for dynamically typed languages. As an example of a dynamically typed
language the report introduces and defines Rsub, a subset of the Ruby pro-
gramming language, which is then used throughout the report. It develops
the notion of annotators that automatically add and propagate annotations
(types) on nodes of the AST of a program. A special case of an annotator is the
programmer who can manually add annotations to a program. Fleece’s han-
dling of annotations correspond in many aspects to TypePlug’s. Automatic
annotators play the role of the inference part of TypePlug’s type checking.

Compared to TypePlug, Fleece is both more general and more restricted.
It is more general, because it is independent of the language Rsub; it copes
with any other language that can be expressed in the grammar form that it
expects. However, it is more restricted because it has not been shown to handle
a real dynamically typed language. Rsub is a very restricted form of Ruby
with, e.g., no inheritance or support of the standard library. The feature that
distinguishes TypePlug is the ability to pragmatically work with an actual full
implementation of Smalltalk, thus supporting type-checking of legacy code.

JastAdd, an extensible Java Compiler, has been extended with a pluggable
type system by Ekman and Hedin [5]. The paper presents only one type sys-
tem, a non-nil type system similar to that of TypePlug. Of all three discussed
other frameworks, it is the only one which provides support for reducing the
number of annotations needed when dealing with untyped legacy code. It sup-
ports inference of non-null types, but it does not allow for type annotations
without changing the source code.

28



6 Conclusion and Future Work

TypePlug is intended to offer a very pragmatic framework for implement-
ing pluggable type systems. New type systems are defined by specializing the
TPTypeSystem class and overriding the methods for subtyping and type unifi-
cation. TypePlug makes it relatively easy to obtain the benefits of a pluggable
type system even if the underlying legacy code base remains largely free of
type annotations. This is achieved by (i) only type-checking annotated code,
(ii) using static type information and limited type inference to reason about
unannotated code, and (iii) externally annotating third party code. Explicit
type casts can also be used to avoid annotating code that is known to be safe.

We have made experience with three very different kinds of type systems,
including a classical class-based type system, a non-nil type systems and a
type system for confined types.

There are numerous further directions to explore. Presently TypePlug does not
take exceptions into account. Type inferencing is quite slow, and inferencing
beyond a depth of 3 levels is impractical. We plan to integrate modern type
inference algorithms and a heuristical type analysis system in the spirit of
RoelTyper.

An interesting field for future research is to explore type checking in the pres-
ence of reflection, especially how to type check a system that can be changed
reflectively at runtime. It would also be interesting to explore ways of adding
optional run-time type checks by making further use of the Persephone frame-
work for sub-method reflection, thus complementing TypePlug’s static type
checking. Pluggable type systems might be able to benefit from information
provided by any other pluggable type system, rather than just the built-in
static type system. This sharing of type information is another direction to
consider.

Acknowledgements. We gratefully acknowledge the financial support of the
Swiss National Science Foundation for the project “Analyzing, capturing and
taming software change” (SNF Project No. 200020-113342, Oct. 2006 - Sept.
2008).

References

[1] G. Bracha, Pluggable type systems, OOPSLA Workshop on Revival of Dynamic
Languages (Oct. 2004).

[2] C. Grothoff, J. Palsberg, J. Vitek, Encapsulating objects with confined types,

29



in: OOPSLA ’01: Proceedings of the 16th ACM SIGPLAN conference on Object
oriented programming, systems, languages, and applications, ACM Press, New
York, NY, USA, 2001, pp. 241–255.

[3] F. Smith, D. Walker, J. G. Morrisett, Alias types, in: ESOP ’00: Proceedings
of the 9th European Symposium on Programming Languages and Systems,
Springer-Verlag, London, UK, 2000, pp. 366–381.

[4] T. Zhao, J. Noble, J. Vitek, Scoped types for real-time Java, in: RTSS ’04:
Proceedings of the 25th IEEE International Real-Time Systems Symposium
(RTSS’04), IEEE Computer Society, Washington, DC, USA, 2004, pp. 241–
251.

[5] T. Ekman, G. Hedin, Pluggable checking and inferencing of non-null types for
Java, Journal of Object Technology 6 (9) (2007) 455–475.

[6] T. Allwood, Fleece, pluggable type checking for dynamic programming
languages, Master’s thesis, Imperial College of Science, Technology and
Medicine, University of London (Jun. 2006).

[7] C. Andreae, J. Noble, S. Markstrum, T. Millstein, A framework for
implementing pluggable type systems, in: OOPSLA ’06: Proceedings of the 21st
annual ACM SIGPLAN conference on Object-oriented programming systems,
languages, and applications, ACM Press, New York, NY, USA, 2006, pp. 57–74.

[8] N. Haldiman, M. Denker, O. Nierstrasz, Practical, pluggable types, in:
Proceedings of the 2007 International Conference on Dynamic Languages (ICDL
2007), ACM Digital Library, 2007, pp. 183–204.

[9] A. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, M. Denker, Squeak
by Example, Square Bracket Associates, 2007, http://SqueakByExample.org/.

[10] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, A. Black, Traits: A mechanism
for fine-grained reuse, ACM Transactions on Programming Languages and
Systems (TOPLAS) 28 (2) (2006) 331–388.

[11] M. Denker, S. Ducasse, A. Lienhard, P. Marschall, Sub-method reflection, in:
Proceedings of TOOLS Europe 2007, Vol. 6, ETH, 2007, pp. 231–251.

[12] P. Marschall, Persephone: Taking Smalltalk reflection to the sub-method level,
Master’s thesis, University of Bern (Dec. 2006).

[13] J. Palsberg, M. I. Schwartzbach, Object-oriented type inference, in: Proceedings
OOPSLA ’91, ACM SIGPLAN Notices, Vol. 26, 1991, pp. 146–161.

[14] B. Pierce, Types and Programming Languages, The MIT Press, 2002.

[15] L. E. Alanko, Types and reflection, Ph.D. thesis, University of Helsinki (Nov.
2004).

[16] A. H. Borning, D. H. Ingalls, A type declaration and inference system for
Smalltalk, in: Proceedings POPL ’82, Albuquerque, NM, 1982, pp. 133–141.

30



[17] R. E. Johnson, Type-checking Smalltalk, in: Proceedings OOPSLA ’86, ACM
SIGPLAN Notices, Vol. 21, 1986, pp. 315–321.

[18] J. Graver, Type-checking and type-inference for object-oriented programming
languages, Ph.D. thesis, University of Illinois at Urbana-Champaign (Aug.
1989).

[19] J. Palsberg, M. I. Schwartzbach, Object-Oriented Type Systems, Wiley, 1993.

[20] G. Bracha, D. Griswold, Strongtalk: Typechecking Smalltalk in a production
environment, in: Proceedings OOPSLA ’93, ACM SIGPLAN Notices, Vol. 28,
1993, pp. 215–230.

[21] R. Milner, A theory of type polymorphism in programming, Journal of
Computer and System Sciences 17 (1978) 348–375.

[22] N. Suzuki, Inferring types in smalltalk, in: POPL ’81: Proceedings of the 8th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
ACM Press, New York, NY, USA, 1981, pp. 187–199.

[23] O. Agesen, Concrete type inference: Delivering object-oriented applications,
Ph.D. thesis, Stanford University (Dec. 1996).

[24] S. A. Spoon, O. Shivers, Demand-driven type inference with subgoal pruning:
Trading precision for scalability, in: Proceedings of ECOOP’04, 2004, pp. 51–74.

[25] R. Wuyts, RoelTyper, a fast type reconstructor for Smalltalk, http://decomp.
ulb.ac.be/roelwuyts/smalltalk/roeltyper/ (2005).

31

http://decomp.ulb.ac.be/roelwuyts/smalltalk/roeltyper/
http://decomp.ulb.ac.be/roelwuyts/smalltalk/roeltyper/

	Introduction
	TypePlug in a Nutshell
	The TypePlug Framework
	Defining a Type System
	Type Checking
	Type Inference
	Programming Environment Integration

	Case Studies
	A Class-Based Type System
	A Confinement Type System

	Discussion and Related Work
	Reflection and Exceptions
	Related Work

	Conclusion and Future Work
	References

