Using Concept Analysis to Detect Co-Change Patterns

In Proceedings of International Workshop on Principles of Software Evolution (IWPSE 2007)

Tudor Girba
Software Composition Group
University of Bern

Radu Marinescu
LOOSE Research Group
Technical University of Timigoara

ABSTRACT

Software systems need to change over time to cope with new
requirements, and due to design decisions, the changes hap-
pen to crosscut the system’s structure. Understanding how
changes appear in the system can reveal hidden dependen-
cies between different entities of the system. We propose
the usage of concept analysis to identify groups of entities
that change in the same way and in the same time. We
apply our approach at different levels of abstraction (i.e.,
method, class, package) and we detect fine grained changes
(i.e., statements were added in a class, but no method was
added there). Concept analysis is a technique that identi-
fies entities that have the same properties, but it requires
manual inspection due to the large number of candidates it
detects. We propose a heuristic that dramatically eliminate
the false positives. We apply our approach on two case stud-
ies and we show how we can identify hidden dependencies
and detect bad smells.

Keywords: co-change analysis, concept analysis, evolu-
tion analysis

1. INTRODUCTION

Software systems need to change over time to cope with
the new requirements [14]. However, as requirements hap-
pen to crosscut the system’s structure, changes will have to
be made in multiple places.

Research has been carried out to detect and interpret
groups of software entities that change together. These co-
change relationships have been used for different purposes:
to identify hidden architectural dependencies [6], to point
developers to possible places that need change [21], or to
use them as change predictors [11].

The detection is mostly based on mining versioning sys-
tems like CVS and in identifying pairs of changed enti-
ties. Entities are usually files and the change is determined
through observing additions or deletions of lines of code.
Also, changes are interpreted between pairs of entities.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

IWPSE’07 September 3-4, 2007, Dubrovnik, Croatia

Copyright 2007 ACM 978-1-59593-722-3/07/09 ...$5.00.

Stéphane Ducasse
LISTIC
University of Savoie

Adrian Kuhn
Software Composition Group
University of Bern

Ratiu Daniel
Institute for Informatics
Technical University of MUnchen

In this paper, we propose a different approach, and we
focus on identifying patterns of change that affect several
entities in the same time. For this we use formal concept
analysis [8]. Formal concept analysis is a technique that
identifies sets of elements with common properties based
on a given matrix that specifies the elements on the rows,
properties on columns and the value of a field (i, j) is marked
as true if the element 4 has property j.

To identify how entities changed in the same way, we use
historical measurements to detect changes between two ver-
sions. For each history we identity each version in which a
certain change condition is met. To use formal concept anal-
ysis, we use histories as elements, and “changed in version
j’represents the jth property of the element.

Furthermore, for building the matrix of changes, we make
use of logical expressions which combine properties with
thresholds and which run on two versions of the system
to detect interesting entities. In this way, we can detect
changes that take into account several properties.

Example. ShotgunSurgery appears when every time we
have to change a class, we also have to change a number
of other classes [5]. We would suspect a group of classes of
such a bad smell, when they repeatedly keep their external
behavior constant and change the implementation. We can
detect this kind of change in a class in the versions in which
the number of methods did not change, while the number of
statements changed.

One problem of concept analysis lies in the large number of
results raised. To improve the precision of the detection we
also propose a novel heuristic to filter out unwanted results.

Our approach can be applied at any level of abstraction.
In this paper we propose several detections for packages,
classes and methods. We provide evidence from initial ex-
periments and a discussion of the approach based on several
case studies.

Structure of the Paper. In the next section we briefly
define two generic historical measurements. We describe
Formal Concept Analysis in a nutshell in Section 3. We
show how we use FCA to detect co-change patterns, and we
show how we apply it on different levels of abstractions (Sec-
tion 4). We discuss the results we obtained when applying
our approach on a large open source case study (Section 6).
In Section 9 we conclude and present the future work.

Incidence Table

properties

Pl P2 P3 P4 P5 P6

Concept Latice

{all elem}
{no prop}
N\
{A, D, B} {A, E, C, D}

{P2} {P6}

/N / N\

{D, B}
(P2, P4}

{A, D}
{P2, P6}

{A,E, C}
{P5, P6}

l

/

P

a binary relation between the
X element on the row and the property
on the column

A X X X
B X X
[Z]
5
£ c X X X FCA
® D X X X
E X X
Legend:

{D} {A} {Cy
{P2 P4,P6} | | {P2,P5,P6} | | {P3,P5,P6}

~ | -

{no elem}
{all prop}

Legend:

a concept representing X
and Y having in common
property P1 and P2

{X, Y}
{P1, P2}

Figure 1: Example of applying formal concept analysis: the concepts on the right are obtained based on the

incidence table on the left.

2. HISTORY MEASUREMENTS

Our approach is built on top of the Hismo meta-model
[9, 10]. Hismo explicitly models history as a sequence of
versions. We can have different types of histories based on
the types of entities present in the structural meta-model
(e.g., PackageHistory, ClassHistory or MethodHistory).

To characterize how a version changed with respect to the
previous one within a history, we can define several generic
measurements. In this paper we use two generic histori-
cal measurements to distinguish between different types of
changes.

Addition of a Version Property (A). We define a generic
measurement, called addition of a version property P, as the
addition of that property between version ¢ — 1 and i of the
history H:

H H
Pi _Pifl’

pH _ pH
(i>1) A{f(P):{O iy~ L2 0

Evolution of a Version Property (E). We define a generic
measurement, called evolution of a version property P, as
being the absolute difference of that property between ver-
sion ¢ — 1 and ¢:

(i>1) EzH(P):‘PiH_Pﬁﬂ (2)

We instantiate the above mentioned measurements by ap-
plying them on different version properties of different types
of entities. For example, to identify if methods are added to
a class, we will use NOM (number of methods) as P.

In this paper we make use of the several measurements:

e Method: NOS (number of statements), CYCLO (MC-
Cabe cyclomatic number [16]).

e Class: NOM (number of methods), WNOC (number
of all subclasses).

e Package: NOCIs (number of classes), NOM (number
of methods).

The E measurement shows a change of a certain property,
while the A measurement shows the additions of a certain
version property.

3. CONCEPT ANALYSIS IN A NUTSHELL

Formal concept analysis is a technique that identifies mean-
ingful groupings of elements that have common properties
[8]. As an input, the technique requires a context that spec-
ifies a set of elements, a set of properties and a set of binary
relationships between them.

Figure 1 gives a schematic example of the technique. The
input is specified in the form of a so called incidence table
which encodes binary relations between the set of elements
and the set of properties. In our example, element A has
three properties: P2, P5 and P6.

The output is a lattice of concepts, where each concept is
a tuple of a set of elements and a set of common properties.
The top concept in the lattice is the concept with all ele-
ments and no property. The more we move downwards the
lattice the less elements and more properties we have, un-
til we get to the bottom concept which contains no element
and all properties. For example, elements A and D have two
properties in common: P2 and P6.

Formal concept analysis is a generic technique working
with elements and properties in general. To apply it in a
particular context we need to map our interests on the ele-
ments and properties.

Incidence Table

(2] [o] [a] [] [] [€]
[+] [s1 [s] [e] [€]

(] [o] [s] [s] [e] [<]
[[o] (] [e] [e] [€]
; [e] [s1 [e] [£]

—1—2—=3—4—-5—06 —Pp
versions

>

O

o

FCA

Legend:

a class version with x methods
a class version in which the number

of methods changed from the

previous version

Concept Latice

{all hist}
{no ver}
N\
{A, D, B} {A, E, C, D}
{v2} {v6}
/. N/ N\
{D, B} {A, D} {A,E, C}
{v2, v4} {v2, v6} {v5, v6}
[|
{B} {A} {C}
{v2, v4, v6} {v2, v5, v6} {v3, v5, v6}
~ [~
{no hist}
{all ver}
Legend:
XY} a c&)gceﬁt represtenti?rg X
’ and Y changing together
{1, v2} in version v% a?]d \?2

Figure 2: Example of applying concept analysis to group class histories based on the changes in number of
methods. The Evolution Matrix on the left forms the incidence table where the property P; of element X is

given by “history X changed in version ¢.”

4. USING CONCEPT ANALYSIS
TO IDENTIFY CO-CHANGE PATTERNS

We apply formal concept analysis to detect co-change pat-
terns. For this, we need to define elements, properties and
the binary relationships between them: As elements we con-
sider histories, and as a property we consider the predicate
“changed in version j”. Thus, a history has property j if the
corresponding history has changed in version j.

We depict in Figure 2 an exemplification of the approach.
To the left, instead of a table, we use the notation of an Evo-
lution Matrix [13] in which each square represents a class
version and the number inside a square represents the num-
ber of methods in that particular class version. A grayed
square shows a change in the number of methods of a class
version as compared with the previous version (E;(NOM)
> 0).

We use the matrix as an incidence table, where the histo-
ries are the elements and the properties are given by “changed
in version j”. Based on such a matrix we can build a con-
cept lattice. To the right side of figure we show the concept
lattice obtained from the Evolution Matrix on the left.

Each concept in the lattice represents all the class histories
which changed certain properties together in those particu-
lar versions. In the given example, class history A and D
changed their number of methods in version 2 and version
6.

To identify a change we want to be able to take into ac-
count several properties, and not only one. For example, to
detect parallel inheritances it is enough to just look at the
number of children of classes; but, when we want to look for
classes which need to change the internals of the methods

in the same time without adding any new functionality, we
need to look for classes which change their size, but not the
number of methods.

We encode this change detection in expressions consisting
of logical combination of historical measurements. These
expressions are applied at every version. In the example
from Figure 2, we used as expression E;(NOM) > 0 and we
applied it on class histories.

4.1 Improving the detection precision

The lattice obtained from applying concept analysis can
reveal many concepts, and from these only a small fraction
are useful patterns, thus just considering all concepts reveals
a low precision.

One reason for having many concepts is due to entities
that have too many properties. One rule of thumb when
applying concept analysis is to filter out from the table the
elements that have all properties, given that they will ap-
pear in all concepts. However, when an element has almost
all possible properties it will still appear in most of the con-
cepts, thus not being necessarily relevant for a particular
pattern.

We propose a novel heuristic to deal with this problem.
Our goal is to detect patterns that document how a change
to one entity should imply changes to other entities. Thus,
we eliminate from a concept the entities that change in much
more versions than in the concept (where “much more” is
specified by a threshold value), because there is not neces-
sarily a cause and effect link between this particular entity
and the rest of the entities in the concept:

conceptVersions
FilteringRule : d

- > threshold (3)
totalChangedV ersions

Example. Suppose we have four entities A,B,C,D, where A
and B changed in P2,P3,P4,P5 P6 and C and D changed in
P5 and P6. In this case, we will have a concept ({A,B,C,D}
{P5,P6}). However, A and B change in much more versions
than C and D, and hence their change is not necessarily tied
to the changed in C and D. Thus, we remove them from the
concept.

After stripping the concepts of irrelevant entities, we re-
move all concepts that contain less than two entities, because
“co-change” implies at least two entities.

5. CO-CHANGE PATTERNS

In the following sections we propose several expressions to
detect co-change patterns at different levels of abstractions:
methods, classes and packages.

5.1 Method Histories Patterns

Parallel Complexity. A set of methods are effected by
Parallel Complexity when a change in the complexity in one
method involves changes in the complexity of other meth-
ods. As a measure of complexity we used the McCabe cyclo-
matic number which indicates the number of different paths
through a method. Classes with parallel complexity could
reveal parallel conditionals.

ParallelComplexity : (AZ (CYCLO) > 0) (4)

Dispersed logic. When methods change, but they do not
add in complexity, the change is merely a modification of
the current execution flow. This type of change can also be
a hint of a bug fix.

Furthermore, when more such changes are spread over
several methods, we can relate those methods as being part
of the same logic. We name such a pattern Dispersed logic,
and its presence might give indications of similar implemen-
tation which could be factored out. As an implementation
measure we used number of statements:

DispersedLogic : (EF (NOS) > 0) A EF(CYCLO) =0) (5)

5.2 Class Histories Patterns

Shotgun Surgery. The Shotgun Surgery bad-smell is en-
countered when a change operated in a class involves a lot of
small changes to a lot of different classes [5]. To detect such
a bad smell, we identify classes which do not change their
interface (their number of methods remain constant), but
change their implementation (their number of statements
changes).

ShotgunSurgery : (EE(NOM) = 0A EE(NOS) > 0) (6)

Parallel Inheritance. Parallel Inheritance is detected in
the classes which change their number of children together
[5]. Such a characteristic is not necessary a bad smell, but
gives indications of a hidden link between two hierarchies.

For example, if we detect a main hierarchy and a test
hierarchy as being parallel, it gives us indication that the
tests were developed in parallel with the code.

ParallelInheritance : (AF (WNOC) > 0) (7)

Parallel Semantics. Methods specify the semantics of a
class. With Parallel Semantics we detect classes which add
methods in parallel. Such a characteristic could reveal hid-
den dependencies between classes.

For example, in test driven development, for each use-case
we can have a test method. In these cases, we will detect test
classes and system classes as being linked through parallel
semantics.

ParallelSemantics : (A (NOM) > 0) (8)

5.3 Package Histories Patterns

Package Parallel Semantics. If a group of classes is de-
tected, as having parallel semantics, we would want to relate
the containing packages as well. Package Parallel Semantics
detects packages in which some methods have been added,
but no classes have been added or removed.

PackageParallelSemantics : (EF(NOCls) = 0) A
(Af(NOM) > 0) 9)

6. EXPERIMENTS

We have implemented our approach based on the Hismo
meta-model [10] and as part of the Moose infrastructure [17].
We performed initial experiments using our approach. We
applied it to two case studies and we report here some of
the findings (see Table 1).

6.1 Parallel Inheritance in JBoss

The first case study consists of 41 versions of JBoss'.
JBoss is an open source J2EE application server written
in Java. The versions we selected for the experiments are
at two weeks distance from one another starting from the
beginning of 2001 until the end of 2002. The first version
has 632 classes, the last one has 4276 classes (we took into
consideration all test classes, interfaces and inner classes).

!See http://www. jboss.org.

System Language Versions First Version Last Version

JBoss Java 41 40 kLOC 281 kKLOC
632 classes 4276 classes

ArgoUML Java 18 75 kLOC 95 kLOC

1047 classes 1587 classes

Table 1: Characteristics of the case studies.

Due to limited information in the parsed models, we were
only able to perform experiments on parallel inheritance on
this case study.

Applying the parallel inheritance detection without any
filtering, reveals 68 concepts of class histories which added
subclasses in the same time. Manual inspection showed
there were a lot of repetitions (due to the way the concept
lattice is built), and just a limited number of groups were
useful.

For example, in 19 versions a class was added in the
JBossTestCase hierarchy (JBossTestCase is the root of the JBoss
test cases). Another example is ServiceMBeanSupport which
is the root of the largest hierarchy of JBoss. In this hier-
archy, classes were added in 18 versions. That means that
both JBossTestCase and ServiceMBeanSupport were present in
a large number of concepts, but they were not necessarily
related to the other classes in these concepts.

These results showed that applying only concept analysis
produced too many false positives. That is why we added a
filtering step as described in Section 4.1.

For example, if JBossTestCase was part of a group of classes
which changed their number of subclasses in 10 versions, we
would rule the class out of the group. We chose an aggressive
threshold (0.75) to reduce the number of false positives as
much as possible, in the detriment of having true negatives.

After the filtering step, we obtained just two groups. In
Table 2 we show the class histories and the versions in which
they changed the number of children.

Class histories Versions

org::jboss::system::ServiceMBeanSupport 24 27 28 29

org::jboss::test::JBossTestCase 30 32 33 34
37 38 39 40
41 19 20

javax::ejb::EJBLocalHome 24 41 28 30

javax::ejb::EJBLocalObject 32 36 37 38
23

Table 2: Parallel Inheritance in JBoss

In the first group we have two classes which changed
their number of children 15 times: ServiceMBeanSupport and
JBossTestCase. The interpretation of this group is that the
largest hierarchy in JBoss is highly tested.

The second group detects a relationship between the EJB
interfaces: EJBLocalHome and EJBLocalObject. This is due to
the architecture of EJB which requires that a bean has to
have a Home and an Object component.

6.2 Patterns in ArgoUML

The second case study consists of 18 versions of ArgoUML,
a UML case tool written in Java. We selected versions 3
months distant, starting with the beginning of 2003 until
May 2007.

We have applied all the proposed detections on the Ar-
goUML case study. We list some of the findings: in Table 3
we show the class histories that are linked through Parallel
Inheritance, in Table 4 we show Parallel Semantics in dif-
ferent class histories, and in Table 5 we show the Method
Histories that have increased their complexity in the same
time. At this point we have performed no manual validation
of the detected patterns.

Class histories Vers.
application.events. ArgoNotationEventListener 5 8 10
kernel.DelayedVChangeListener 18 14 3
org::argouml::ui::TabTarget 15 79
12
application.events. ArgoNotationEventListener 5 8 10

ui.targetmanager.TargetListener 18 14

kernel.Delayed VChangeListener 1579
11 12
16

Table 3: Parallel Inheritance in ArgoUML

Class histories Vers.
uml.diagram.static_structure.ui. UMLClassDiagram 218 14
uml.diagram.ui.UMLDiagram 12 8 3
119
uml.diagram.deployment.ui.FigMNode 14129
uml.diagram.deployment.ui.FigComponent
uml.diagram.state.ui.FigState 1312 8

uml.diagram.state.ui.FigTransition 3

uml.diagram.ui.FigEdgeModelElement 10 17 5
uml.diagram.ui.FigNodeModelElement 74152
14 12 8
3
persistence.ZargoFilePersister 16 10
persistence.ModelMemberFilePersister 17
uml.ui.foundation.core.PropPanelClassifier 283
uml.ui. UMLMutableLinkedList
uml.diagram.deployment.ui.FigMNodelnstance 13 14
uml.diagram.deployment.ui.FigObject 12

uml.diagram.collaboration.ui. UMLCollaborationDiagram2 18 12
uml.diagram.deployment.ui.UMLDeploymentDiagram 9
uml.diagram.use_case.ui.UMLUseCaseDiagram

uml.diagram.ui.FigAttributesCompartment 13 15
uml.diagram.ui.FigOperationsCompartment 11

Table 4: Parallel Semantics in ArgoUML

7. DISCUSSION

On modeling history as first class entity. Having his-
tory as a first class entity, allowed a straight forward map-
ping to the elements of the incidence table. To identify the

Method histories Vers.

FigComponentInstance.setEnclosingFig(Fig) 810 17
FigComponent.setEnclosingFig(Fig)
FigMNodelnstance.setEnclosingFig(Fig)
ModelFacade.getName(Object) 4579

FigNodeModelElement.setEnclosingFig(Fig)

Table 5: Parallel Complexity in ArgoUML

xth property, we computed for the xth version the expres-
sion detecting the change. Having historical properties made
it easy to encode the expressions. Below we give the OCL
code expressed on Hismo for the ShotgunSurgery expression
defined for a ClassVersion:

context ClassVersion

-- returns true if the the number of methods did not change
-- and the number of statements changed
-- with respect to the previous version
derive hasShotgunSurgerySymptom:
self ENOM = 0) &
self.ENOS > 0)

On versions sampling. For detecting co-change patterns
the changes need to be identified within the same version.
However, in the case some of the patterns, like Parallel In-
heritance, it is not necessary to have the changes exactly in
the same version. Thus, the granularity of versions plays
an important role in the detection. One possible solution
is, given a sum of available versions, to automatically per-
form the detection by with different versions samplings (e.g.,
every second or every third version).

On the filtering algorithm. To improve the precision of
concept analysis, we employ a filtering algorithm to remove
false positives. According to our algorithm the effective-
ness of the approach is highly affected by the value of the
threshold. When the threshold is high (i.e., close to 1) we
aggressively remove the false positives but we risk missing
true negatives. Further work is required to identify the best
value for the threshold.

8. RELATED WORK

The first work to study the entities that change in the
same time was performed by Gall et al. [6]. The authors
used the co-change information to define a proximity mea-
surement which they use to cluster related files. The work
has been followed up by the same authors [7] and by Itko et
al. [12]. Bouktif et al. improved the co-change detection by
using dynamic-time warping [1]. Shirabad et al. looked at
the same information and employed machine learning tech-
niques to detect files which are likely to need to be changed
when a particular file is changed [18].

These approaches place the analysis at the file level. As
opposed to these previous approaches, Zimmerman et al.
placed their analysis at the level of classes and methods [21,
22]. Their focus was to provide a mechanism to warn devel-
opers that: “Programmers who changed these functions also
changed ...”. Their approach differs from ours because they

only look at syntactic changes, while we identify changes
based on the semantics of the changes. Furthermore, our ap-
proach takes into consideration several changes in the same
time.

Breu and Zimmermann also took the semantics of changes
into account when they devised an approach to identify as-
pects [2]. In particular they looked at additions of the same
method calls in multiple places and in the same versions to
identify candidates for aspects. Their goal is different than
ours, as we aim at identifying patterns by detecting repeti-
tive changes.

Part of the patterns we detect are signs of design flaws
(e.g., Shotgun Surgery). Detection of problems in the source
code structure has long been a main issue in the quality as-
surance community. Marinescu [15] detected design flaws by
defining detection strategies. Ciupke employed queries usu-
ally implemented in Prolog to detect “critical design frag-
ments” [3]. Tourwe et al. also explored the use of logic
programming to detect design flaws [19].

van Emden and Moonen detected bad smells by looking
at code patterns [20]. These approaches differ from ours
because they use only the last version of the code, while we
take into account historical information. Furthermore, van
Emden and Moonen proposed as future research the usage of
historical information to detect Shotgun Surgery or Parallel
Inheritance. In a position paper, Davey and Burd proposed
the usage of concept analysis to detect such evolutionary
concepts [4].

9. CONCLUSIONS

Understanding how a system changes can reveal hidden
dependencies between different parts of the system. More-
over, such dependencies might reveal bad smells in the de-
sign.

Analyzing the history of software systems can reveal parts
of the system that change in the same time and in the same
way. We proposed the usage of formal concept analysis, a
technique that identifies elements with common properties
based on an incidence table specifying binary relations be-
tween elements and properties.

To detect the changes in a version, we used expressions
that combine different properties to detect complex changes.
By applying these queries on every version we obtained an
Evolution Matrix annotated with the change information
which we then used as input for a concept analysis machine.
In other words, we used as elements histories and as prop-
erties we used the knowledge of “changed in version i”. The
results were groups of histories that change together and the
versions in which they changed.

An important contribution of our approach is given by
the heuristic to automatically filter the raw results of the
concept analysis machine: a history is relevant to a concept,
if it was not changed in many more versions than the ones
in the concept.

‘We have started to use our approach on several case stud-
ies and we reported here some of the results of the initial
experiments. In the future we plan to apply our approach
on more case studies and analyze in depth the results we ob-
tain at different levels of abstraction. One particular focus
of the future experiments will be the impact of the threshold
of the filtering algorithm on precision and recall.

Acknowledgments.

Girba, Kuhn and Marinescu grate-

fully acknowledge the financial support of the Swiss National
Science Foundation for the project “NOREX — Network of
Reengineering Expertise” (SNF Project IB7320-110997).

10.

[1]

[10]

[11]

[12]

[13]

[14]

REFERENCES
S. Bouktif, Y.-G. Gueheneuc, and G. Antoniol.
Extracting change-patterns from cvs repositories. In
Proceedings of the 13th Working Conference on
Reverse Engineering (WCRE 2006), pages 221-230,
2006.
S. Breu and T. Zimmermann. Mining aspects from
version history. In Proceedings of the 21st IEEE
International Conference on Automated Software
Engineering (ASE’06), pages 221-230, Washington,
DC, USA, 2006. IEEE Computer Society.
O. Ciupke. Automatic detection of design problems in
object-oriented reengineering. In Proceedings of
TOOLS 30 (USA), pages 18-32, 1999.
J. Davey and E. Burd. Clustering and concept
analysis for software evolution. In Proceedings of the
4th international Workshop on Principles of Software
Evolution (IWPSE 2001), pages 146-149, Vienna,
Austria, 2001.
M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts. Refactoring: Improving the Design of
Existing Code. Addison Wesley, 1999.
H. Gall, K. Hajek, and M. Jazayeri. Detection of
logical coupling based on product release history. In
Proceedings International Conference on Software
Maintenance (ICSM ’98), pages 190-198, Los
Alamitos CA, 1998. IEEE Computer Society Press.
H. Gall, M. Jazayeri, and J. Krajewski. CVS release
history data for detecting logical couplings. In
International Workshop on Principles of Software
Evolution (IWPSE 2003), pages 13—23, Los Alamitos
CA, 2003. IEEE Computer Society Press.
B. Ganter and R. Wille. Formal Concept Analysis:
Mathematical Foundations. Springer Verlag, 1999.
T. Girba. Modeling History to Understand Software
Evolution. PhD thesis, University of Berne, Berne,
Nov. 2005.
T. Girba and S. Ducasse. Modeling history to analyze
software evolution. Journal of Software Maintenance:
Research and Practice (JSME), 18:207-236, 2006.
A. Hassan and R. Holt. Predicting change propagation
in software systems. In Proceedings 20th IEEE
International Conference on Software Maintenance
(ICSM’04), pages 284-293, Los Alamitos CA, Sept.
2004. IEEE Computer Society Press.
J. Itkonen, M. Hillebrand, and V. Lappalainen.
Application of relation analysis to a small Java
software. In Proceedings of the Conference on Software
Maintenance and Reengineering (CSMR 2004), pages
233-239, 2004.
M. Lanza and S. Ducasse. Understanding software
evolution using a combination of software visualization
and software metrics. In Proceedings of Langages et
Modéles a Objets (LMO’02), pages 135-149, Paris,
2002. Lavoisier.
M. Lehman and L. Belady. Program Evolution:
Processes of Software Change. London Academic

(15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

Press, London, 1985.

R. Marinescu. Measurement and Quality in
Object-Oriented Design. PhD thesis, Department of
Computer Science, Politehnica University of
Timisoara, 2002.

T. McCabe. A measure of complexity. IEEE
Transactions on Software Engineering, 2(4):308-320,
Dec. 1976.

O. Nierstrasz, S. Ducasse, and T. Girba. The story of
Moose: an agile reengineering environment. In
Proceedings of the European Software Engineering
Conference (ESEC/FSE 2005), pages 1-10, New York
NY, 2005. ACM Press. Invited paper.

J. S. Shirabad, T. C. Lethbridge, and S. Matwin.
Mining the maintenance history of a legacy software
system. In International Conference on Software
Maintenance (ICSM 2003), pages 95-104, 2003.

Tom Tourwé and T. Mens. Identifying refactoring
opportunities using logic meta programming. In Proc.
7th European Conf. Software Maintenance and
Re-engineering (CSMR 2003), pages 91-100. IEEE
Computer Society Press, Mar. 2003.

E. van Emden and L. Moonen. Java quality assurance
by detecting code smells. In Proc. 9th Working Conf.
Reverse Engineering, pages 97-107. IEEE Computer
Society Press, Oct. 2002.

T. Zimmermann, P. Weifigerber, S. Diehl, and

A. Zeller. Mining version histories to guide software
changes. In 26th International Conference on Software
Engineering (ICSE 2004), pages 563-572, Los
Alamitos CA, 2004. IEEE Computer Society Press.
T. Zimmermann, P. Weifigerber, S. Diehl, and

A. Zeller. Mining version histories to guide software
changes. IEEE Transactions on Software Engineering,
31(6):429-445, June 2005.

