
Measuring the progress of an Industrial Reverse
Engineering Process

Brice Govin∗ †, Nicolas Anquetil †, Anne Etien †, Arnaud Monegier ∗

∗ THALES AIR SYSTEMS, Parc tertiaire SILIC, 3 Avenue Charles Lindberg 94628 Rungis Cedex, France
{brice.govin, arnaud.monegier}@thalesgroup.com

† RMod team, Inria Lille Nord Europe, University Lille 1, CRIStAL, UMR 9189, 59650 Villeneuve d’Ascq, France
{brice.govin, nicolas.anquetil, anne.etien}@inria.fr

Abstract—In an industrial process of production, project man-
agers look for ways to visualise the progress of their project.
Reverse engineering projects do not escape this requirement.
These projets have the particularity to provide information, more
or less accurate, about the whole project, from documentation to
source code. Comparison between the number of treated entities
(lines of code or entities) and the global corresponding number
should ease the task of computing project progress. However,
in large projects, studying all entities can be an endless task.
Engineers need ways to help them in such a task. This paper
sets up the general issue of how to follow progress in a reverse
engineering process. We also propose an early solution to this
issue and discuss about its improvements.

I. INTRODUCTION

In the current industrial world, project managers face issues
such as resources management or project progress. They want
to see the remaining time and budget for their project. To
address these issues, several tools and techniques have been
designed (for resources management in [1] for example).
Project progress often are addressed through dashboards that
gather lots of metrics.

Computing progress of reverse engineering projects [2]
seems to be eased by the availability of the whole source code
of the project. Comparing the number of treated lines of code
or the number of treated entities to the global corresponding
number, is one possible way to compute project progress.

However, large projects raise a new, and more practical
issue. Indeed, browsing and studying every piece of source
code can be a long and fastidious task for developers.

This paper is build as follow. Section II details the issue
of how to follow progress in a reverse engineering process.
Section III exposes the early idea on which we have based our
solution. Section IV makes a brief state of the art in displaying
the progress of a RE process. Section V concludes and presents
the work to be done for the solution.

II. ISSUE

Following progress in reverse engineering projects is eased
by the source code. Since the whole source code of the project
is available for a RE project, computing the amount of treated
lines of code or entities over all the lines of code or entities
of the project can be easily done.

In large projects, the fastidious task of treating every entities
or lines of code can be managed thanks to a top-down
approach. For instance, in an object-oriented written software,
a top-down approach would be to first understand the purposes
of packages and then to analyse relationships between them.
The next step would be to study classes then methods and
sometimes even to analyse statements. During this process,
considering a package as treated raise the question of how
to consider its entities. If its entities are also considered as
treated, analysing them will not increase the progress metric
because they already have been considered as treated. In the
opposite, it may happen that the content of an entity is never
studied for different reasons. This top down approach mainly
used in reverse engineering process does not seem adapted to
the progress metrics intuitively defined. Hence, the issue to
be tackled here is to find a way to ease the progress metric
computation in a RE project

We propose an early solution on this issue in the next section
by distinguishing two kinds of possible marks on an entity to
reverse engineer.

III. SOLUTION

Progress over a RE project can be naively done by setting a
treated characteristic on an entity. A characteristic is a binary
attribute for an entity. Thus, an entity can be either treated or
not treated, with a default characteristic value set as not treated
since nothing has been done on the entity. We introduce a mark
action to set treated and not treated characteristic.Indeed, most
of the time, entities distinction over a binary characteristic is
done through a marking system (e.g. highlighting in a text,
open/close state in a bug tracker).

On one hand, since the Tn (not treated) characteristic is the
default one for an entity, there is no need to define a specific
action. This characteristic will neither be detailed nor used in
this paper. Te (Treated) characteristic has to be associated to
a specific marking action. To tackle the scale issue, it should
be possible to spread this action to the children of an entity.
It corresponds basically to apply a Te to an entity and all its
children.

On the other hand, when analysing entities, developers
often browse briefly other entities without really treating
them. Such an event should be considered as well in the

progress computation. Then a browsed characteristic has also
to be implemented. A marking action is associated to the Be

(browsed) characteristic. Since to analyse an entity, one has to
browse it, it is not necessary to create an action for spreading
Be.

To complete the set of potential action, one should be able to
spread both Be and Te from an entity to its children. Spreading
marks is an action that counters the issue of analysing every
pieces of code. When an engineer decides that he treated not
only an entity but also its children, he can avoid the fastidious
task of going through every children to mark them, thanks the
spreading action .

Figure 1 shows the different marking actions. Graph a)
displays a spread action of Te mark. Graph b) displays an
action of spreading simultaneously Be and Te. Graphs c) and
d) are two examples of simply marking an entity with either
Be or Te.

Fig. 1. Spreading of actions in entities containment hierarchy

In practice, every action that includes Te (graphs a) b) and
d) in figure1) has to be done manually by the developers
each time they considered it. It does not seem acceptable to
provide an automatic marking for this kind of characteristic
since it is totally dependent on the developer. However, action
for Be can be applied automatically. Automatic application
of Be will depend on the kind of source code representation
developers are manipulating. For example, if the source code
is represented by a model, Be can be automatically applied
the first time an entity is analysed.

Progress computation can then be done using the three
characteristics Tn, Be and Te. Since an entity can be marked
as Be or Te or both, from our point of view, the only impor-
tant characteristics are these two. Therefore, progress metric
equation should only consider Be and Te as variables. The

definition of a characteristic provides the following equation
for a progress p of a project P :

p(P) =

∑n
i=1(Bei + Tei)

2 ∗ n
(1)

where :
• n is the number of software entities contained in the

system to reverse engineer.
• Xi represented the characteristic X of the entity i

• ∀i ∈ [|1;n|], Bei

{
= 1 marked
= 0 otherwise

• ∀i ∈ [|1;n|], Tei

{
= 1 marked
= 0 otherwise

Currently, such a formula has not yet been implemented.
Nonetheless, we started the implementation of the marking
system. We can easily get the amount of marked entities
regarding the kind of marking (Tn, Be, Te).

IV. RELATED WORKS

Researches in controlling software projects have been con-
ducted since the very beginning of software production. Nu-
merous papers [3], [4], [5] propose processes to ease the
management of a software project. In [3], the author defines a
process to manage software project. This process is currently
wide spread and known as the V-Cycle. Most of the researches
done about software project processes gave birth to processes
that are widely used in industry nowadays (e.g.V-Cycle, spiral
model).

Other works define and use a set of metrics to manage a
software project [6], [7]. In such a case, metrics are often
related to complexity, for example structural complexity [8].
Software element complexity appears to be a point to include
in the computation of progress of a software reverse engineer-
ing process.

V. FURTHER WORK

As further work, we planned to finish first the implementa-
tion of this progress metric. The next step will be to test this
metric on a real life project. This project has to be reverse
engineering of a large software system in order to validate
the scalability of the marking process. We tried to take into
account that marking can be a fastidious task and added a
spreading action. However, we do not know if this action will
really ease the process on a large software.

The equation 1 does not consider complexity of an entity.
Such an information is also relevant when computing project
progress. Treating a complex entity should be more valuable
for the progress than treating a simple one. For example,
an accessor method has not same complexity as a method
that implement an algorithm then they should weight the
same in the progress metric. Complexity can be a concrete
complexity (e.g. cyclomatic) or a combination of two or more
complexities. We tried to refine equation 1 to consider what
we call hierarchical complexity, explained below the equation
2.

p(P) =

∑n
i=1(Bei + Tei) ∗ si

2 ∗
∑n

i=1 si
(2)

where ∀i ∈ [|1;n|], si is the value of the entity i. 1

Then the value of an entity derives from the amount of
hierarchical level directly beneath it plus one as depicted in
figure 2. Element A has two containments level beneath it so
its value is 3. Element A1, A2.1 and A2.2 do not contain any
element so their value is 1. Element A2 has only one level of
containment thus it has a value of 2.

Fig. 2. Value of a software entity

This implementation defines si as a hierarchical complexity
value and will weight the project progress metric. As stated
previously, the complexity metric that defines si can be
any kind of complexity metric, even a mix between several
complexity metric. We did not define yet the granularity of
our containment graph. This is a task to be done next, in order
to define more clearly the granularity of the progress metric.
Adding a weight related to the complexity of an entity is a
way to have a more accurate progress metric.

To conclude, we have proposed an early idea of a solu-
tion for the issue of following a RE project progress. This
solution considers two kinds of entity marking, Be (browse
marking) and Te (treat marking), for computing the progress.
An equation of a RE project progress has been written with
the two kinds of entity marking as variables. Since we are
currently acting on a RE project, we focused our solution on
it. Nonetheless, we truly believe this solution can be used in
any kind of hierarchical projects. Some further works have
been planned to first test the marking process, then the project
progress metric, and finally to improve the accuracy of the
project metric.

REFERENCES

[1] J. M. Wilson, “Gantt charts: A centenary appreciation,” European Journal
of Operational Research, vol. 149, no. 2, pp. 430–437, 2003.

1Equation 1 is a specific case of equation 2 were ∀i, si = 1

[2] S. Ducasse and D. Pollet, “Software architecture reconstruction:
A process-oriented taxonomy,” IEEE Transactions on Software
Engineering, vol. 35, no. 4, pp. 573–591, Jul. 2009.
[Online]. Available: http://rmod.lille.inria.fr/archives/papers/Duca09c-
TSE-SOAArchitectureExtraction.pdf

[3] P. Rook, “Controlling software projects,” Software Engineering Journal,
vol. 1, no. 1, p. 7, 1986.

[4] S. Mathur and S. Malik, “Advancements in the v-model,” International
Journal of Computer Applications, vol. 1, no. 12, 2010.

[5] J. Wateridge, “How can is/it projects be measured for success,” Interna-
tional journal of project management, vol. 16, no. 1, pp. 59–63, 1998.

[6] R. B. Grady, “Successfully applying software metrics,” Computer, vol. 27,
no. 9, pp. 18–25, 1994.

[7] N. Fenton and J. Bieman, Software metrics: a rigorous and practical
approach. CRC Press, 2014.

[8] D. P. Darcy, C. F. Kemerer, S. Slaughter, J. E. Tomayko et al., “The struc-
tural complexity of software an experimental test,” Software Engineering,
IEEE Transactions on, vol. 31, no. 11, pp. 982–995, 2005.

