
AspectMaps: A Scalable Visualization of Join Point Shadows
Preprint of ICPC 2011

Johan Fabry ∗

PLEIAD Laboratory
Computer Science Department (DCC)

University of Chile
http://pleiad.cl

Andy Kellens †

Software Languages Lab
Vrije Universiteit Brussel

Belgium
http://soft.vub.ac.be

Stéphane Ducasse
RMoD,

INRIA Lille - Nord Europe
France

http://rmod.lille.inria.fr

Abstract—When using Aspect-Oriented Programming, it is
sometimes difficult to determine at which join point an aspect
executes. Similarly, when considering one join point, knowing
which aspects will execute there and in what order is non-
trivial. This makes it difficult to understand how the application
will behave. A number of visualizations have been proposed
that attempt to provide support for such program understand-
ing. However, they neither scale up to large code bases nor scale
down to understanding what happens at a single join point. In
this paper, we present AspectMaps – a visualization that scales
in both directions, thanks to a multi-level selective structural
zoom. We show how the use of AspectMaps allows for program
understanding of code with aspects, revealing both a wealth of
information of what can happen at one particular join point as
well as allowing to see the “big picture” on a larger code base.
We demonstrate the usefulness of AspectMaps on an example
and present the results of a small user study that shows that
AspectMaps outperforms other aspect visualization tools.

Note: This paper heavily uses colors. Please use a color version
to better understand the ideas presented here.

Keywords-aspect-oriented programming; visualization; join
point shadow

I. INTRODUCTION

Aspect-oriented programming introduces a novel kind of
module, aspects, as a means to modularize cross-cutting con-
cerns: concerns whose implementation is scattered through-
out the system under development. Aspects encapsulate not
only the implementation of the cross-cutting behavior but
also the specification of where and how they are invoked.
As a result, the other modules of the system, called the
base code, do not contain explicit calls to the functionality
implemented in the aspects. Instead the base code performs
implicit invocations to the behavior of the aspects, as spec-
ified in the aspects themselves.

To realize this, the flow of execution of the base appli-
cation is reified as a sequence of join points. Second, the
specification of the implicit invocations, in the aspect, is
made through a pointcut that selects at which join points the
aspect executes. The behavior specification of the aspect is

∗ Partially funded by FONDECYT project 1090083.
†Funded by a research mandate provided by the “Institute for the

Promotion of Innovation through Science and Technology in Flanders”
(IWT Vlaanderen)

called the advice1. An aspect may contain various pointcuts
and advice, where each advice is associated to a pointcut.

The concepts of pointcut and advice open up new possibil-
ities in terms of modularization, allowing for a clean separa-
tion between base code and crosscutting concerns. However
this separation makes it more difficult for a developer to
assess system behavior. In particular, the implicit invocation
mechanism introduces an additional layer of complexity in
the construction of a system. This can make it harder to
understand how base system and aspects interact and thus
how the system will behave.

Various well-documented issues within the aspect-
oriented community serve as a testimony to this problem.
For example, inherent limitations of the expressiveness of
pointcut languages have an impact on the ease with which
the correct set of join points can be captured in a pointcut
expression [1]. One well-documented case of this is the so-
called fragile pointcut problem [2], [3]. It states that seem-
ingly innocent changes to the base code of an aspect-oriented
system can lead to unintended and erroneous behaviour upon
evolution of that base code. A similar problem that may arise
is that in complex systems, multiple aspects can intervene
at the same join point. If a developer is not aware of the
interactions of multiple aspects intervening at the same join
point, this again can result in erratic application behavior [4].

Consequently, there is a need for tools that allow software
developers to easily assess the impact of aspects on the base
system to aid in the detection and prevention of the problems
we discussed above. While software visualization is known
to be a good approach to achieve this, current visualizations
fall short on various points, as we show in this paper.

We present a visualization to aid the understanding of
aspect-oriented software systems, called AspectMaps. It pro-
vides a scalable visualization of implicit invocation. As-
pectMaps renders selected join point shadows: locations
in the source code that at run-time produce a join point.
AspectMaps shows the join point shadows where an aspect
is specified to execute, and if multiple aspects will execute,
the order in which they are specified to run. This results in

1AOSD literature uses the term ‘advice’ instead of ‘a piece of advice’.



a visualization that clearly shows how aspects cross-cut the
base code, as well as how they interact at each join point.
AspectMaps is a scalable visualization mainly due to its use
of selective structural zooming. The structure of source code
is shown at different levels of granularity, as determined by
the user. AspectMaps is implemented as an open source tool,
downloadable from http://pleiad.cl/aspectmaps.

The remainder of the paper is structured as follows:
we next give an overview of the design choices underly-
ing our visualization, and motivate our selective structural
zooming mechanism. Section II introduces the AspectMaps
visualization, detailing what is shown at each zoom level.
In Section III we show how the use of AspectMaps aids
program comprehension, using illustrative examples and an
initial user study. We consider future work in Section IV,
followed by an overview of related work in Section V.
Finally, Section VI concludes.

II. THE ASPECTMAPS VISUALIZATION

The idea of using visualizations to aid in program
comprehension is not new. Within the reverse engineering
community, software visualizations are a well-established
means of supporting various software comprehension tasks
(e.g., [5], [6], [7]). Despite the advantages of software
visualizations, designing a good visualization is not a trivial
task. A visualization must be sufficiently rich such that it
can convey the correct information in a single glance, yet
not overwhelm the user. In cognitive sciences, the topic
of data visualization has been well studied [8], [9], which
has produced different guidelines to follow to design a
successful visualization. We summarize six guidelines here:
1) The visualization should not overwhelm the user with
the number of colors that are used [8]. 2) The visualization
should not be too complex making it hard to interpret, nor too
simplistic, not conveying information [6]. 3) There should
be a clear mapping between the entities that are present
in the visualization and the actual domain the visualization
represents [7]. 4) The right information density has all visual
elements of the visualization conveying some meaning to the
user [9]. 5) The visualization should scale, working on small
data samples, as well as large quantities of data [8]. 6) A
good visualization has interactivity, providing a means for
user interaction [10].

AspectMaps is a visualization that was built specifically
with these six guidelines in mind, offering users a detailed
overview of implicit invocation. It visualizes:

• where aspects are specified to apply in a system, based
on visualizing join point shadows

• how aspects possibly interact at each join point shadow
• in a scalable way, thanks to a multilevel selective

structural zoom.
We define that an aspect applies in a certain source code

element (a package, class, or method) if for at least one

pointcut that is associated with an advice of that aspect, at
least one of its join point shadows belong to that element.

AspectMaps supports the traditional pointcut-advice
model of aspects on an object-oriented class-based language.
The join point model consists of method calls and method
executions. Advices can execute before, around or after
a join point, and we distinguish between after returning
and after exception throwing. Aspects may contain various
advices, and an execution order may be specified between
aspects. The above effectively allows us to visualize a subset
of AspectJ [11] and Java code. In this case we ignore inter-
type declarations as well as advice that applies to fields.

Selective Structural Zoom: Following the guidelines of
scalability and interactivity, the key feature of AspectMaps
is having the ability to selectively zoom in on the source
code at different levels of granularity. Zooming in from
a coarser level to a more fine-grained level reveals more
detail. The behavior is analogous to street map applications,
e.g., Google Maps, hence the name AspectMaps.

AspectMaps visualizes code at the level of granularity
of packages, classes and methods. In contrast to mapping
applications, however, in AspectMaps the level of granu-
larity is not a global setting: within one single diagram,
various levels of granularity can be used. For example,
certain packages can be shown at the package level, while
others are zoomed in at the class level. Likewise, for certain
classes, the visualization can be further zoomed in to depict
the system at the level of individual methods. This allows
the user to selectively zoom in and out to elements of
interest. Furthermore, hovering the mouse pointer over a
given element produces a tooltip style pop-up that shows
the element at the next higher zoom level if available. This
allows the user to skim over a number of elements, getting
more information of each without zooming in and out.

A second factor that enables scalability is the selection of
aspects to be displayed as well as the colors that identify
them. AspectMaps allows users to respect the number of
colors guideline. The user can for each aspect choose a
specific color and turn visualization of join point shadows
on or off, visualizing as much aspects as needed (at the cost
of more difficult identification).

AspectMaps also scales down to a very fine level of
granularity. At the most detailed zoom level on a join point
shadow, it shows a wealth of information at a single glance.
The user can see the specification of the kind of advice
(before, after, . . . ), how different aspects are specified to
interact (due to precedence declarations), and whether the
pointcut has a run-time test or not. More detailed information
is available as pop-ups: e.g., advice signatures.

Detailing AspectMaps: To detail the AspectMaps visu-
alization, the remainder of this section is structured follow-
ing the levels of granularity that can be shown. For each level
we show how it is visualized, and mention how it follows
the six guidelines we outlined. To illustrate the tool we use



Figure 1. Compact visualization of coordination, spacewar.

SpaceObject

Pilot
DisplayRobot

Player

Figure 2. The spacewar package extended view (annotated).

two examples in this section. Specifically, for Sections II-A
and II-B we use the Spacewar example from the AspectJ
Development Toolkit (AJDT) [12]. This as it is a small
example application that is easy to obtain and suffices to
show many features of AspectMaps. In Spacewar we visu-
alize the aspects Coordinator in green, EnsureShipIsAlive in
red and Debug in blue. In section II-C, we use an additional
artificial example, to illustrate AspectMaps features that are
not revealed by Spacewar.

A. Package Level

When opened, AspectMaps provides an overview of all
the packages in the system. For each package AspectMaps
shows a compact visualization that details the names of
packages as well as which aspects apply in this package.
AspectMaps colors the package rectangle with the color
of the aspect that applies, if it is currently enabled for
visualization. If multiple aspects apply in the package this
is indicated by using the color black (which is never a color
of an aspect). An example of this is shown in Fig. 1, which
shows two packages: coordination and spacewar. Multiple
aspects apply in the spacewar package, indicated by the black
color. The contents of packages is not shown at this point.

The extended visualization of packages, enabled by per-
forming a zoom operation on a selected package, reveals
package contents. In Fig. 2 the package spacewar has been
zoomed in on, showing the different classes and aspects that
it contains.

The extended package visualization is a version of the
work of Lanza and Ducasse on Polymetric Views [5], which
we extended with support for the visualization of aspects.
Polymetric Views display entities as boxes the dimensions
of which reflect entity properties (LOC, number of methods,
. . . ). A variety of different types of information is shown at
this level:

• Classes: rectangles with black borders. Inheritance re-
lations are visualized using the standard UML notation,

a conventional mapping to reality.
• Aspects: rectangles with thick colored borders. The

color is the aspect color (which is never black).
• Where aspects apply: class rectangles have the color

of the aspect that applies, or black for multiple aspects.
• Class and aspect metrics: the user selects which

dimension reflects which metric. This increases infor-
mation density. For the figures in this paper we select
no metric, as this feature of polymetric views is not the
focus of our work.

Note that the polymetric views visualization does not
display the names of classes. This is chosen to avoid clutter,
which would increase complexity. We are faithful to this
feature of polymetric views, class and aspect names are
instead revealed in their respective pop-ups (which is the
class level visualization discussed next).

In Fig. 2, we see three class hierarchies with as roots
Pilot, Display, and SpaceObject, along with eight aspects
where Debug is in blue and EnsureShipIsAlive in red. The
Coordinator aspect (in green) is not part of this package
but applies at least in four classes (SpaceObject, Display1,
Display2, Registry). In the Pilot hierarchy, multiple aspects
apply in the subclass Robot, and only the EnsureShipIsAlive
aspect (in red) applies in the subclass Player.

B. Class and Aspect Level

The visualization at this level is similar to that at the
package level. Here for classes fields are shown as diamonds
and methods are shown as rectangles with a gray border,
the height and width of which can be determined by a
user-selected metric. Methods are colored according to the
aspects that apply. Pop-ups of fields reveal their name and
type.

For aspects, advice is shown as rectangles of which the
dimensions are determined by a user-selected metric, and the
named pointcuts are drawn as ovals. No further zoom level
is available for aspects, therefore pop-ups for advice show
the line number and signature, and pop-ups for pointcuts
show the name of the pointcut.

run

keyPressed

keyReleased

Figure 3. The Debug aspect and the Pilot hierarchy (annotated with
selected method names).



In Fig. 3 we show a view that is zoomed in on all classes
in the Pilot hierarchy, as well as on the Debug aspect. This
reveals that multiple aspects apply on the method run of
Robot and that the EnsureShipIsAlive aspect applies in the
methods keyPressed and keyReleased of Player.

C. Method Level

Method level is the finest level of granularity offered
by AspectMaps. At this level a wealth of information is
presented, and hence the visualization is more complex. At
method level, methods have a gray border to more easily
distinguish them from classes, decreasing complexity.

If we consider only one join point, advice can be specified
to execute before, around or after this join point. Therefore
a visualization of its join point shadow needs to separate
showing before, after and around advice. Also, at one join
point multiple aspects may apply, so the visualization must
be able to show the execution of various advice at that
point. Considering the method level, we can have a join
point shadow for the execution of the method, and within the
method body various join point shadows for method calls.

Fig. 4 shows a template for the visualization of method
execution join point shadows. On the right, a set method is
displayed using this template (and we discuss this next).
The figure shows how AspectMaps provides the method
name and shows before, after and around execution advice
divisions. We detail next how advice execution within such
a division is visualized.

1) Advice Execution, Run-time Tests, Ordering: To show
that an advice applies at a given division of a join point
shadow, AspectMaps draws a small figure in the color of
the corresponding aspect. This is done for all aspects that
apply, aligning the figures vertically. Fig. 4 shows four after
execution advice in the example set method.

If multiple advice of the same aspect apply at the same
join point shadow, for each of these a figure is drawn
and these are ordered horizontally. A gray arrow between
them indicates the order in which these advice will be
executed, e.g., in AspectJ this is determined by the line
numbers of the advice. In the example in Fig. 4 this occurs
for the red aspect. AspectMaps currently has two kinds of
figures: a triangle for after throwing advice and a rectangle
for all other kinds of advice. This is to emphasize the special
nature of after throwing advice: it executes when the method

Method Name

Call 
Shadows

Before 
Execution 

After 
Execution

Around
Execution

4 after
advice

advice with
runtime test

after throwing
advice

order of
execution

Figure 4. Template for visualization of execution join point shadows (left),
and an example set method (right). Fig. 6 shows call visualization.

terminates by throwing an exception. In the example this is
again the red aspect. Moreover, if there is a run-time test
involved in evaluating the pointcut for an advice execution
(e.g., an if-test or a control flow pointcut) the figure has a
thick border in a contrasting color. In the example this is
evident in the green aspect. This allows easy identification
of advice that will always run at this join point shadow: these
have no border. Note that each figure shows three different
data points: the aspect, if it is an after throwing, and if there
is a run-time test. This increases the information density,
however without overly increasing the complexity.

When multiple advice of different aspects apply, the order
of their application may be specified by the programmer,
e.g., using the declare precedence construct in AspectJ [11].
When such an order is specified, AspectMaps indicates this
by attempting to order them horizontally and drawing a black
arrow between the advice execution figures, indicating the
order in which the advice will be executed. This increases
information density and maintains a good mapping to reality.
In other words: gray arrows indicate execution order as
specified by the semantics of the aspect language, while
black arrows indicate programmer-specified execution order.
An example of the latter is given in Fig. 5. Considering the
after advice, the cyan and red code is run before the pink
advice. There is no ordering specified between the green
aspect and any of the other aspects, nor between the cyan
and red aspects, hence no arrows are drawn. Fig. 4 does not
show any black arrows, indicating no ordering is specified
between the green, brown and red aspects and therefore no
claims can be made about the order at which the aspects
will be executed at run-time.

Note that AspectMaps shows the order of execution of
advice, and not a declaration of aspect precedence, as
defined in e.g., AspectJ. The difference lies in that advice
execution of after advice runs in the reverse order than
that of before advice. This makes the visualization easier to
understand: what is shown is more directly connected to the
behavior of the resulting application. We do not require the
programmer to perform a context switch and mentally invert
the advice execution order being shown. In other words, we
have a better mapping to reality and reduce complexity.

execution
order 
due to 

precedence
declarations

2 before
advice

2 around
advice
4 after
advice

Figure 5. Eight execution advice for a get method, with two precedence
declarations yielding three ordering arrows.



2) Execution Join Point Shadows: For execution join
point shadows the groups of figures detailing advice exe-
cution are placed in the locations as given by the template
and examples in Fig. 4 and 5.

Recall that all entities provide extra pop-up information
when the mouse pointer hovers over them, and that this
information is the visualization of the next zoom level if
available. As there is no finer grained zoom level here, we
instead provide relevant textual information on the advice
execution element being hovered over (increasing interac-
tivity). Specifically, we show the signature of the advice,
including its line number in the aspect source code.

3) Call Join Point Shadows: The body of a method
may contain multiple call join point shadows, sequentially
ordered by the source code of the method. We visualize
advice execution in this same order, aligning them vertically
as a suitable mapping to reality. The visualization of call
join point shadows uses the same visualization as execution
join point shadows. It however orders the before, around and
after divisions horizontally instead of vertically. A template
of this is shown in Fig. 6. The horizontal layout was chosen
to minimize unused space when visualizing (increasing
scalability), as well as to avoid confusion of what advice
execution belongs to which join point shadow (decreasing
complexity).

In Fig. 7 we show a number of methods of the Spacewar
example that demonstrate the visualization of call join point
shadows. This figure also illustrates the pop-up information

Shadow 1
Shadow 2
Shadow 3

Before AfterAround

Method Name

Call Shadows 

Figure 6. Template for call join point shadows

Figure 7. A selection of methods in Spacewar showing call shadow points,
as well as a pop-up of one advice execution (in the newPlayer method).

for each advice execution. It consists of the signature of the
advice (including its line number) as well as the signature
of the method being called and the base code expression
containing the call (including its line number). This again
increases interactivity and information density.

D. The AspectMaps tool and Quick Zoom Options

The AspectMaps visualization is implemented as a stand-
alone tool. A discussion on the implementation of this tool is
however the topic of a separate publication. We restrict our
discussion here to the quick zoom and navigation options
provided to ease interaction with the visualization.

The AspectMaps tool provides a number of predefined
zoom operations, we highlight four here:

• Max Zoom Out Zooms all elements out i.e., for
each element specifying that its compact representation
should be shown.

• Max Zoom In Zooms in maximally on all join point
shadows where an aspect that is visualized applies.

• Interactions Zoom Zooms in maximally on all join
point shadows where more than one of the aspects that
are being visualized apply.

• Query Zoom Given a query, which may contain wild-
cards, zooms in maximally on classes or methods of
which their names match.

Furthermore, context-specific zoom options are present on
the following elements:

• On pointcuts revealing all the join point shadows.
• On advice revealing all the join point shadows.
• On advice execution revealing the aspect.
• On advice execution revealing all other executions.
The advantage of these zoom options is that they save

developer time and effort. There is no time wasted in
manually exploring the visualization and zooming in or out,
e.g., looking for a place where two specific aspects interact,
or finding all places where a given advice applies.

The AspectMaps tool is open source and available from
the website http://pleiad.cl/aspectmaps. This site also provides
an executable version with the Spacewar example pre-
loaded, as well as other examples ready for visualization.

III. PROGRAM UNDERSTANDING WITH ASPECTMAPS

Our validation of AspectMaps is two-fold. First, we show
how our tool aids in software development and maintenance
activities by a more detailed exploration of the SpaceWar ex-
ample. Second, we present a user study where we compared
AspectMaps with the AJDT tool suite.

A. Exploring the Spacewar Example

We now show how AspectMaps allows the developer to
gain insight of existing code, by performing a larger study of
the Spacewar code we have been using as a running example.
In Fig. 8 we show one possible zoom state of Spacewar
In this figure, we can see that the Debug aspect (in blue),



Figure 8. AspectMaps visualization of Spacewar, fully zoomed in on all join point shadows, except for those of the Debug aspect.

applies at the beginning and at the end of each method and
constructor declaration that is zoomed in, and also applies in
all other methods except for two in SpaceObject. Zooming
in, or using the popups on zoomed out entities, we can
see that this pattern of the Debug aspect is omnipresent.
Note that, while we show a lot of information in this
figure, achieving a high information density, it does not
come at the price of too high complexity. For example, it
is straightforward to deduce the above mentioned behavior
of the Debug aspect.

Examining Fig. 8, four interesting elements are further
revealed by AspectMaps:

Firstly, no precedence declarations have been declared, as
there are no arrows between advices. We find this remarkable
as there is interaction between the Coordinator aspect (in
green), and other aspects. In other words, advice of other
aspects execute at a number of coordination points. However
there is no specification of whether this behavior should be
also be coordinated.

Secondly, the DisplayAspect aspect (in purple) has four
different pointcut-advice combinations: one specific combi-
nation for each method where the aspect applies. This is
revealed by looking at the pop-ups for each advice execution
rectangle: the line number given is specific for each method.

Thirdly, the EnsureShipIsAlive aspect (in red) applies only
in the Pilot hierarchy. Only one around advice of the aspect
is called. Lastly, when the join point shadow is ship.fire(), the
Debug aspect also executes an after returning advice that uses
the named pointcut allConstructorsCut(). (Again, this detailed
information is obtained by looking at pop-ups.)

Lastly, at every join shadow where SpaceObjectPainting1
applies (yellow), SpaceObjectPainting2 (cyan) also applies,
and vice-versa.

Considering scalability,when zoomed in completely it is
impossible to present the visualization on one screen. We
however consider AspectMaps to be used differently: using
a different zoom level for different elements, depending on
the focus of the developer. This is the case in Fig. 8. We
ignore the details of the Debug aspect and solely focus on
the remaining aspects in the system, only zooming in where

1 What are the names of the aspects and in what packages
are they located?

2 At which join point shadows do which advices of the
aspect Coordinator apply?

3 At which join point shadows does an advice of Coordinator
and SpaceObjectPainting1 apply?

4 At which join point shadows where multiple advices apply
is the precedence order of all these adviced not explicitly
specified, also for which is it not specified?

5 What methods are not affected by any aspects?

Figure 9. The code comprehension questions.

these apply. This still yields four relevant observations,
stated above, attesting to the scalability of AspectMaps.

B. User Study: Understanding Existing Code

As part of the evaluation of AspectMaps we have per-
formed a user study. The goal of the study was to provide
an initial comparison between AspectMaps and AJDT, es-
tablishing their usefulness for code comprehension of AOSD
code. Other aspect visualization tools were not considered
because none of these provide as much information as
AspectMaps and AJDT, as discussed in more detail in
Section V. This has significant impact on being able to
perform the typical code comprehension tasks we considered
for our study, as we show next.

Study setup: For our study, five code comprehension
questions were created, listed in Fig. 9. The first two ques-
tions treat basic code comprehension with aspects, of which
the second one requires visualization at sub-method level,
i.e.,scalability to a very fine-grained level. This simulates
the setting where a new developer needs to get to know
the application, and wishes to focus on the cross-cutting
concerns, first finding the corresponding aspects. The second
question then establishes whether an aspect applies where
it is supposed to i.e., whether its pointcuts are correct,
which is directly linked to the fragile pointcut problem [2],
[3]. Question three and four concern aspect interactions,
with question four stressing scalability issues when multiple



Task AM Time AM Correct AJDT Time AJDT Correct Prefer AM Use AM Use AJDT
1 1m 19s 88% 1m 34s 86% 3.5 3.9 2.7
2 5m 32s 88% 7m 55s 71% 4.1 4.3 2.4
3 2m 22s 100% 3m 41s 71% 4.3 4.3 2
4 5m 18s 88% 9m 17s 14% 4.7 4.4 1.7
5 2m 44s 100% 5m 3s 71% 4.5 4.3 1.9

Global 17m 14s 93% 27m 31s 63% 4.5 4.2 2

Figure 10. User survey results. Global is total time, mean accuracy and overall tool evaluation questions.

aspects apply. Multiple aspects applying at one join point
can cause bugs if their execution order matters and this
order is incorrect in the actual application. Question four
addresses the same issue of question three, but tests for a
large number of aspects and affected classes. Question five
is a straightforward scalability question considering a large
amount of join point shadows. Although the wording of this
question arguably is somewhat artificial, it can be considered
as a question similar to question two, which considers
verifying whether a pointcut picking out particular join point
shadows is correct. In question five the programmer verifies
whether a more broad pointcut of an aspect is correct, by
determining where it does not apply.

Considering other visualization tools, none allow the users
to answer all of these questions: Asbro [13] cannot be
used to provide answers to any of the questions, ActiveA-
spect [14] cannot provide answers to questions 2, 3 and 4.

The user study was performed with 15 subjects (PhD
students, postdocs and professors), volunteers from the three
different research groups of the authors. All work in the field
of software engineering, have at least basic knowledge of
AOSD, AspectJ and the AJDT, but none had knowledge of
the Spacewar example. To introduce them to AspectMaps the
subjects were presented with a preprint of Section II of this
paper and were shown the screencasts on the AspectMaps
website. Also they were given the paper that explains the
AJDT visualization [15]. Lastly, before being given tasks to
perform using the tools, they had five minutes to familiarize
themselves with the tools, asking questions if necessary.

For each subject one of the two tools was randomly
selected (8 started with AspectMaps; 7 with AspectJ). The
subject then performed the five code comprehension tasks
sequentially, on the Spacewar example. Each task was timed,
with a maximum of ten minutes, and verified for correctness
when the subject deemed the task done or if timed out. To
obtain a subjective impression of both tools, the subject then
performed the same five tasks on the other tool. This was
not timed nor verified for correctness to rule out learning
effects. After having finished working with both tools, the
subjects filled in a questionnaire.

For each task, the questionnaire asked whether the first
tool is better than the second tool for that task (phrased in
those terms to reduce acquiescence bias) and if they would
want to use AspectMaps resp. AJDT for these kinds of in-

vestigations in the future. Then the survey inquired whether
the subject globally considers AspectMaps outperforming
AJDT, and if they would use AspectMaps resp. AJDT in the
future for similar code comprehension tasks. Grades were
given on a five-point Likert scale, and a space was allowed
for final remarks.

Study results: An overview of the results is given in
Fig. 10, giving the average result of all participants for each
entry in the table2. It shows that AspectMaps outperforms
AJDT for each of the tasks, both in objective measurements
of time and accuracy as well as the subjective opinion of
the test subjects.

Considering time taken to perform the different tasks, As-
pectMaps is only slightly faster in the first, most basic task.
For the other tasks, time differences vary from one minute to
almost four minutes. The biggest difference is for task four,
arguably the most complex task, where using AJDT takes
175% of the time needed when using AspectMaps. Further-
more, in addition to this speedup, results with AspectMaps
are more correct than with AJDT. In task one the difference
is negligible (2%), but in the other, more complex tasks the
difference vary from 17% up to an important difference of
74% in favor of AspectMaps. Again the biggest difference
is obtained in task four. Lastly, AspectMaps is the only tool
where 100% accuracy is obtained, and this for 2 questions.

The users evaluated AspectMaps as being a better tool for
supporting comprehension of AOSD software than AJDT.
With 3 being a neutral answer and 5 the strongest preference,
AspectMaps rates more than 4 on all but the most basic task.
For future code comprehension tasks, the users completely
discard the AJDT visualization. They however state that
they would use AspectMaps, with scores of 4.3 and 4.4,
except for task 1, with 3.9. This is confirmed by the overall
evaluation that AspectMaps scores better than AJDT, with a
4.5 average.

Some positive observations of the users are: “AspectMaps
works nicely as a code comprehension tool.”, “Clearly
AspectMaps is more intuitive, I think this is because it uses
a spacial metaphor to show the data and not only text/bars”.
The most frequent negative observation of the users is that
AspectMaps does not show the source code, or that some
IDE integration is needed. We consider this as future work.

2The complete results are available on the AspectMaps website.



Threats to validity: The sample size of 15 persons can
be considered the weakest point of the study, but it is in
line with sample sizes of published visualization research
(e.g., 24 subjects in[16]). The user study we performed is
at a small scale and does not allow us to generalize about
the superiority of our tool over AJDT. Nonetheless it is
worthwhile to remark that the numbers we obtained are
unambiguous and consistently in favor of AspectMaps. This
is both in the quantitative as qualitative results.

A second threat lies in the use of colleagues as test
subjects for our study. First, as researchers, our test subjects
might not be considered typical developers. They might
favor more complex tools and might not possess the same
set of skills as developers working in industry. This is
however compensated due to the various backgrounds of
our test subjects, their different levels of acquaintance with
AOSD and the differences in programming experience, as
we involved a mix of 12 PhD students (being in various
stages of their PhD), 1 postdoc and 2 professors. Second,
the test subjects might be biased in favor of our work.
This might indeed influence the users subjective opinion.
However the time taken and accuracy for each task are not
influenced by such a bias (if present), and solely based
on these numbers AspectMaps already is a considerable
improvement on AJDT.

A final threat lies in the definition of the tasks that were
performed in the user study. More specifically, the five tasks
(see Fig. 9) can be perceived as artificial and tailored towards
demonstrating superiority of our approach. We however have
shown that each task is grounded in a realistic setting and
aims at generalizing a typical comprehension scenario.

IV. DISCUSSION AND FUTURE WORK

The Spacewar example we have used in this paper as
a basis to explain the AspectMaps visualization is but a
small piece of software. We use it as an example because
it illustrates the majority of the features of AspectMaps,
therefore obviating the need to introduce many examples
to introduce the visualization. We have successfully used
AspectMaps to visualize larger applications, for example
AJHotdraw [17], which consists of 24 packages, 374 classes
and 31 aspects. A full report of the exploration of the
AJHotdraw code is outside of the scope of this paper.

Considering interactions between aspects, AspectMaps
has a weak point in this setting. This is due to its focus
of being a visualization of advice execution at join point
shadows. This weakness is visualization of interactions at
method call and method execution join point shadows.
Consider for example the pointcuts call(* * AClass.aMethod())
and execution(* * AClass.aMethod()). The join point shadows
for the former are visualized at all calls to aMethod(). This
is a different place in the figure than the visualization of
aMethod() (unless the call is a recursive call). Nonetheless,

advice execution at the call side interacts with advice execu-
tion at the execution side. It would be beneficial to visualize
these interactions as well. We have not yet encountered a
suitable visualization for this, and consider this future work.

Currently, the AspectMaps tool is not integrated into any
development environment, running instead in a stand-alone
fashion. As mentioned in Section III-B, a possible target for
integration is the Eclipse IDE. This would, e.g., allow the
user to easily navigate to the source code of the entities
being visualized or allow the visualization to update itself
automatically on a recompile. Such functionality is however
additional to the core visualization concepts presented here.
These were developed and validated separately to assess
their inherent benefits, avoiding ambiguity of whether any
advantages are gained though the visualization or though
other means. Eclipse integration is a implementation task
that we consider as future work.

A last limitation of AspectMaps we discuss here is the
lack of information on structural modifications made by
the aspects, also known as static cross-cuts or inter-type
declarations. Currently the visualization does not show inter-
type declarations, nor the aspects that apply there. As this
feature is orthogonal to the core visualization concepts of
AspectMaps we have not yet implemented support for this,
and leave this as future work.

V. RELATED WORK

Arguably the most complete tool suite for aspect-oriented
programming is the AspectJ Development Toolkit [12].
Amongst other features, AJDT adds gutter markers in the
code editor to indicate join point shadows for affected
code entities, and also provides a textual “Cross-References
View”. While these features provide useful feedback, they
do not scale to a large code base [13]. AJDT also offers a
visualization tool [15] that shows the classes and aspects in
the entire project as bars, placed side by side. The name of
the class or aspect is printed in the top of each bar. The
height of the bar is proportional to the number of lines
of code that are present in the entity and colored stripes
represent lines of code affected by aspects. This visualiza-
tion however is overly simplistic, not showing the inherent
structure of the code, nor the detailed information that
AspectMaps offers as described in Section II-C. Hovering
over a stripe does produce a pop-up, but this only details the
name of the aspects that apply there. In general, obtaining
any information of an aspect beyond the approximate source
code location of its application requires to navigate to the
source code. Lastly, the tool does not scale. While the tool
has a ‘zoom in’ and ‘zoom out’ function, all that this does
is to make the bars bigger or smaller. No more detailed
(structural) information is revealed upon a zoom in action.
Conversely, zooming out does not give a higher level of
abstraction on the data, leading to scalability problems on
large code bases.



Pfeiffer and Gurd [13] propose a visualization tool that
is based on the concept of Treemaps. A Treemap maps
the nodes of a hierarchical structure to rectangles in a
plane, using a space-filling layout. In contrast to graph-
based layouts of tree nodes, this does not waste any screen
space. Their tool is called Asbro and provides for a tree map
visualization of where aspects apply in packages and types.
Rectangles representing classes or packages are colored with
an aspect color if an aspect applies there. The authors assess
their tool as being beneficial for obtaining a high-level
overview of aspect application, and state that it is scalable up
to on average 2100 classes. However, Asbro does not scale
down: it does not reveal aspect application at finer levels than
types. Furthermore, it does not provide any information of
aspect interaction at a given join point shadow. Additionally,
the tool does not have a feature which shows that multiple
aspects apply in one class or package.

Coelho and Murphy take a different approach to scal-
ability in their ActiveAspect tool [14]. The tool shows
an automatically selected subset of the elements in the
code, depending on the current focus of the developer. The
visualization that is used is an UML extension with a rep-
resentation of aspects, method execution advice and method
call advice. An important issue with such a graph notation
is that it scales poorly with a large number of classes.
ActiveAspects includes a number of abstraction operations
to lessen clutter in these cases. The power of the approach
lies in the ability of the tool to automatically perform such
abstraction operations, as well as the automatic selection of
elements to be visualized. However Coelho and Murphy note
that their user study shows that the heuristics they are using
often do not correspond with the users wishes. In contrast, in
AspectMaps the user selects what is visualized and what is
not, hence there are no heuristics issues. A further downside
of ActiveAspects is that all aspects that apply within one
method are gathered together in one visualization element.
Because of this, ActiveAspects reveals no information of
aspect interactions at one given join point shadow.

Zhang et al. have presented an analysis toolkit for assess-
ing the impact of structural modifications through AspectJ
inter-type declarations on the behaviour of the system [18].
Due to the inherent obliviousness of such declarations, it can
become increasingly difficult for a developer to understand
how a program will behave. To present the results of their
analyses to a developer, an integration with Eclipse is offered
by means of visual clues (markers) and dedicated views that
represent the lookup impact and shadowing impact. This
approach is complementary to ours: AspectMaps focuses on
the visualization of join point shadows while ITDVisualizer
aids in comprehending inter-type declarations.

Lastly, the AspectScope work by Horie and Chiba [19]
considers aspects as extensions to classes and displays the
extended module interfaces of these classes. This however
uses a textual tree-based representation, and therefore faces

the same scalability issues as the AJDT cross-cutting view.
Software visualization is a very active field with nu-

merous research results. However, few of them have a
clear relevance in the context of aspect understanding. The
most straightforwardly applicable is Distribution Map [20].
Distribution Map is a generic visualization that shows how
a given phenomenon or property is distributed across a
reference partition of a large software system (packages
organization, files...). In particular, Distribution Map reveals
the spread and focus of a phenomenon. Spread: how much
does a property spread across the reference partition: is it
local or global? Focus: how close does a property match the
reference partition: is it well-encapsulated or cross-cutting?
The goal of Distribution Map is not to display aspects but
more general properties like code owners, commits, sym-
bolic information. Also, Distribution Map can only display
one property per node which prohibits visualizing interacting
aspects. Consequently, it could be used to represent aspects,
but lacks the AspectMaps abilities to visualize information
at a sub-method level.

VI. CONCLUSION

Program understanding is a complex task that is made
more difficult when using aspects because the base code
implicitly calls aspect code. Implicit invocation is specified
by pointcuts, adding an extra level of indirection that makes
it difficult to understand total system behavior.

A common way to aid program understanding is the use
of visualization tools that extract relevant information from
the code under study. A number of visualizations for code
using aspects have been developed [12], [13], [14]. However
all of these have visualization-specific shortcomings, as we
have discussed in this paper. Most noticeably neither of these
tools scale both up to a large code base and down to a very
fine-grained level.

In this paper we presented a new visualization for code
using aspects, called AspectMaps. AspectMaps shows im-
plicit invocations in the source code by visualizing join point
shadows where aspects are specified to execute. For a given
join point shadow, AspectMaps reveals very fine grained
information at a glance: it shows the type of advice (before,
after, . . . ) as well as specified precedence information (if
any). Furthermore, AspectMaps scales to a large code base
thanks to a selective structural zooming functionality (i.e., a
map metaphor) that progressively reveals more information
as a user drills down into the structure of the code.

To argue for the merits of our visualization, we have
shown how AspectMaps follows visualization guidelines
and applied it to an example case study. We furthermore
performed an initial user study, comparing the AspectMaps
tool with the only other visualization tool that allows as
much information to be obtained from the code: The As-
pectJ Development Toolkit (AJDT). For five different code
comprehension tasks, AspectMaps consistently outperforms



AJDT on the amount of time required to perform each task
and also on the users opinion of which tool is better and their
willingness to use it again for similar tasks in the future.

DOWNLOADS, ADDITIONAL INFORMATION

The AspectMaps tool, extra information and screencasts
are available on the website http://pleiad.cl/aspectmaps.

ACKNOWLEDGMENT

We wish to thank Éric Tanter, Jacques Noyé, Alexandre
Bergel, Awais Rashid, Thomas Cleenewerck, Kris De Schut-
ter, Kim Mens, Andrew Eisenberg and Romain Robbes for
their invaluable feedback when discussing early versions of
AspectMaps. Thanks also to Andrew Eisenberg for helping
us understand the AJDT crosscutting model and Alexandre
Bergel for aid with Mondrian. We especially thank the user
study participants. We are grateful to Theo D’Hondt for
supporting this research. This research is partially supported
by the IAP Programme of the Belgian State and the INRIA
Associated team PLOMO.

REFERENCES

[1] W. Havinga, I. Nagy, and L. Bergmans, “Introduction and
derivation of annotations in AOP: Applying expressive point-
cut languages to introductions,” in First European Interactive
Workshop on Aspects in Software, 2005.

[2] A. Kellens, K. Mens, J. Brichau, and K. Gybels, “Managing
the evolution of aspect-oriented software with model-based
pointcuts,” in European Conference on Object-Oriented Pro-
gramming (ECOOP), ser. LNCS, no. 4067, 2006, pp. 501–
525.

[3] C. Koppen and M. Stoerzer, “Pcdiff: Attacking the fragile
pointcut problem,” in European Interactive Workshop on
Aspects in Software (EIWAS), 2004.

[4] M. Rinard, A. Salcianu, and S. Bugrara, “A classification sys-
tem and analysis of AO programs.” in Twelfth International
Symposium on the Foundations of Software Engineering,
2004.

[5] M. Lanza and S. Ducasse, “Polymetric views — a lightweight
visual approach to reverse engineering,” IEEE Transactions
on Software Engineering, vol. 29, no. 9, pp. 782–796, Septem-
ber 2003.

[6] S. Ducasse, M. Lanza, and R. Robbes, “Multi-level method
understanding with microprints,” in 2nd IEEE International
Workshop on Visualizing Software for Understanding and
Analysis (VISSOFT). IEEE Computer Society, 2005, pp.
33–38.

[7] S. Ducasse, D. Pollet, M. Suen, H. Abdeen, and I. Alloui,
“Package surface blueprints: Visually supporting the under-
standing of package relationships,” in Software Maintenance,
2007. ICSM 2007. IEEE International Conference on, Oct.
2007, pp. 94–103.

[8] J. Bertin, Graphische Semiologie. Diagramme, Netze, Karten.
Gruyter, 1974.

[9] E. Tufte, The Visual Display of Quantitative Information,
2nd ed. Graphics Press, 2001.

[10] M. Storey, F. Fracchia, and H. Müller, “Cognitive design
elements to support the construction of a mental model
during software exploration,” Elsevier’s Journal of Systems
& Software, vol. 44, pp. 171–185, 1999.

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. Griswold, “An overview of AspectJ,” in Proceedings of the
15th European Conference on Object-Oriented Programming
(ECOOP 2001), ser. Lecture Notes in Computer Science,
J. L. Knudsen, Ed., no. 2072. Budapest, Hungary: Springer-
Verlag, Jun. 2001, pp. 327–353.

[12] A. Colyer, A. Clement, G. Harley, and M. Webster, Eclipse
aspectj: aspect-oriented programming with aspectj and the
eclipse aspectj development tools. Addison-Wesley Profes-
sional, 2004.

[13] J.-H. Pfeiffer and J. R. Gurd, “Visualisation-based tool sup-
port for the development of aspect-oriented programs,” in
AOSD ’06: Proceedings of the 5th international conference
on Aspect-oriented software development. New York, NY,
USA: ACM, 2006, pp. 146–157.

[14] W. Coelho and G. C. Murphy, “Presenting crosscutting
structure with active models,” in AOSD ’06: Proceedings of
the 5th international conference on Aspect-oriented software
development. New York, NY, USA: ACM, 2006, pp. 158–
168.

[15] A. Clement, A. Colyer, and M. Kersten, “Aspect-oriented
programming with AJDT,” AAOS 2003: Analysis of
Aspect-Oriented Software workshop at ECOOP 2003,
http://www.comp.lancs.ac.uk/˜chitchya/
AAOS2003/AAOS Home.php, 2003.

[16] B. Cornelissen, A. Zaidman, A. van Deursen, and B. Van
Rompaey, “Trace visualization for program comprehension:
a controlled experiment,” in International Conference on
Program Comprehension (ICPC). IEEE Computer Society,
2009, pp. 100–109.

[17] A. V. Deursen, “Ajhotdraw: A showcase for refactoring to
aspects,” in In: Workshop on Linking Aspect Technology and
Evolution. (2005, 2005.

[18] D. Zhang, E. Duala-Ekoko, and L. Hendren, “Impact analysis
and visualization toolkit for static crosscutting in aspectj,”
in International Conference on Program Comprehension
(ICPC), 2009.

[19] M. Horie and S. Chiba, “Aspectscope: An outline viewer for
aspectj programs,” Journal of Object Technology, Special Is-
sue: TOOLS EUROPE 2007, vol. 6, no. 9, pp. 341–361, Octo-
ber 2007, http://www.jot.fm/issues/issue 2007 10/paper17/.

[20] S. Ducasse, T. Gı̂rba, and A. Kuhn, “Distribution map,”
in Proceedings of 22nd IEEE International Conference on
Software Maintenance (ICSM ’06). Los Alamitos CA: IEEE
Computer Society, 2006, pp. 203–212. [Online]. Available:
http://scg.unibe.ch/archive/papers/Duca06cDistributionMap.pdf


