
One-Method Commands: Linking Methods and Their Tests

Markus G̈alli
Oscar Nierstrasz

St́ephane Ducasse
Software Composition Group

University of Bern

E-mail:{gaelli,nierstrasz,ducasse }@iam.unibe.ch

Abstract

Although unit testing is essential for programming, current lan-
guages only barely support the developer in composing unit tests
into new ones or in navigating between unit tests and their corre-
sponding methods under test.

We have taken several Smalltalk programs and analyzed the re-
lationships between unit tests and methods under test, and the re-
lationships amongst unit tests. First results indicate that most unit
tests can be seen or at least decomposed into commands which fo-
cus on single methods, and that large portions of unit tests overlap
each other. But these relationships between unit tests and methods
under test are not reflected in current languages.

We therefore first conceptually extend the meta-model of Smalltalk
with one-method commandsso that unit tests become both com-
posable and navigable. Then we introduce a first lightweight im-
plementation of this meta model using method comments to differ-
entiate between the several test phases of existing XUnit test case
methods.

1. Introduction

In the popular unit test framework XUnit [4] the link between
the method under test and its unit tests is only established by means
of a naming convention. As a consequence a programmer looking
at a method cannot easily tell if it has any dedicated unit tests, and
can thus neither be sure of its quality nor navigate directly to a
dedicated testcase of this method.

We first motivate our position that typical XUnit tests indeed
focus on a single method or can be decomposed into ones which

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA2004 Vancouver, Canada
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

do so.
We then propose to conceptually enhance the meta model of

object-oriented languages by linking methods under test explicitly
to their corresponding tests. We also want to reflect this change in
the Class Browsers as seen in Figure 4.

We describe a lightweight implementation of this meta model
in which the different test phases like setup, execution and asser-
tion phase are annotated with method comments.

Another problem of XUnit is that test scenarios cannot always
be shared between different test cases: Although complex objects
typically are built out of simple ones, the XUnit tests of more com-
plex objects cannot naturally be built from test scenarios of the
simpler ones.

We have evidence that a relevant portion of executed methods
of different XUnit tests overlap [8] and thus many unit tests could
be simplified, be run in shorter time, and be better focused on pos-
sible errors. We therefore suggest to useone-method commands,
which in contrast to current unit tests, return a modified test object
to build more complex test scenarios.

2. Differences to existing approaches

Romain Robbes, while working on integrating SUnit into the
Smalltalk Browser [13], faced the problem of relating methods
under test to their test methods. In the first version of his tool,
he exploited the naming convention of SUnit to establish that re-
lation. Due to the fact that it is difficult to keep the naming con-
vention in sync or to establish it all in a consistent manner, in the
second version he just browses to all test cases, which directly
send the method. Eclipse [7] takes a similar approach using a
”Search�Referring Tests ” menu entry, which is not well inte-
grated in the user interface of Eclipse.

Every test can be seen as acommand[9], as is also stated in the
comment ofTestCase class of XUnit. [5]

Closest to our approach ofone-method commandsare instance
specific methods, which are methods that can be bound to specific
instances as their receivers. Matsumoto implemented Singleton
methods in Ruby [12], and Beck describes [2, 3] how and why
instance-specific methods can be added to Smalltalk. Our one-
method commands differ substantially from these instance specific
methods as one-method commands also provide explicit construc-

1

tors for creating the receivers and parameters of the method, and
thus are composable. (See Figure 3).

3. Developers write unit tests which overlap

If the quality assurance of factories worked like XUnit
Tests, every subcomponent would be thrown away af-
ter having been tested, making it impossible to reuse
the tested subcomponent in another component.

We have previously proposed a partial order of unit tests by
means ofcoverage sets— a unit test Acoversa unit test B, if the
set of method signatures invoked by A is a superset of the set of
method signatures invoked by B [8]. In the four case studies we
conducted, 75% of the unit tests were comparable to at least one
other unit test in terms of that partial order.

Figure 1. The coverage hierarchy of the Code
Crawler tests visualized with Code Crawler.

In Figure 1 an arrow from one test node to another indicates
that the firsttest node coversthe second. We see a typical coverage
hierarchy obtained in the first part of our experiment: Most of the
unit tests either covered or were covered by some other unit test
and only 5% to 16% of them were standalone nodes.

These results suggest that unit tests could be refactored into
composed one-method tests leading to lower testing time and more
compositional scenario construction. See also the composed bank
tests in the appendix as an example.

4. Using one-method commands

Some definitions:

• Command: Unit tests are commands: The command re-
ceiver in the case of a XUnit test case can be constructed
automatically,e.g.,MyTestCase selector: #myTestSelector.
The whole command then looks like this:
(MyTestCase selector: #myTestSelector) run

• One-method command: A one-method commandis a com-
mand that focuses on a single method.

• One-method test:A one-method testis a one-method com-
mand which tests the outcome of one occurrence of a method
under test.

Figure 2. One-method test suites, multi-facet
test suites and cascaded test-suites are de-
composable into one-method tests.

63% of 650 SUnit tests of the Squeak base system in version 3.7
[10] could be (manually) categorized asone-method commands.

Another 35% of the Squeak unit tests were of one of the kinds
depicted in Figure 2 and could be decomposed intoone-method
commands. Only 2% were not decomposable into one-method
tests as they tested existing properties of the system like subclass
relationships or talked about the program structure itself.

Benefits of being able to navigate between tests and methods
under test:

• There is no browser dichotomy, only one tool is needed to
programand test.

• Methods can be immediately seen in action.

• Tests serve as documentation for the methods.

• Better support for test-first programming.

• In principle it is then possible to test private methods as the
tests belong to the methods.

5. Enhancing the meta-model for unit tests

As a prerequisite for our meta model we make the following
observation:

The receiver or any parameter of a method under test is ei-
ther a value object or the result or side effect of a combination of
some other commands. These other commands always have a last
method called, so they could always be treated as a one-method
command of this last method called.

2

1...*
commands

CommandMethod

ValueObject

Integer FloatStringClass

value
 ^self subclassResponsibility

One-Method Command
name: String
projection: Integer = 1
value

1

*

method

one-method commands

...

value
 ^self

value
 |aReceiver someParameters aResult aResultArray |
 aReceiver:= self commands first value.
 someParameters:= self commands copyFrom: 2 to: self commands size) collect: [:each | each value].
 aResult:= aReceiver perform: self method parameters: someParameters.
 self assert: (...).
 ^((Array with: aResult with: aReceiver), someParameters) at: projection

Figure 3. A meta model extension for unit tests making them navigable and composable: Each method
knows its one-method commands. The receiver and parameters for new one-method commands
are created either with value objects (like integers, strings) or the result of existing one-method
commands.

We reflect this observation by the meta model depicted in Fig-
ure 3. We plan to implement this meta model in Squeak with the
following constraints in mind:

• It should be easy to convert existing XUnit tests to the new
model.

• The test cases should be readable and writable as whole
methods as they are now.

• The user interface (class browser) should reflect the com-
mon one-to-one relationship between methods under test
and test methods. (See Figure 4)

• There should not be any parallel hierarchy of test case classes.

As a first lightweight approach we establish this link by sepa-
rating the different test phases, namely the setup, the execution of
onemethod under test, the assertion and the cleaning up phase (see
Figure 2), by using method comments. (Figure 4). We can then
detect the methods under test by simply parsing the test case and
extracting the method called after the comment for test execution.

6. Discussion

One-method commands suggest the following lines of investi-
gation:

• Can a true test-first developer drag and drop the scenarios
for new methods out of existingone-method commandsor
value objects? Is it possible to offer the test-driven devel-
oper an interface like EToys [1], where only the name of a

new method has to be typed and the rest can be dragged and
dropped out of existing building blocks?

• Can such a test-driven development make static typing su-
perfluous or at least less important, as any concrete type of
both the receivers, parameters and result of method, which
has a dedicatedone-method commandcould be derived eas-
ily out of the command? It is no wonder that XUnit orig-
inates from the dynamically typed Smalltalk, since having
tests makes static typing less and less important. Testing
brings former apologists of statically typed languages also
to this conclusion. [11, 6]

• Can instance-specific methods be used for pre-computing
and caching the results of some common entries, thus speed-
ing up the process?

• Though one can easily find out how these tests are com-
posed, it is not so easy to automatically detect which method
they focus on. We will first investigate some heuristics how
this can be automatically detected, and then consider how
the connection could be made explicit.

Acknowledgments

We gratefully acknowledge the financial support of the Swiss
National Science Foundation for the projects “Tools and Tech-
niques for Decomposing and Composing Software” (SNF Project
No. 2000-067855.02, Oct. 2002 - Sept. 2004) and “RECAST:
Evolution of Object-Oriented Applications” (SNF Project No. 620-
066077, Sept. 2002 - Aug. 2006).

3

Figure 4. A Squeak class browser reflecting the new meta model using a fifth pane for the according
test of a method.

7. REFERENCES

[1] B.J. Allen-Conn and Kimberly Rose.Powerful Ideas in the
Classroom. Viewpoints Research Institute, Inc., 2003.

[2] Kent Beck. Instance specific behavior: Digitalk
implementation and the deep meaning of it all.Smalltalk
Report, 2(7), May 1993.

[3] Kent Beck. Instance specific behavior: How and Why.
Smalltalk Report, 2(7), May 1993.

[4] Kent Beck.Test Driven Development: By Example.
Addison-Wesley, 2003.

[5] Kent Beck and Erich Gamma. Test infected: Programmers
love writing tests.Java Report, 3(7):51–56, 1998.

[6] Bruce Eckel. Strong Typing vs. Strong Testing.
http://www.mindview.net/WebLog/log-0025.

[7] Eclipse Platform: Technical Overview, 2003.
http://www.eclipse.org/whitepapers/eclipse-overview.pdf.

[8] Markus G̈alli, Michele Lanza, Oscar Nierstrasz, and Roel
Wuyts. Ordering broken unit tests for focused debugging. In
20th International Conference on Software Maintenance
(ICSM 2004), pages 114–123, 2004.

[9] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides.Design Patterns: Elements of Reusable

Object-Oriented Software. Addison Wesley, Reading,
Mass., 1995.

[10] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and
Alan Kay. Back to the future: The story of Squeak, A
practical Smalltalk written in itself. InProceedings
OOPSLA ’97, pages 318–326. ACM Press, November 1997.

[11] Robert C. Martin. Are Dynamic Languages Going to
Replace Static Languages?
http://www.artima.com/weblogs/viewpost.jsp?thread=4639.

[12] Yukihiro Matsumoto.The Ruby Programming Language.
Addison Wesley Professional, 2002. To appear.

[13] Romain Robbes. Browse Unit: Integrating SUnit into the
Smalltalk Browser.
http://minnow.cc.gatech.edu/squeak/3113.

APPENDIX

We present some test cases of the canonical bank example which
have been refactored to introduce parsable testing comments and
to let them return the “interesting” resulting object. Note that we
store the test cases on the class side of the resulting object, as the
tests also serve as factories.

4

A smart testing tool would only execute

• Bank class�withdrawOkFrom123

• Bank class�withdrawTooMuchFrom123 and

• Bank class�deleteAccount123

as these test cases include all the others.

Bank class >> withAccount123
"creation of the receiver and parameters"
|aBank anAccountNumber|
aBank := Bank new.
anAccountNumber := 123.

"test execution"
aBank createAccount: anAccountNumber.

"assertions"
self assert: aBank accounts notEmpty.

"and return of the interesting object"
ˆaBank

Account class >> accountNumber123
"creation of the receiver and parameters"
|aBank anAccount|
aBank := Bank withAccount123.

"test execution"
anAccount:= aBank accountNumber: 123.

"assertions"
self assert: anAccount number = 123.
self assert: anAccount balance = 0.

"and return of the interesting object"
ˆanAccount

Account class >> deposit100On123
"creation of the receiver and parameters"
|anAccount|
anAccount:= Account accountNumber123.

"test execution"
anAccount deposit: 100.

"assertions"
self assert: anAccount balance = 100.

"and return of the interesting object"
ˆanAccount

Account class >> withdrawOkFrom123
"creation of the receiver and parameters"

|anAccount |
anAccount:= Account deposit100On123.

"test execution"
anAccount withdraw: 60.

"assertions"
self assert: anAccount balance = 40.

"and return of the interesting object"
ˆanAccount

Account class >> withdrawTooMuchFrom123
"creation of the receiver and parameters"
|anAccount |
anAccount:= Account deposit100On123.

"test execution"
self shouldRaiseException: [anAccount withdraw: 160].

"assertions"
self assert: anAccount balance = 100.

"and return of the interesting object"
ˆanAccount

Bank class >> deleteAccount123
"creation of the receiver and parameters"
|aBank anAccount |

aBank:= Bank withAccount123.
self assert: (aBank accountNumber: 123) notNil.

"test execution"
aBank deleteAccount: (aBank accountNumber: 123).

"assertions"
self assert: (aBank accountNumber: 123) isNil.

"and return of the interesting object"
ˆaBank

5

