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Abstract

Many of the approaches that analyze software evolution
consider a static perspective of a system. Static analysis
approaches focus on the evolution of static software entities
such as packages, classes and methods. Without knowledge
of the roles software entities play in system features, it is
difficult to interpret the motivation behind changes and ex-
tensions in the code. To tackle this problem, we propose
an approach to software evolution analysis that exploits the
relationships between features and software entities. Our
definition of a feature is a unit of observable behavior of a
software system. We define history measurements that sum-
marize the evolution of software entities from a feature per-
spective. We show how we use our feature perspective of
software evolution to interpret modifications and extensions
to the code. We apply our approach on two case studies and
discuss our findings.

Keywords: reverse engineering, software evolution, fea-
ture history, transitions of characterizations, dynamic anal-
ysis.

1 Introduction

Most reverse engineering approaches to software evolu-
tion analysis focus on static source code entities of a system,
such as classes and methods [3, 21, 22]. A static perspective
considers only the structure and implementation details of a
system. Thus, key semantic information about the roles of
software entities in the features of a system is overlooked.
Without explicit relationships between features and the en-
tities that implement their functionality, it is difficult for
maintainers to discover what motivated modifications and
extensions to the code.

Software evolution is driven mostly by activities such as
iterative development, bug reports and changing require-
ments. Typically change requests and bug reports are ex-
pressed in terms of system features. Several works have
shown that exercising the features of a system is a reliable
means of correlating features and code [7, 30]. In a previ-
ous work [16], we describe a feature-driven approach based
on dynamic analysis, in which we extract execution traces
to achieve an explicit mapping between features and soft-
ware entities like classes and methods. We characterize fea-
tures in terms of classes that implement their functionality,
and we characterize classes based on how they participate
in features.

In this paper we describe an approach to software evo-
lution analysis that is based on how software entities par-
ticipate in features. In other words, we extend our feature-
driven analysis approach with a time dimension.

Our approach combines dynamic analysis and evolution
analysis of multiple versions of a system. We tackle the
problem of manipulating the huge amounts of data gener-
ated by these techniques as (1) we apply measurements to
compact the execution traces and (2) we apply history mea-
surements to summarize changes in multiple versions. We
compact the data to infer high level information about the
evolution of a system from a feature perspective.

We focus on object-oriented systems, and as such, we
analyze the relation between features and classes. Our goal
is to detect the changes in the relationships between classes
and features over time. In particular, we seek answers to the
following questions:

e Are classes becoming obsolete or less active with re-
spect to the features over time?

e Can we detect the introduction of new classes in the
features over time?



o Has the code been refactored?!

We maintain the link between an external feature view
of an application and its internal design and implementation
details throughout its lifecycle. Our view provides semantic
interpretation of modifications and extensions to the code.

We apply our approach to two medium size case studies.
The results show that a feature perspective of classes is a
useful technique for locating and interpreting changes to a
system over time.

We describe simple graph visualizations that summarize
the evolution of the relationships between classes and fea-
tures.

Structure of the Paper. In Section 2 we introduce the
terminology we use to characterize software entities from
a features perspective. Section 3 describes changes to class
characterization and history measurements to measure these
changes over time. Section 4 introduces our feature-based
evolution approach and the graph views we extract. In Sec-
tion 5 we report on two case studies conducted using our
approach. Subsequently, in Section 6 we discuss our results
and outline the constraints and limitations of our approach.
In Section 7 we briefly outline some implementation details
of our approach. We summarize related work in Section 8.
Section 9 outlines our conclusions and future work.

2 Feature Characterization

In this section we briefly outline the key background ter-
minology of our approach to correlating features with code.

We adopt the definition of Eisenbarth et al. for features
[7]. A feature is an observable unit of behavior of a system
triggered by the user. We analyze the relationship between
the features and classes by exercising the features and cap-
turing their execution traces, which we refer to as feature-
traces. We refer to the set of extracted feature-traces as a
feature model.

In this paper, we focus on the relationships between fea-
tures and classes. Nevertheless, our approach is gener-
ally applicable to finer-grained units such as methods, or
coarser-grained units such as packages.

Our characterizations of classes express their level of
participation in a set of features under analysis. We de-
fine the measurements NOF RC' to compute the # feature-
traces that reference a class and F'C' to compute four dis-
tinct characterizations of a class in terms of how many fea-
tures reference it and how many features are currently mod-
eled.

e Not Covered (NC') is a class that does not partici-
pate in any of the features-traces of our current feature

IRefactoring is a disciplined technique for restructuring an existing
body of code, altering its internal structure without changing its external
behavior [12]
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Figure 1. Feature-Fingerprints and Classes
Relationships

model.

(NOFC =0) — FC =0

o Single-Feature (SF) is a class that participates in only
one feature-trace.

(NOFC =1) — FC =1

o Group-Feature (GF') is a class that participates in less
than half of the features of a feature model. In other
words, group-feature classes provide functionality to a
group of features, but not to all features.

(NOFC > 1) A (NOFC < NOF/2) — FC =2

e Infrastructural (I) is a class that participates in more
than half of the features of a feature model.

(NOFC >= NOF/2) — FC =3

We compact a feature-trace into feature-fingerprints
by reducing multiple references to the same class to
one occurrence. In this way, we reduce the vol-
ume of data captured as a result of dynamic analysis
without loss of information about the relationships be-
tween features and classes. A feature-fingerprint (FP)
is a set of sets of characterized classes: FP, =
{{NC(classes)},{SF(classes)}, {GF(classes)},
{I(classes)}}

Figure 1 shows a simple visualization of class charac-
terizations and feature-fingerprints for 5 features. The ar-
rows between the features (F1..F5) show which classes par-
ticipate in features. The classes are color-coded according



to their characterizations. Infrastructural classes are shown
in dark gray. As previously explained, these participate in
more than half of the features. On the right side we show the
feature-fingerprints of color-coded parts, each representing
the set of characterized classes that participate in the fea-
ture. The feature-fingerprint for F1, for example, consists of
a set of one single-feature class, a set of one group feature-
class and a set of two infrastructural classes. The cardinal-
ity of each set of characterized classes is represented by the
height of the colored part.

3 Evolving Relationships between Features
and Classes

Our approach to evolution analysis of a system is to fo-
cus on how the relationships between classes and features
change over time. We are interested in changes to charac-
terizations of classes. In Section 2 we define the character-
izations of classes with respect to features. Now we extend
these class characterizations with a time dimension. We
measure changes in characterizations to detect how classes
are affected by modifications to the code over time from a
feature perspective. We refer to these as characterization
transitions of classes.

In Figure 3 we show all possible characterization tran-
sitions and associate a numerical value with each of the 4
characterizations. We list the transitions in Table 1. We
also associate an activity indicator to show if a class partic-
ipates in more (4), less (—) or no (0) features as a result of

a transition.
single-feature
M1
nc-->s g--
->S
not- -
covered

0
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Figure 3. Characterization Transitions of
Classes

For example, a single-feature-to-group-feature (s — g)
transition indicates that a class that participated in a single
feature entity in a version ¢ has been changed in a subse-
quent version ¢ + 1 so that it participates in more than one
feature.

Transition (T) | Detail Activity
Indicator
(s = g) single-feature-to-group-feature | +
(s — 1) single-feature-to-infrastructural | +
(s — nc) single-feature-to-notcovered 0
(g—9) group-feature-to-single -
(g—1) group-feature-to-infrastructural | +
(g — nc) group-feature-to-notcovered 0
(i — s) infrastructural-to-single-feature | —
(t—9) infrastructural-to-group-feature | —
(i — nc) infrastructural-to-notcovered 0
(nc — s) notcovered-to-single +
(nc — g) notcovered-to-group +
(nc — 1) notcovered-to-infrastructural +

Table 1. Characterization Transitions

We consider the extent of the class characterization tran-
sitions as relevant for our evolution analysis. The transition
indicates a change in participation of a class in the features
from one version to the next. For example, we consider a
transition from notcovered to infrastructural (nc — 1) to
represent a more significant change than a transition from
single-feature to group feature (s — gq), as infrastructural
classes affect more the features under analysis.

Activity Indicators 0,4+ and —. The activity indicator of
a class (as shown in column 3 of Table 1 represents an in-
crease, a decrease or a non-participation of a class in the
features under analysis over time.

3.1 Applying History Measurements to Class
Characterizations

In this section we describe how we apply history mea-
surements defined in previous works [14, 15] to class char-
acterizations. History is defined as a sequence of versions
of the same kind of entity (e.g., a class history). Four history
measurements summarize the evolution of the relationships
between classes and features over time. Our measurements
are applied to the version property F'C' (the characterization
of a class with respect to features) described in Section 2.

Evolution of Feature Characterization (EF'C). We de-
fine the history measurement £'F'C' as being the sum of the
absolute difference of F'C' in subsequent versions from ver-
sion 1 (the first version) to version n (the latest version) of
a class history C:

(n>1) EFC .(FC,C) =", |FCi(C) — FCi 1(C))|

History Average of a Feature Characterization
(HAFC). The HAFC history measurement calcu-
lates the average value of the F'C of a class history C. We
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<<SAF» «SAF» «SAF» «|:» <<|:» 2 1 9/5=1.8 3 +
«NBC» <<|§>> «GBF» «Ig» «Ig» 5 3 11/5=2.2 3 +
«Ig» « NCC» « NCC» « NCC» « NCC» 2 1 3/5=0.6 0 0
«II!):» «II!):» «II:I):» «Ig» «SDF» 2 1 13/5=2.6 1 .

«SF» = Single Feature «NC» = Not Covered Feature Versions

«IF» = Infrastructural Feature «GF» = Group Feature

Figure 2. Characterization History Measurements.

use this HAFC measurement to filter out not-covered
classes to focus only classes that have been active in
features at some point in its history.

(n>0) HAFC, ,(FC,C) = ==l

Evolution Count of Feature Characterization (ECFC).
We define the EC F'C' history measurement as sum of the
changes of the value of F'C for a class history C from
one version to the next. A change occurs if FC;(C) #
FC;_1(C). In other words, we count the number of char-
acterization transitions of a class over time.

1, |FCi(C)—FC;—1(C)] >0

ECi(FC,C) = { 0, FC;(C)—FCi—1(C)=0

(n>1) ECy .(FC,C)=Y"_,ECi(FC,C)

Activity Indicator. We compute the activity indicator
by comparing the history average of a characterization
(HAFC ) of a class with the value of FC in the last ver-
sion of a system under analysis (LastF'C').

3.2 Applying History Measurements to Changes
in Class Characterizations

Figure 2 illustrates how the history measurements we de-
fined for F'C' characterize the evolution of a class in terms
of its changes in feature participation.

EFC (evolution of a characterization or weighted
transition) describes the sum of the weighted transi-
tions i.e., the extent of characterization changes that
the class undergoes during its history. For example the
class A is single-feature in version 1, 2 an 3, then be-
comes infrastructural in version 4 and 5. Therefore
EFC (A)=2 i.e., changing once from single-feature
to infrastructural. Note that that even though class C
changes from single-feature to not covered, we obtain
a value 2 since we calculate the absolute value of the
changes.

ECFC(C is the number of transitions. Classes A, C and
D changed once their characterization from single to
infrastructure for A, from infrastructural to not covered
for C and from infrastructural to single-feature for D,
while class B changed more: from a not covered class
to infrastructural to group-feature back to infrastruc-
tural characterization.

H AFC is the average of class characterization accord-
ing to changes weighted as in Figure 3. If we com-
pare classes A and C which have the same EFC and
ECFC but a different HAFC , we see that class A
changes less than class C.

LastFC represents the last characterization of a class.
Here we see that class A and B are infrastructural
classes while C is a not covered class and D a single-
feature class.

Activity is computed by comparing HAFC and
LastFC . Class A and Class B show + activity, as
LastFC > HAFC . Class C shows 0 activity as the



value of LastF'C is 0. Class D shows — activity as
HAFC > LastFC'.

3.3 Interpreting History Measurements.

The interpretation of the measurements depends heavily
on the following context of our approach: we do not add
new features and the features do not have observable be-
havior changes between the versions. This interpretation is
from a class point of view.

Drop in Feature Participation. We refer to these classes
flagged with — Indicator as suspect classes where function-
ality has been removed from classes or is no longer being
used by one or more features of our analysis. For exam-
ple in Figure 2, the class D is suspect for further inspection
since it changes it characterization from an infrastructural
to a single-feature class.

Refactorings. We interpret the characterization transi-
tions of the classes as indications of possible code refactor-
ings, additions or removals of non-functional behavior. We
use the term non functional to refer to code concerned with
infrastructural aspects of the application like authentication,
caching and persistence mechanisms. Due to the number of
possible explanations for characterization transitions, we do
not claim to use then to make conclusive statements about
the types of changes in the system based on transitions. Our
hypothesis is that by identifying classes that show frequent
transitions, increase or decrease in activity with respect to
the features we support maintenance activities as we incor-
porate a semantic interpretation of changes in the classes.

New Participation in Feature. We consider the classes
flagged with + Indicator as suspect classes where non-
observable functionality has been added or existing func-
tionality is being reused by more features over time. We ap-
ply the weighted transition measurement (£ F'C') to detect
significant changes in classes. We assume that classes that
show a single-to-infrastructural transition indicate places in
the code where functionality has been added that affects
multiple features.

Obsolete Code. Characterization transitions that have a 0
Indicator (see Table 1) show that class no longer partici-
pates in features. A class may be obsolete or contain candi-
date obsolete methods. As we do not obtain 100% coverage
of the systems classes, we cannot claim conclusively that a
class is obsolete, if it nolonger participates in the features of
our model. Nevertheless, the reverse engineer can apply our
approach to isolate these classes for further investigation.

4 Applying our Evolution Analysis Tech-
nique

We outline how we apply our technique to measure the
evolution of class characterizations from a feature perspec-
tive.

e We apply static analysis and abstract static models of
the source code entities (e.g. classes, methods, invoca-
tions) for multiple versions of an application.

e For each version, we abstract feature-traces for the
same set of features using dynamic analysis. To
achieve this we instrument each version of system. We
automatically exercise the same set of features for each
version. For the purposes of this experiment, we limit
our scope to assume that the external observable be-
havior of each feature remains unchanged for all ver-
sions of our analysis.

e We compact the feature-traces into feature-fingerprints
by applying feature characterization measurements.

e We combine the results of static and dynamic analysis
and incorporate the feature-fingerprints as first class
entities in our static model of the system. The im-
plementation details of our model of static and dy-
namic information is described in detail in Section 7.
We compute the characterization measurements for the
classes of the static model with respect to the features
by applying the a class characterization in terms of
feature participation (FC') measurement. We obtain
one model for each version under analysis.

e We apply version and history analysis to the multiple
models of a system and compute history measurements
(as outlined in Section 3.1) for classes.

e As the number of classes of an application is usually
large, we define queries on the classes to filter out
classes that have first never participated in the features
of our analysis (H AF'C = 0) and second never under-
gone any characterization transitions (EC FC = 0). In
this way, we reduce the volume of information to be
analyzed and focus on key classes of interest. More-
over, we apply queries to group classes that yield each
of the activity indicators 0,4+ and—.

4.1 Visualizing Class Characterization History

To illustrate and convey the results of our history analy-
sis of class characterization transitions we use simple graph
visualizations.



Class Characterization Evolution View. Figure 4 shows
the Class Characterization Evolution view we generate for
one of our case studies. The purpose of this view is to enable
us to compare visually the features in terms of their class
characterizations over a series of versions. We use a color-
coded area chart to indicate the distribution of feature class
characterizations. The versions of the system we analyze
are listed on the x-axis and on the y-axis we show the num-
ber of participating classes. We use four colors to represent
the possible characterizations of classes. The yellow (light
gray) section represents the classes that are not covered in
the features of our feature model. The height represents the
number of classes. In this example, we see the changes in
proportions of the characterizations in the features over time
and in which versions these changes occurred.

5 Validation

In this section we present the results of applying our ap-
proach to two concrete case studies. For our experiments
we chose two systems developed by our group: SmallWiki
[27] and Moose [6]. SmallWiki [27] is a collaborative con-
tent management system used to create, edit and manage
hypertext pages on the web. It is implemented predomi-
nately by two developers from our group. The application
is used widely in the Smalltalk community.

Moose is an environment for reengineering object-
oriented systems implemented in Smalltalk [6]. It pro-
vides an import/export framework responsible for import-
ing source code from a system and represent the system in
a model.

We chose the case studies for two main reasons. Firstly,
our approach is a heuristic approach and we require devel-
oper knowledge to validate our results. As the case studies
are developed in our group we had access to developer in-
formation. Secondly, the systems should be of a reasonable
size ( > 500 classes). Table 2 gives an overview of the case
studies.

[ Application [ # Versions [ # Class Histories [ # Features |
[ SmalWiki_[ 11 [ 522 [6 ]
| Moose [ 12 | 708 |5 |

Table 2. Case Studies Details

5.1 Case Study: SmallWiki

As it is a web-based application, user interaction with
the features of SmallWiki is achieved by selecting the hy-
perlink and form options on its pages. To identify features,
we associate features with the links and entry forms of its
pages. We assume that each link on a page or button on an
entry form triggers a distinct feature of the application.

[ Version [ Date [ Summary of Maintenance Comment
SW-13.00 08.10.2003 | bugs fixed
SW-13.05.1 16.11.2003 | -
SW-09.24 26.11.2003
SW-09.28 17.12.2003 | -
SW-09.30 02.01.2004 | refactor, new functionality
SW-09.36 06.01.2004 | new feature, bug fix
SW-09.39 31.01.2004 refactor, new functionlity
SW-09.48 22.03.2004 | new functionality
SW-13.11 06.04.2004 | new functionality
SW-19.51.201 17.09.2004 new features

Table 3. SmallWiki Versions

Feature Version Evolution
300

Number of Classes
g

0
SW-13.00 SW-  SW-09.24 SW-09.28 SW-09.30 SW-09.34 SW-09.36 SW-09.39 SW-09.48  SW- SW-
13.05.1 13.11.0 19.51.201
SmallWiki Versions

WInfrastructural B Group-Feature M Single-Feature 0 Not Covered

Figure 4. Class Characterization Evolution
View calculated on the Smallwiki case study.

We select the same 6 features and 11 different versions
of SmallWiki from the source code repository. The versions
span an 11 month time period. Much of the changes in the
code are as a result of iterative development and refactor-
ings and restructurings in the code. Table 3 lists the versions
we chose. In the third column, we note what type of mainte-
nance activity was reported by the developer at the time the
version was checked in to the repository for versions where
it was available.

For each feature we implemented scripts to simulate the
user interactions. We trigger these features and capture a
feature-trace in a controlled environment. SmallWiki re-
quires a user to login to the system before features can be
triggered. The captured traces initially contain the login
trace calls. Therefore we filter out login trace information
from our features, so that traces are not composed of other
traces.

Interpreting the Feature Characterization Evolution
View. Figure 4 shows the feature version evolution view



of our feature model for SmallWiki. This view differenti-
ates the classes of the features by characterizations. Vari-
ation points in class transitions represent useful starting
points for investigating the reasons for changes in the con-
text of features. We see that the number of single-feature
classes also increases, in particular in the last two versions
analyzed. This result corresponds with the maintenance
comment from Table 3 for the last two versions analyzed
that states that new functionality has been added. From the
second to the third version, the number of classes decreased.
We verify with the developers that at this point, the system
was indeed refactored.

Applying Class Characterization History Measure-
ments. Our history model of SmallWiki contains 522
class histories 2. We filter out the classes that were never
covered by the six features of our analysis to obtain 166
classes ( HAFC > 0). We apply a filter to obtain all classes
whose characterizations have changed during the history of
aclass (EF'C > 0) and obtain 63 classes.

We apply the indicator measurements +indicator, — and
0 and we obtain 40 classes with a +indicator, no classes
with a —indicator and 6 classes with a 0 indicator. This
indicates that 67% of the classes that participate in features
are more active and 9% of the classes detected are candidate
obsolete classes or contain candidate obsolete methods.

To focus on the transitions that indicate introduction of
infrastructural (I) functionality at some point in the evolu-
tion of the system, we apply a filter (Last F'C = 3). We iden-
tify 5 classes where new or existing functionality is reused
by more than half of the features of our analysis.

Indicator | Class Validation
’ by Developer
—+ AdminAction New I
+ ErrorUnauthorized_class New I
+ ErrorUnauthorized New I
+ ErrorAction New I
+ FifoCache New I
+ HistoryAction New functionality
+ SearchAction New functionality
+ EditAction New functionality
0 VisitorCollectable obsolete
0 VisitorRendererHtml Refactored, class split
0 VisitorRendererHtml_class | Refactored, class split
0 Folder_class Removed functionality

Table 4. SmallWiki Classes with Changing
Functional Roles

2 As a class history is a sequence of versions of a class entity, this gives
an indication of the size of the application in terms of number of classes

5.2 Case Study: Moose

For this experiment, we selected features of the im-
port/expo framework and model navigation features from
12 versions of Moose (696 class histories) spanning a four
month time period of refactoring, bug fixing and addition
of functionality. We summarize the versions and the com-
ments entered by the developers in table Table 5.

[ Version [ Date [ Summary of Maintenance Comment

3.0.6 30.12.2004 | bugs fixed
3.0.7 15.02.2005 | republished
3.0.9 19.02.2005 | republished
3.0.12 01.03.2005 | fixed bug
3.0.13 01.03.2005 fixed small bug
3.0.14 01.03.2005 | fixed small bug

3.0.15 01.03.2005
3.0.16 01.03.2005
3.0.17 02.03.2005

moved functionality Operators to sourcelmporters
removed functionality cfdetectionstrategy
fixed bugs. Cleaned UI code

3.0.18.5 09.03.2005 | removed functionality
3.0.21 13.03.2005 | packaging fixed
3.0.22.3 16.03.2003 | fixed bugs

Table 5. Moose Versions

Applying Activity Indicator History Measurements.
We apply the activity indicator measurements to the classes
to detect which classes became functionally more active,
less active or inactive in in the feature-traces over time. We
summarize the results in Table 6

Indicator | Class Validation

’ by Developer
—+ DelegatorPropertyOperator New functionality
+ CFCompositionOperator New functionality
+ CFBlockOperator New functionality
+ CFAbsoluteProperties New functionality
+ CFExpression_class New functionality

[ — [ AbstractEntity [ Removed functionality |
0 MSEModelAttributeDescriptor Removed functionality
0 FilelOFacade Removed functionality
0 MSEAbstractSchemaSaver Removed functionality
0 MSEModelAttributeDescriptor_class | Obsolete
0 CDIFSaver Removed functionality
0 AbstractTool Removed functionality

Table 6. Moose Classes with Changing Func-
tional Roles

We take a closer look at the classes that are detected as
having increased activity over time by analyzing the indi-
vidual classes and the value of the characterizations of these
classes w.r.t. the features for each version.

We detect the same pattern of transitions for the
classes CFCompositionOperator, CFBlockOperator, CFAb-
soluteProperties and CFExpression. We graph this in Fig-
ure 5:

We discover that these classes are part of the same hier-
archy and that their characterization transitions occurred in
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Figure 5. Detail of Characterization Transi-
tions of Moose Class CFCompositionOpera-
tor

the Moose version 3.0.15. We verify the finding with the de-
velopers and they confirm that the hierarchy became more
important to the system in that version.

Our results of our case studies show that our heuristic
approach is useful to ( 1) locate classes where new function-
ality has been introduced, (2) refactoring and to (3) locate
candidate obsolete code. We use developer knowledge to
validate the results.

6 Discussion

The large volume of history information and complex-
ity of dynamic information makes it hard to infer higher
level of information about the evolution of a system. Our
approach reduces the complexity of the information to re-
veal key semantic information about changes to the system
based on measuring how the relationships between classes
and features evolve over time.

We limit the scope of our investigation to focus on a con-
stant set of features. Our goal is to apply feature-based evo-
lution analysis to investigate the effects of maintenance on
a specific set of features. Our feature perspective enables
us to view semantic groupings of the classes. The charac-
terization of these classes provides us with feature knowl-
edge to reason about the design intent of the class. Using
feature-based evolution analysis we determine the stability
of features of a system by monitoring feature characteriza-
tions and the characterizations of the classes over a series of
versions.

Feature definition. Not all features of a system satisfy
our definition of a feature as a user-triggerable unit of ob-
servable behavior. System internal housekeeping tasks, for

example, are not triggered directly by user interaction. For
the identification of features we limit the scope of our in-
vestigation to user-initiated features.

Feature-Trace mapping. We assume a one-to-one map-
ping between feature-traces and features. This is a simpli-
fication of reality, as the execution path of a feature varies
depending on the combination of user inputs when it is trig-
gered. Exhaustive execution of a feature is costly. We see
from our experiments that one path of execution is useful
enough to reveal a mapping that directs the software devel-
oper to the relevant classes.

Coverage. Our feature model does not achieve 100% cov-
erage of the system. We argue that for the purpose of fea-
ture location, complete coverage is not necessary. We use
our feature model to focus on a specific set of features. The
model is extensible and the approach to analysis is extensi-
ble to include more features if required.

Obtaining feature traces. One of the difficulties of ob-
taining feature traces of a system is that in a series of ver-
sions of a system, in some of the versions some or all of the
functionality may be broken. This makes it difficult to trace
the functionality.

Scalability of the approach. Method instrumentation ef-
fects the performance of the feature. For some of the fea-
tures we traced in our Moose case study, the execution time
of the instrumented code made experimentation difficult.
To tackle this problem, we applied selective instrumenta-
tion for the Moose case study. We select which packages
to instrument. Selective instrumentation of the packages re-
quires prior knowledge of the application and the relation-
ship between packages and features. The resulting traces
and the values of our measurements are influenced by se-
lective instrumentation.

Limitations of the approach. One limitation of the ap-
proach is that it cannot detect new functionality that is added
to the system in a generic way, such that no new methods
are invoked. Multiple calls to the same method of a class are
compacted to one occurrence in a feature-fingerprint. This
limitation was identified during the validation of Moose
case study results.

Language independence. Our technique is language in-
dependent as we work with a model of the system abstracted
by static and dynamic analysis.



7 Implementation - TraceScraper, Moose

and Van

TraceScraper is our feature analysis tool. It is based on
the Moose [6] reengineering platform. Using method wrap-
pers, TraceScraper runs feature exercising scripts and cap-
tures individual traces of the executions. The traces are
modeled as FAMIX [4] entites in Moose. Figure 6 shows
the relationship between trace entities and the FAMIX enti-
ties Class and Method. The class and method referenced in
the trace event is related to the static class and method en-
tities. TraceScraper computes feature-fingerprints from the
trace entities based on the relationships to class and method
entities.

Trace-Entity
* *
/ \ *

Method < Class

Figure 6. TraceMetaModel.

Moose is an implementation of the FAMIX [4] language
independent meta-model. We extend the FAMIX model
with feature-trace entities. In this way we can relate the
feature-trace information with the class and method entities
of the model.

Van is an implementation of the Hismo history meta-
model [5] and provides features for analyzing versions of
software systems. Our feature history entities and history
measurements are implemented as extensions to Van. The
FAMIX and Hismo metamodels are both language indepen-
dent.

8 Related Work

Many researchers have identified the potential of feature-
centric approaches in software engineering and in particu-
lar as a basis for reverse-engineering [7, 8, 18, 24, 25, 28,
29, 30]. Our main focus with this work is define a reverse
engineering approach that exploits history information of a
systems features over a series of versions.

The basis of our work is directly related to the field of dy-
namic analysis [1, 17, 31], user-driven approaches [19] and
reverse engineering approaches that consider the evolution
of a system [2, 15, 23, 26, 32] represent the groundwork on
which we base our research.

Hsi et al. [18] described an approach to studying the evo-
lution of features by deriving three views of an application,
a morphological, a functional and an object view, based on

the domain knowledge of an application. Their models are
derived from the user interface of an application. They com-
pare models of an application as they evolve. The purpose
of their approach is to depict the feature architecture of an
application independently of the underlying software. They
highlight the importance of studying the evolution of an fea-
ture perspective of a system.

Gall ef al. [13] aimed to detect logical couplings be-
tween part of the system by identifying which parts of the
system change together. They used this information to de-
fine coupling measurements. The more times modules were
changed together, the more tightly coupled they are. This
approach is based on files and folders of a system and does
not consider the semantic units of a system such as classes
and methods.

Fischer et al. [9, 10] modeled bug reports in relation
to changes in a system. The purpose is to provide a link
between bug reports and parts of the system.

Our approach complements these approaches. In con-
trast to the above approaches [9, 11, 18], our main focus is
applying feature-driven analysis to object-oriented applica-
tions. We use execution traces to establish the link between
features and classes. Our characterizations add semantic in-
formation to the classes and use this semantic information
to reason about the evolution of a system in terms its fea-
tures.

9 Conclusions and Future Work

Reverse engineering approaches tend to focus on the im-
plementation details and static structure of a system. By do-
ing so they overlook key knowledge about the system which
establishes the semantic purpose of the individual software
entities.

In this paper, our goal was to analyze the way features
of a system evolve and to reason about changes in the code
from a feature perspective. We extract feature-models of a
system over a series of versions and applied history mea-
surements to determine what has happened to the features
over time.

In particular we seek answer to three questions:

e Are classes becoming obsolete or less active with re-
spect to the features over time?

e Can we detect the introduction of new classes in the
features over time?

e Has the code been refactored?

We applied our approach to two case studies and showed
how a feature perspective of a systems evolution is useful
for interpreting changes in the code. We intend to perform
empirical studies to assess our characterization thresholds



for distinguishing between infrastructural and group fea-
tures. As we had access to developer knowledge for these
case studies, we validated our approach by verifying our
findings against the developer information.

Our approach reduces a large volume of trace and ver-
sion data so that we are able to reason about the informa-
tion and infer high level information about the evolution of
a system.

In the future, we would like extend our definition of a
feature to consider variations in the external behaviors of the
system. We would also like to investigate more correlations
between transitions and modifications in the code.
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