
Reverse Engineering Tool Requirements for Real Time

Embedded Systems

Brice Govin 1,2

Arnaud Monegier du Sorbier 1
Nicolas Anquetil2, Anne Etien2,

Stéphane Ducasse2

1THALES AIR SYSTEMS,
Parc tertiaire SILIC,

3 Avenue Charles Lindberg 94628 Rungis Cedex

2RMod team, Inria Lille Nord Europe,
University Lille 1, CRIStAL, UMR 9189,

59650 Villeneuve d’Ascq, France

Abstract

For more than three decades, reverse engineering has been a major issue
in industry wanting to capitalise on legacy systems. Lots of companies
have developed reverse engineering tools in order to help developers
in their work. However, those tools have been focusing on traditional
information systems. Working on a time critical embedded system we
found that the solutions available focus either on software behaviour
structuring or on data extraction from the system. None of them seem
to be clearly using both approaches in a complementary way. In this
paper, based on our industrial experiment, we list the requirements that
such a tool should fulfil. We also present a short overview of existing
reverse engineering tools and their features.

1 Introduction

During their lifetime, systems face constant evolution, for example to fulfil new requirements. To keep useful
they have to be maintained. However, maintenance requires a deep understanding of the systems that can be
obtained for example using reverse engineering techniques. Some systems are data oriented and are mostly
developed using object oriented paradigm. Other systems are behaviour oriented and are typically programmed
using procedural paradigm. In this paper, we will focus on this second type of system and more precisely on
real-time critical embedded ones.

These systems have specific constraints and characteristics. They are behaviour oriented in order to answer to
time requirements, real time and hardware constraints. Data on the contrary were often not structured following
domain abstractions, but rather to attend the needs of one functionality or the other. A domain abstraction of
the data is nevertheless required to understand and document fully the system.

We tried traditional reverse engineering tools available on the market or in academia on several industrial real
time critical embedded systems. However, they are mostly based on structure recovery in the object-oriented
paradigm and do not fit in our cases. This paper aims to highlight features that a tool should provide to reverse
engineer real time embedded systems.

The next section (§2) presents the features required by a reverse engineering tool dedicated to real time
critical embedded systems. Section §3 reviews several existing reverse engineering tool in the light of these
needed features. Section §4 draws some conclusions and presents future work.

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.

In: A. Editor, B. Coeditor (eds.): Proceedings of the XYZ Workshop, Location, Country, DD-MMM-YYYY, published at
http://ceur-ws.org

1



2 Features for a reverse engineering tool

From a review of literature and based on our experience reverse engineering critical systems with existing tools
we identify some features that a reverse engineering tool should provide to fit behavioural systems specificities.

Ducasse and Pollet provide a state of the art on software architecture reconstruction [DP09]. They propose
to classify approaches according to five criteria: goal, process, input, technique, and output. Based on these
criteria, we identify the following features.

Process: Ducasse and Pollet state that “because hybrid processes reconcile the conceptual and concrete
architectures, they are frequently used to stop architectural erosion”. This process seems to fit better the case
of reverse engineering a live system to keep it evolving and a tool should support that.

Output: It is important to keep in mind that despite the goal of extracting an abstract understanding of the
system, the source code remains the main manipulated artefact. Thus, reverse engineering tools must provide
source code visualisation like in a text editor.

According to [DP09], a lot of existing approaches provide graphical representation of system views. This is
very common in software engineering at large. Thus, some graphical visualisation capability seems essential for
any reverse engineering tool.

Input: The physical organisation of the system (that we call concrete code structure) corresponds to the
organisation on the disk in term of files and folders as well as grammatical structure from the programming
language. It often reveals structural information and a tool should be able to represent this information, map it
to the source code and manipulate it.

In parallel with this, we consider a concrete data structure. It corresponds to the data structure extraction
defined in [HHH+00]. Data is a very important aspect of any software system. Real time, embedded, systems will
typically not offer data structures easily mappable to domain concepts because the data are typically implemented
so as to facilitate the implementation of the behaviour.

Human expertise specifying a conceptual architecture is very helpful when it is available [DP09]. This logical
structuring of the system can be completely different from the concrete code structuring. We call this the abstract
code structure and again should be represented, mapped to the system and manipulable. Due to the type of
system we target, this structure is typically behavioural oriented.

Similarly, we consider an abstract data structure. It is similar to the data structure conceptualisation specified
in [HHH+00], and aims to define data structure in abstract terms, typically closer to domain concepts.

Dependency analysis aims to analyse dependencies either between data (e.g. sub-typing, reference) or between
behavioural entities (e.g. invocation).

The five previous features focus on a single type of artefact either data or behaviour. However, data are
manipulated by the behaviour e.g. through arguments in method invocations and as stated earlier, it is important
to be able to consider data and behaviour in a complementary way. Data/behaviour relationships provider aims
to highlight these relationships.

Techniques: Manipulating code either directly or through abstraction requires to be able to retrieve a given
element by reference or by querying the representation. Therefore a search feature is needed.

Output: In the conformance output, [DP09] classify the ability to specify conformance rules and to validate
them. These rules can be relative to either data, behaviour or both. A reverse engineering tool should therefore
have a rule creator and checker.

Goal: In order to target the co-evolution goal, implementation and abstract representation that evolve at
different speeds should be synchronised [DP09]. A tool should offer the possibility to implementation an abstract
structure by modifying directly the source code according to changes made at higher abstraction level.

Finally it seems desirable that the tool be open to user extension and give its users the ability to personalise
the tool for example by creating their own queries or visualisation and not only used the provided ones. Another
example would be to allow the users to connect the reverse engineering tool to any other that they already use.

3 Reverse Engineering Tools

In this section, we look for the features previously defined on several tools available on the industrial market
or in academy: Understand [Sci], Agility [Agi] , CodeCase [Cod] are industrial tools, Rigi [SWM97] is an
academic tool and Moose [DLT00] is a meta-tool. Each of them provides code extractor for non object-oriented
languages. However, the industrial tools focus on data and are relatively limited concerning behavioural and so
also concerning data/behaviour relationship. The two academic tools are more generic, they can be adapted to
focus on behaviour. Table 1 lists the features we found in each tool.

2



Table 1: Comparison of a few reverse engineering tools. (Agil=Agility, CC=CodeCase, Und=Understand) (“v”
means that the tool provides the feature, “∼” that the tool can be adapted to provide the feature and a blank
cell that the feature is not provided. “BU” stands for “bottom up”.)

Features Agil. CC Und. Moose Rigi
Process choice BU BU BU BU BU
Source code visualisation v v v ∼ ∼
Graphical visualisation v v v v v
Concrete code structure v v v v v
Concrete data structure ∼ ∼ ∼
Abstract code structure
Abstract data structure
Dependency analysis v v v v v
Data/beh. relationships provider v v v v v
Search v v v v v
Rule creator and checker
Implementation of abstract structure
Open to user extension v v

4 Conclusion and future work

Based on literature review and our experience in reverse engineering real, industrial, time critical, embedded
systems, we identified required features for a reverse engineering tool dedicated to this type of system. The
defined features concern a system’s behaviour, data and the relationship between them. They also correspond
to different abstract representation of the code and the way to either view it or query it. Each of these features
should be mapped directly or indirectly to the code, since in the end, it remains the main artefact.

Existing industrial and academic tools are then evaluated according to these features. Even if each of these
tools provide code extractor for non object oriented languages, none of them provides all features. Our future
work is to develop a more complete reverse engineering tool dedicated to real time systems. For this purpose,
we will base our work on existing techniques deployed in software architecture reconstruction or in data reverse
engineering.

References

[Agi] Obeo Agility. http://www.obeo.fr/fr/produits/obeo-agility.

[Cod] CodeCase. http://codecasesoftware.com/offers-expertise/transformation.html.

[DLT00] Stéphane Ducasse, Michele Lanza, and Sander Tichelaar. Moose: an extensible language-independent
environment for reengineering object-oriented systems. In Proceedings of the Second International
Symposium on Constructing Software Engineering Tools (CoSET 2000), volume 4, 2000.

[DP09] Stéphane Ducasse and Damien Pollet. Software architecture reconstruction: A process-oriented tax-
onomy. Software Engineering, IEEE Transactions on, 35(4):573–591, 2009.

[HHH+00] Jean-Luc Hainaut, Jean Henrard, Jean-Marc Hick, Didier Roland, and Vincent Englebert. The nature
of data reverse engineering. In Proc. of Data Reverse Engineering Workshop (DRE), pages 1–10, 2000.

[Sci] SciTools. https://scitools.com/.

[SWM97] Margaret-Anne D Storey, Kenny Wong, and Hausi A Müller. Rigi: a visualization environment for
reverse engineering. In Proceedings of the 19th international conference on Software engineering,
pages 606–607. ACM, 1997.

3


