
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

First Infrastructure and Experimentation in
Echo-debugging

Accepted to IWST2020

Thomas Dupriez
tdupriez@ens-paris-saclay.fr

Univ. Lille, CNRS, Centrale Lille,
Inria

UMR 9189 – CRIStAL
Lille, France

Steven Costiou
steven.costiou@inria.fr

Inria, Univ. Lille, CNRS, Centrale
Lille

UMR 9189 – CRIStAL
Lille, France

Stéphane Ducasse
stephane.ducasse@inria.fr

Inria, Univ. Lille, CNRS, Centrale
Lille

UMR 9189 – CRIStAL
Lille, France

Abstract
As applications get developed, bugs inevitably get introduced.
Often, it is unclear why a given code change introduced a
given bug. To find this causal relation and more effectively
debug, developers can leverage the existence of a previous
version of the code, without the bug. But traditional debug-
ging tools are not designed for this type of work, making this
operation tedious. In this article, we propose as exploratory
work the echo-debugger, a tool to debug two different execu-
tions in parallel, and the Convergence Divergence Mapping
(CDM) algorithm to locate all the control-flow divergences
and convergences of these executions. In this exploratory
work, we present the architecture of the tool and a scenario to
solve a non trivial bug.

ACM Reference Format:
Thomas Dupriez, Steven Costiou, and Stéphane Ducasse. 2020. First
Infrastructure and Experimentation in Echo-debugging Accepted
to IWST2020. In IWST20: International Workshop on Smalltalk
Technologies, September 29th and 30th, 2020, Novi Sad, Serbia.
ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/1122445.
1122456

1 Introduction
Nowadays, debugging is still a challenge [19, 24] and sources
of hard bugs are numerous [15]. In addition, the distance
between a source code change and the emergence (identi-
fication) of a bug can be large, which makes it difficult to
understand why a given code change caused a given bug [22].
However, in some instances, developers have access to an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
IWST20, September 29th and 30th, 2020, Novi Sad, Serbia
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

interesting source of information to help them: a previous
version of the software not exhibiting the bug [21].

However, having a reference, working, version of the pro-
gram is not a panacea. Without dedicated support, developers
have to run the two versions in separate debuggers, manually
step them in parallel, and visually compare the executions.

Techniques that compare two similar executions to produce
various results already exist [21]. In general, these techniques
try to isolate the code fragments that are (suspected to be)
responsible of an error. Delta debugging [22, 23] takes two
versions of a program and finds the smallest subset of code
change that turned a given test from green to red. Algorith-
mic debugging [17, 18] tries to isolate faulty code based on
how developers assert the outputs of faulty and successful
executions.

However, these approaches show limits in two scenarios.
First, we might know exactly which code change introduced
the bug and still we cannot understand how it did so. Sec-
ond, when we migrate an application from a version of a
library/framework to another, the code changes can be gigan-
tic. Detecting code differences between a working execution
(using the old version) and a failing execution (using the new
version) might not be useful. The meaning itself of the code
might have changed, things might have been added and others
removed. For instance, when migrating frameworks from a
version of Pharo [3] to another, the base classes and tools of
the language regularly evolve.

In this paper we present Echo-debugging: a technique to
compare the executions of the failing and working version
of the program and find the control-flow differences to help
developers debug the program. The contributions of this paper
are:

• The echo-debugger and its architecture: an interactive
debugger to debug two similar executions running in
different runtimes.

• Convergence Divergence Mapping (CDM), an algo-
rithm that fully runs both executions and compares the
AST nodes they are executing to build a map of when
they diverge and converge in terms of control-flow.
The echo-debugger can then jump the executions to
any event of this map the developer wants to inspect.

1

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

IWST20, September 29th and 30th, 2020, Novi Sad, Serbia Thomas Dupriez, Steven Costiou, and Stéphane Ducasse

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

In this paper, we first state our problem of comparing two
similar executions, and list the main challenges it involves
(Section 2). We then expose our solution: the echo-debugger,
its architecture, and the CDM algorithm (Section 3 and 4).
We show a concrete example of how to use the echo-debugger
to debug a bug in the Pillar editorial chain code (Section 5).
We finally discuss our solution (Section 6), similar works
(Section 7), future works (Section 8) and conclude (Section 9).

2 Comparing Two Similar Executions
Problem statement. We have as inputs:

• Two versions of a program. For example before and
after a given commit.

• A statement to execute. The developer is interested in
how the execution of this statement differs between the
two program versions. This will typically be a test that
passes in one program version and fails in the other,
but it can be any statement.

From these inputs, we want a tool that allows the developer
to debug both executions of the statement in a comparative
fashion, and to understand the impact of the source code
differences between the program version.

Difficulties. Here, we list the main challenges our solution
has to overcome.

• Challenge 1: Running two versions of the same
program in parallel, and controlling them. Our so-
lution requires the two version of the same program
to run in parallel. This is typically not possible in the
same runtime. Additionally, our solution needs to con-
trol and coordinate the two executions.

• Challenge 2: Comparing objects across executions.
Although the executions are similar, and they create
and manipulate similar objects, the default identity
operator (==) is entirely unusable because the same
objects from different executions are never going to be
the same identity-wise.

• Challenge 3: Comparing control-flows. The intu-
itive idea is to find when the executions are doing
different things and when they are doing the same
thing. Our solution needs to define these expressions
and use these definitions to compare the control-flows
of the two executions.

– Challenge 3.1: Finding control-flow diver-
gences. Since the executions both start on the
same statement (the one provided by the devel-
oper), their control-flows are the same. Our solu-
tion needs to step them until their control-flows
diverge.

– Challenge 3.2: Finding control-flow conver-
gences. Challenge 3.1 lets us find the first control-
flow divergence, but that may not be good enough
to understand the bug. Maybe the control-flow of

the executions reconverge on a part of the pro-
gram, and diverge again later. Our solution needs
to recognise if the control-flow of the executions
reconverge after a divergence.

Combining challenge 3.1 and 3.2 means building a
map of when the control-flows of the two executions
diverge, converge, diverge again, converge again...

3 The Echo-Debugger and the CDM
Algorithm

In this section, we describe our solution to debug two similar
executions side-by-side: the echo-debugger and its architec-
ture.

For clarity in this section, we assume that the developer
is debugging a test, which passes in a given version of the
program, but fails in another. In general the echo-debugger
works to comparatively debug any statement.

3.1 Echo-Debugging Architecture
Figure 1 shows the overall architecture of an echo-debugging
setup.

Figure 1. Echo-Debugging Architecture: One controller run-
time (image) controls the execution of a failing and working
one.

Three Different Runtimes. Because a runtime cannot con-
tain and execute multiple versions of the same code at the

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

First Infrastructure and Experimentation in Echo-debugging IWST20, September 29th and 30th, 2020, Novi Sad, Serbia

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

same time (challenge 1), the Echo-Debugging architecture is
made of three runtimes each one running separately. Each of
such runtime runs a different configuration:

• Working runtime. This runtime contains the version
of the code that works as expected by the developer.
For concision, we will call it the W runtime.

• Failing runtime. This runtime contains the version
of the code that does not work as expected by the
developer. For concision, we will call it the F runtime.

• Controller runtime. This runtime connects to the
other two runtimes to control the executions and col-
lect data. The developer interacts primarily with this
runtime during the echo-debugging session. For conci-
sion, we will call it the C runtime.

We refer to the working and failing runtime as echo-
runtimes, because they are like echoes of each others: similar,
but not exactly the same.

Sindarin Debugger. In each echo-runtime, we use a Sin-
darin debugger [7] to control the execution of the test. Sin-
darin is a scriptable, UI-less debugger for Pharo. It can be
instantiated on an execution, and its API used to inspect and
manipulate the execution.

Debugger Client/Server. For the communications between
the echo-runtimes and the controller runtime, the echo-
debugger has a companion package with an HTTP-based
client/server communication layer. This layer transmits the
Sindarin commands coming from the echo-debugger to the
Sindarin debuggers in the echo-runtimes, and transmits back
the answers. Some objects returned by the Sindarin API can-
not be serialized/materialized, such as Contexts and Excep-
tions, because they reference objects that cannot be serialized.
We built custom serializations for them, where we instead
serialize a dictionary containing the relevant fields of these
objects, excluding the unserializable ones.

Echo-Debugger. The echo-debugger is what the developer
interacts with. It communicates with the Sindarin debuggers
in the echo-runtimes via the client/server communication
layer. For a more detailed description of the echo-debugger,
see Section 3.2.

Setup process for an echo-debugging session. Finally,
here is the list of steps required to setup an echo-debugging
session.

1. Create three runtimes: Working, Failing and Con-
troller.

2. Load the working version of the code in the working
runtime.

3. Load the failing version of the code in the failing run-
time.

4. Load the echo-debugger and its communication pack-
age1 in all three runtimes.

1https://github.com/dupriezt/DebuggerCommunication

5. In both echo-runtimes, instantiate a Sindarin debug-
ger [7] on the execution of the test.

6. In both echo-runtimes, run a debugger server for the
Sindarin debugger.

7. In the controller image, run a debugger client, connect
it to both debugger servers over HTTP, and open its
UI.

3.2 The Echo-Debugger
The echo-debugger is responsible for controlling and analyz-
ing both echo-executions. Once the echo-debugging session
is setup, the developer only interacts with the echo-debugger,
and not directly with the echo-runtimes.

Figure 2 shows the UI of the echo-debugger. It contains
three main zones (from left to right):

• A debugger on the working execution of the test.
• A debugger on the failing execution of the test.
• The control zone containing information and com-

mands specific to the echo-debugger.

The control zone is separated in three areas:

• The status area takes the current AST node of the two
contexts selected in the debuggers and shows whether
they are equal or not.

• The operations area lists the echo-debugging opera-
tions the developer can perform.

• The navigation map lists the convergence and diver-
gence events between the echo-executions, and allows
the developer to step both debuggers to when these
events happened in the echo-executions.

Remote debuggers. The echo-debugger features a remote
debugger for each echo-execution. These debuggers display
information on the echo-executions, such as the call stack
and the current piece of code being executed. The developer
can use these debuggers to debug the echo-executions as he
would normally debug in a standard debugger, with the added
benefit of having both executions side-by-side in the same
image.

Echo-debugging operations. The echo-debugger provides
operations to control both echo-executions at the same time
and step them to potential places of interest:

• Step both. Step both echo-executions once.
• Step to next divergence. To be used when the echo-

executions are currently convergent. Step both echo-
executions until their next divergence. See Section 4
about the CDM algorithm for more details.

• Step to next convergence. To be used when the echo-
executions are currently divergent. Step both echo-
executions until their next convergence. See Section 4
about the CDM algorithm for more details.

• Analyze executions. Applies the CDM algorithm de-
scribed in Section 4 to populate the navigation map

3

https://github.com/dupriezt/DebuggerCommunication

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

IWST20, September 29th and 30th, 2020, Novi Sad, Serbia Thomas Dupriez, Steven Costiou, and Stéphane Ducasse

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

Figure 2. UI of the echo-debugger, after setting up and connecting to the echo-runtimes. The UI is separated into three columns
showing, from left to right: the working execution, the failing execution, and the control zone. The control zone is itself separated
into three areas: (from top to bottom) the status area, the operations area, and the navigation map.

with all the convergence and divergence events be-
tween the echo-executions.

• Restart. Restarts both echo-executions, to start over.
• Go to. This operation requires that the navigation map

has been populated by analyzing the echo-executions
with the CDM algorithm (Section 4). This operation
restarts both echo-executions and steps them until they
reach the convergence/divergence event that is cur-
rently selected in the navigation map. This operation
assumes the execution is deterministic

The Step to next divergence and Step to next convergence
operations directly address challenges 3.1 and 3.2. Analyze
executions is a convenience method to automatically repeat
these two steps on the entire execution. Go to lets the devel-
oper inspect each divergence/convergence event. Restart and
Step both give manual control of the parallel executions to the
developer for closer inspection.

4 The CDM algorithm
In this section, we explain the CDM algorithm, used by the
echo-debugger to spot all the control-flow divergences and
convergence between the echo-executions. We first define

what we mean by convergence and divergence. We then ex-
plain the CDM algorithm. We finally detail a special case
of the algorithm when looking for a convergence, and how
we perform the comparison of AST nodes from different
runtimes.

The goal of the Convergence Divergence Mapping algo-
rithm (CDM) is to fully run both echo-executions, and build
a map of when they diverge and converge in terms of control
flow. This map is a list of divergence and convergence events
in the order in which they occurred during the comparative
execution. Each event stores the number of steps both exe-
cutions took to reach it. An example of such map is shown
in Figure 3. Using this map, the echo-debugger is able to re-
run the echo-executions up until any divergence/convergence
event the developer wants to inspect.

Convergence and divergence of echo-executions. We de-
fine what we mean by convergence and divergence as follows.
The idea is that we have two similar executions, and we want
to know when they are doing the same thing (such as execut-
ing the same methods), and when they are not. At the start,
neither echo-execution has executed anything, and they are
both about to execute the same statement, provided by the

4

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

First Infrastructure and Experimentation in Echo-debugging IWST20, September 29th and 30th, 2020, Novi Sad, Serbia

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

Figure 3. Result of the CDM algorithm on the Pillar config-
uration bug. This is the list of the convergence/divergence
events observed during the echo-execution. The left column
indicates the nature of the event (convergence or divergence).
The middle column indicates the number of steps it has taken
the working echo-execution to reach this event. The right
column indicates the number of steps it has taken the failing
echo-execution to reach this event.

developer. At this stage, they are definitely doing the same
thing. We say they are convergent at that point. Then, as the
echo-executions progress, at some point, they’ll stop doing
the same thing. We detect this by comparing the AST nodes
they are executing. When they start executing different AST
nodes, we say they are now divergent. But we know that prior
to that point, they were doing the same thing, so if we let them
fully step the current method call, the echo-executions will go
back to the caller of that method call, and if at that point they
are about to execute the same AST node, we say they have
converged. Indeed they were doing the same thing, then they
entered a method call in which they started doing different
thing, but now that method call is over and they are back to
the part where they were doing the same thing. Now that they
have converged, we let them progress until they diverge again,
and converge again, etc, until either execution is over. This
definition of convergence and divergence is the general idea
of the CDM algorithm.

The CDM algorithm. Here is how the CDM algorithm
builds a map with the divergences and convergences between
the echo-executions. It is mostly a direct translation of the
definition of convergence and divergence we gave in the para-
graph above, with the exception of step 2.c.i.

1. The echo-executions start convergent because they
have done nothing yet and are about to execute the
same statement, provided by the developer

2. Repeat until either execution is over:
a. Step to next divergence

• Repeat until the AST nodes the echo-
executions are about to execute are different:

i. Step each echo-execution once

ii. Compare the AST nodes the echo-
executions are about to execute

b. Register a divergence event in the map, with the
number of steps each echo-execution took to reach
that point

c. Step to next convergence
• Repeat until the AST nodes the echo-

executions are about to execute are the same:
i. If the call-stack of both echo-executions

do not have the same size, step the echo-
execution with the longer call stack until
its call stack has the same size as the call
stack of the other echo-execution

ii. Otherwise, if the call stack of the echo-
executions have the same size, step each
echo-execution separately until the size
of their call stack is 1 less

iii. Compare the AST nodes the echo-
executions are about to execute

d. Register a convergence event in the map, with the
number of steps each echo-execution took to reach
that point

Special case when stepping to the next convergence.
Sometimes, the echo-executions diverge but their call-stack
do not have the same size . This can for example happen when
the source code change between the two program versions
turned a normal method into a Virtual Machine primitive
method. When stepping into a primitive method, the VM au-
tomatically executes it and returns to the caller. This means
that the execution with the normal method is currently one-
step-deep into that method, but the other execution is already
back in the caller method. To find a convergence in these
cases, our algorithm only finishes the current method call of
the echo-execution with the longest call stack (See Figure 5).
For comparison, the normal case is shown in Figure 4.

Comparing AST nodes. A fundamental part of the CDM
algorithm is comparing the AST nodes the echo-executions
are executing to determine whether their control-flows have
diverged. Since the goal of the CDM algorithm is to find
control-flow divergences, it also has to take into account the
method and class the AST nodes belong to. For example,
two 1+1 AST nodes are equal (in the = sense), but if they are
from different methods/classes, we consider them different for
the purpose of control-flow. Therefore, the CDM algorithm
requires some form of identity (==) operator to compare the
AST nodes. However, the standard identity operator cannot
be used because the AST nodes to compare are coming from
different runtimes. To get them into the controller runtime for
the comparison, they would have to go through serialisation
and materialisation. These materialised object are always
different with regards to identity. Our solution is to design a
new equality operator on remote AST nodes. This operator
considers the four properties listed below, and compares them

5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

IWST20, September 29th and 30th, 2020, Novi Sad, Serbia Thomas Dupriez, Steven Costiou, and Stéphane Ducasse

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

Figure 4. When the two echo-executions diverge and have
call stacks of the same size, our algorithm steps the echo-
executions to finish the current method call and go back to
the last method call in which the execution were convergent.
It then compares the current AST nodes of the two echo-
executions. If it is the same (as is the case in this figure
where AST node 2 = AST node 2), the echo-executions have
converged. Otherwise, the algorithm repeats the process by
finishing the call to method 2, comparing the current AST
nodes.

with the equality operator (=). Two remote AST nodes sharing
these properties means that they come from the same method
of the same class, are of the same type and correspond to the
same part of the source code. This fits the need of the CDM
algorithm for an AST node identity operator checking whether
the control-flow of the echo-executions have diverged.

• methodSelector: the name of the method this AST
node is from.

• class: the name of the class the method containing this
AST node is from.

• source: the source code covered by this AST node. For
example, Point new for the message node representing
the send of the new message to the Point class.

• nodeType: whether this AST node is a message node,
a literal node...

5 Example: The Pillar Configuration Bug
Pillar2 is a markup syntax and a tool-suite to generate docu-
mentation, books, websites and slides [2, 6]. In this section,
we use the echo-debugger on a simplified version of a bug
encountered in pillar: the pillar configuration bug [5].

2https://github.com/pillar-markup/pillar

Figure 5. When the two echo-executions diverge and have
call stacks of different size, our algorithm only finishes the
current method call of the echo-execution with the longest
call stack.

5.1 Starting Knowledge about the Pillar Configuration
Bug

Pillar uses nested configurations to store properties such as
the authors, title, default folder and options for the generation
given by the users. In addition, each file may override new
properties (such as authors in a collection of articles). Each
configuration is an environment i.e., a dictionary of properties,
and has a parent configuration. Asking a configuration for a
given key key1 is done by sending the message key1 to the
configuration. This message is meant not to be understood by
the configuration, to call its doesNotUnderstand: method 3. The
doesNotUnderstand: method calls the lookupProperty: method
of the configuration. The lookupProperty: methods performs
the lookup in the property dictionary of the configuration. If
this dictionary does not contain key1, then the lookupProperty:
method of the parent configuration is called...

5.2 The test and the source code change
The test we are interested in is shown in listing 1. In this
test, we create a first configuration c1 (line 3) and set the
value of its mySetting key to 0 (line 4). We then create a
second configuration c2 (line 5) and declare c1 as its parent
configuration (line 6). Finally, we assert that the value of
configuration c2 for the mySetting key should be 0, because it
should inherit this value from c1.

3This implementation was changed and is not available anymore in recent
Pillar distributions because it was a bad idea according to Pillar maintainers.

6

https://github.com/pillar-markup/pillar

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

First Infrastructure and Experimentation in Echo-debugging IWST20, September 29th and 30th, 2020, Novi Sad, Serbia

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

Figure 6. Echo-debugger opened on the Pillar Configuration Bug.

1 PCBTest>>
#testChildConfigurationLooksUpParentConfiguration

2 | c1 c2 |
3 c1 := PCBConfig new.
4 c1 mySetting: 0.
5 c2 := PCBConfig new.
6 c2 parentConfig: c1.
7 self assert: c2 mySetting equals: 0

Listing 1. Test highlighting the Pillar Configuration Bug

This test originally passes, but fails after the following
source code change: the developer adds an instance variable
to the PCBConfig class, with a getter and a setter method. With-
out knowing that the name was already used for a property,
the developer names this variable mySetting. After this change,
the test fails, with the message that the property mySetting of
c2 is nil instead of 0. The test fails because the lookup of my-
Setting on c2 now returns the value of the mySetting variable
(nil) instead of calling the doesNotUnderstand: method as it
used to.

5.3 Echo-debugging the Pillar Configuration Bug
Setup. We run three Pharo runtimes in which we loaded the

Pillar program 4 and the echo-debugger with its companion
communication packages5. We then have:

4https://github.com/dupriezt/PillarConfigBug_Working
5https://github.com/dupriezt/DebuggerCommunication

Working runtime. A working runtime in which no
other code is loaded.
Failing runtime. A failing runtime in which in addi-
tion we loaded the breaking changes6.
Controller runtime. A controller runtime. This is
from this controller runtime that we will drive the
echo-debugging session.

After connecting the runtimes and launching the echo-
debugger, as described in the setup process detailed in Sec-
tion 3.1, we see the echo-debugger UI shown in Figure 6.

Running the CDM algorithm. In the control zone, click-
ing the analyze execution button triggers the CDM algorithm
described in Section 4. The result of the CDM algorithm is
shown in Figure 3.

Investigating the echo-executions. Now we explain step
by step how the echo-executions help us find the root cause
of the problem. Figure 7 contains the relevant screenshots for
the steps listed below, marked in bold in the text.

1. Starting Point. This is the setup code that has been
executed to instantiate a Sindarin debugger on the test
execution. The highlighted statement, about to be ex-
ecuted, is the test execution itself. In this figure and
all the similar ones, the working execution is shown
on the left, while the failing execution is shown on the
right.

6https://github.com/dupriezt/PillarConfigBug_Failing

7

https://github.com/dupriezt/PillarConfigBug_Working
https://github.com/dupriezt/DebuggerCommunication
https://github.com/dupriezt/PillarConfigBug_Failing

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

IWST20, September 29th and 30th, 2020, Novi Sad, Serbia Thomas Dupriez, Steven Costiou, and Stéphane Ducasse

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

Figure 7. Investigating the echo-executions of the Pillar Configuration Bug

8

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

First Infrastructure and Experimentation in Echo-debugging IWST20, September 29th and 30th, 2020, Novi Sad, Serbia

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

2. We step both echo-executions to the First Divergence.
The W execution is in a doesNotUnderstand: method,
while the F execution is in the mySetting: setter method
that was added by the source code change. On the Par-
ent of these Stack Frames, we see that the test exe-
cutions are setting the value of the mySetting property
in configuration c1. We deduce that the configuration
did not understand the mySetting: message in the W
execution, but it did in the F execution. The developer
already expects this, since he just added the mySetting:
setter method on purpose.

3. We step both echo-executions to the First Conver-
gence. We see that after the execution of the mySetting:
message was different between the echo-executions,
they reconverge at the next statement of the test
method. Notice that the W execution took 106 steps
to reach this convergence, while the F execution only
took 9.

4. We step both echo-executions to the Second Diver-
gence. Here, the F execution is about to execute the
whole assertion of the test, while the W execution
is in a doesNotUnderstand method. To have a better
look, we can Restart both echo-executions and step
them until they reach the step just before this diver-
gence event (114 steps for the W execution, 17 for
the F execution). We see that both executions were
about to execute the c2 mySetting statement of the test
assertion. We deduce that this call resulted in a does-
NotUnderstand: in the W execution, while it resulted
in the mySetting getter method being called in the F
execution. Using the debuggers, we separately inspect
the two echo-executions from this point. In the W exe-
cution, doing a few steps shows the configuration c2
not understanding the message mySetting, looking up
its property dictionary, and delegating the lookup to
its parent configuration. In the F execution, we inspect
the c2 configuration object to find that the value of its
mySetting instance variable is nil.

5. We found the cause of the bug: adding a getter for
mySetting on the pillar configuration class caused it to
understand the mySetting message. This prevented the
property lookup from escalading to the parent configu-
ration.

6 Discussion
State differences. A limitation of our solution is that it

only considers differences between the echo-executions in
terms of control-flow. While such differences are important
and helpful, differences in terms of state may also be very
helpful to the developer. For example, recognizing when the
echo-executions have the same control-flow but act on objects
with different states.

Back-in-time debugging. After the CDM algorithm pre-
sented in Section 4 has fully run both executions to detect
when divergence and convergence events occur, the echo-
debugger restarts the echo-executions and steps them forward
to reach the events the developer wants to inspect. This is a
rudimentary form of back-in-time debugging, which assumes
that the echo-executions are deterministic. More advanced
techniques of back-in-time debugging [8, 11, 13, 16] could
be used to remove this assumption.

Optimization of the CDM algorithm. In this paragraph,
we discuss an implementation detail that proved critical in
terms of performance. While our initial implementation of the
CDM algorithm was almost instantaneous for small execu-
tions (around 250 steps), it was very slow for larger executions
(more than 1 hour for around 5 million steps). The biggest
performance bottleneck were the HTTP requests between
the controller and echo-runtimes. The naïve implementation
of the CDM algorithm sends many small HTTP requests to
the echo-runtimes. Among others, one request per step, one
request per AST node comparison to get the AST node, and
one request each time the size of the call stack is needed.
To reduce the number of HTTP requests necessary, we sim-
plified the data needed by the CDM algorithm running in
the controller runtime. With this simplification, we no longer
need the echo-executions to run in parallel. Instead, the echo-
runtimes fully run their echo-executions locally, collecting
the necessary data, and then send this data in big batches to
the controller runtime. The controller runtime then performs
the CDM algorithm offline on the data.
Data simplification: since the CDM algorithm only compares
AST nodes to each other, it does not need the full dictionary
representation of these nodes, and can work simply with the
hashes of these representations. Also, the CDM algorithm
does not need the complete call-stacks of the echo-executions,
it only needs their size. With these two simplifications, the
echo-runtimes fully run their echo-execution locally with no
intervention from the controller runtime. After each execution
step, they log a) the hash of the dictionary representation of
the current AST node and b) the size of the call-stack.
These optimizations reduced the time necessary to run the
CDM algorithm on an execution around 5 million steps long
from more than an hour to 2 minutes.

7 Related Works
Test inputs. Palikareva et al., [14] describe a technique

called Shadow symbolic execution, designed to generate test
inputs that cover new program behavior introduced by a patch.
This technique symbolically executes a test in both program
versions (before and after the patch) and compares these
executions to find test inputs that lead to new behavior in the
patched program and should be tested. This technique requires
the developer to manually annotate the program to merge the

9

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

IWST20, September 29th and 30th, 2020, Novi Sad, Serbia Thomas Dupriez, Steven Costiou, and Stéphane Ducasse

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

old and new versions of the code. The Echo-Debugger does
not have this requirement.

Brumley et al., [4] solve logical formulae created from
two different implementations of the same protocol (for ex-
ample HTTP) to find deviations: inputs such that the output
of the two implementations are semantically different. This
technique produces inputs generating deviations between two
implementations. By contrast, the Echo-Debugger is a tool to
explore how two programs deviate on a given execution.

Delta Debugging and compared execution. Zeller [22,
23] presents the Delta debugging algorithm. This algorithm
takes 2 versions of a program, and a test that was passing in
the old version, but is failing in the new version. Delta de-
bugging uses a divide-and-conquer approach to try multiple
subsets of the code change and find the smallest subset that
turns the test from green to red.

Abramson et al., [1] propose relative debugging, a para-
digm where the developer formulates a set of equality asser-
tions about key data structures in the old and new versions of
a program. The relative debugger is responsible for executing
the two program versions in parallel and report any difference
between the marked data structures. The two major differ-
ences with the Echo-Debugger are that 1) relative debugging
deals with state differences while the Echo-Debugger deals
with control-flow differences and 2) relative debugging re-
quires manual interventions of the developer to mark the data
structures they want to compare, and at which lines of code
in the two programs to perform the comparison.

In the WhyLine [9, 10] tool, the developer asks questions
about a recorded execution. The tool exploit traces to answer
the questions, and tell why a particular variable has or has not
a given value. Recorded divergences and convergences in the
echo-debugger could be leveraged to ask questions about the
execution in order to bring a better understanding of why two
execution diverge.

Pinocchio [20] is a proof-of-concept implementation of a
first-class code interpreter. Developers subclass the default in-
terpreter to add behaviors to the code execution. An example
use case is the creation of a parallel debugger, running two
interpreters in parallel and comparing their state after each
step. As opposed to the Echo-Debugger, the two interpreters
of Pinocchio runs in the same runtime, and can only compare
two executions on the same code base.

Algorithmic debugging. Algorithmic debugging is a tech-
nique proposed in 1982 by E. Y. Shapiro in the context of
logic programming [17, 18]. Algorithmic debugging requires
an oracle to compare execution outputs. These techniques
try to isolate faulty code based on how developers assert the
outputs of faulty and successful executions. An oracle could
be used in the echo-debugger, to ask the developer to assert
if a given convergence or divergence is normal or not (e.g.,
between two program versions). This would help to focus on
convergences and divergences that are relevant for the user,

and ignore mundane differences like semantic-preserving
refactoring.

8 Future Work
As future work to expand the echo-debugger presented in this
paper, we identified 3 main axis.

State Differences. The Echo-debugger presented in this
paper focuses on control-flow differences between the echo-
executions. Another dimension in which two executions can
differ is state (for example in the content of their variables).
Incorporating state differences into the Echo-debugger, possi-
bly inspired by the work of Henry Liberman [12], will make
it paint a more complete picture of the differences between
the executions.

Automated Setup. Setting up an echo-debugging session
is a multi step process that can be tedious. An improvement
axis consists in developing an automated setup tool to create
the three runtimes, load the echo-debugger and its dependen-
cies, run the debugger servers and client, and link them over
HTTP. This tool could for example take as input a link to a
git repository and two commit ids.

Using a Back-in-time Debugger as Back-end. Back-in-
time debuggers are specifically designed to allow faithful
replays of executions. The Echo-debugger requires this fea-
ture, and currently implements it by naïvely replaying the
executions. This works for deterministic, isolated executions,
but not for more complex executions. Using a back-in-time
debugger as back-end will lift this limitation of the Echo-
Debugger.

9 Conclusion
In this paper, we tackled the challenge of debugging two simi-
lar executions in parallel. We proposed the echo-debugger: an
interactive debugger to debug two similar executions running
in different runtimes. We also proposed the Convergence Di-
vergence Mapping algorithm (CDM), an algorithm that fully
runs both executions and compares the AST nodes they are
executing to build a map of when they diverge and converge in
terms of control-flow. This map records how many steps each
echo-execution took to reach each event. The echo-debugger
can then restart the echo-executions and step them to any
event of this map the developer wants to inspect. We showed
on an example how the echo-debugger helps finding the cause
of a vicious bug.

The main limitation of the echo-debugger is that it focuses
on the control-flow differences between the executions, but
ignores the potential difference of state. This constitutes the
main improvement direction of the echo-debugger. Addition-
ally, since the echo-debugger should be able to replay an
execution, the execution should be deterministic. Combining
it with a back-in-time debugger would lift this limitation.

10

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

First Infrastructure and Experimentation in Echo-debugging IWST20, September 29th and 30th, 2020, Novi Sad, Serbia

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

Acknowledgements
This work was supported by Ministry of Higher Education
and Research, Nord-Pas de Calais Regional Council, CPER
Nord-Pas de Calais/FEDER DATA Advanced data science
and technologies 2015-2020.

References
[1] D. Abramson, I. Foster, J. Michalakes, and R. Sosic. Relative debug-

ging and its application to the development of large numerical models.
In In proceedings of IEEE supercomputing, 1995.

[2] T. Arloing, Y. Dubois, D. Cassou, and S. Ducasse. Pillar: A versatile
and extensible lightweight markup language. In International Work-
shop on Smalltalk Technologies IWST’16, Prague, Czech Republic,
Aug. 2016.

[3] A. P. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, and
M. Denker. Pharo by Example. Square Bracket Associates, Kehrsatz,
Switzerland, 2009.

[4] D. Brumley, J. Caballero, Z. Liang, J. Newsome, and D. Song. To-
wards automatic discovery of deviations in binary implementations
with applications to error detection and fingerprint generation. In In
Proceedings of the USENIX Security Conference. USENIX Association,
2007.

[5] S. Costiou. Unanticipated behavior adaptation : application to the
debugging of running programs. Theses, Université de Bretagne occi-
dentale - Brest, Nov. 2018.

[6] S. Ducasse, L. Renggli, and R. Wuyts. SmallWiki — a meta-described
collaborative content management system. In Proceedings ACM Inter-
national Symposium on Wikis (WikiSym’05), pages 75–82, New York,
NY, USA, 2005. ACM Computer Society.

[7] T. Dupriez, G. Polito, S. Costiou, V. Aranega, and S. Ducasse. Sindarin:
A versatile scripting api for the pharo debugger. In DLS’19, Dynamic
Language Symposium, 2019.

[8] C. Hofer. Implementing a backward-in-time debugger. Master’s thesis,
University of Bern, Sept. 2006.

[9] A. J. Ko and B. A. Myers. Designing the whyline: a debugging interface
for asking questions about program behavior. In Proceedings of the
2004 conference on Human factors in computing systems, pages 151–
158. ACM Press, 2004.

[10] A. J. Ko and B. A. Myers. Debugging reinvented: Asking and an-
swering why and why not questions about program behavior. In In
Proceedings of the 30th International Conference on Software Engi-
neering, ICSE 08, 2008.

[11] B. Lewis. Debugging backwards in time. In Proceedings of the Fifth
International Workshop on Automated Debugging (AADEBUG’03),
Oct. 2003.

[12] H. Lieberman. Steps towards better debugging tools for lisp. ACM
Symposium on Lisp and Functional Programming, 1984.

[13] A. Lienhard, T. Gîrba, and O. Nierstrasz. Practical object-oriented back-
in-time debugging. In Proceedings of the 22nd European Conference
on Object-Oriented Programming (ECOOP’08), volume 5142 of LNCS,
pages 592–615. Springer, 2008. ECOOP distinguished paper award.

[14] H. Palikareva, T. Kuchta, and C. Cadar. Shadow of a doubt: Testing for
divergences between software versions. In International Conference
on Software Engineering (ICSE 2016), 2016.

[15] M. Perscheid, B. Siegmund, M. Taeumel, and R. Hirschfeld. Study-
ing the advancement in debugging practice of professional software
developers. Software Quality Journal, 25(1):83–110, 2017.

[16] G. Pothier, E. Tanter, and J. Piquer. Scalable omniscient debugging.
Proceedings of the 22nd Annual SCM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages and Applications (OOP-
SLA’07), 42(10):535–552, 2007.

[17] E. Y. Shapiro. Algorithmic program diagnosis. In Proceedings of
Principles of Programming Languages (Popl), pages 299–308. ACM,
1982.

[18] J. Silva. A survey on algorithmic debugging strategies. Advances in
engineering software, 42(11):976–991, 2011.

[19] I. Sommerville. Software Engineering (6th ed.). Addison-Wesley,
2001.

[20] T. Verwaest, C. Bruni, D. Gurtner, A. Lienhard, and O. Niestrasz.
Pinocchio: bringing reflection to life with first-class interpreters. In
OOPSLA ’10: Proceedings of the ACM international conference on
Object oriented programming systems languages and applications,
2010.

[21] E. W. Wong, R. Gao, R. Abreu, and F. Wotawa. A survey on soft-
ware fault localization. IEEE Transactions on Software Engineering,
42(8):707–740, 2016.

[22] A. Zeller. Yesterday, my program worked. today, it does not. why?
In ESEC/FSE-7: Proceedings of the 7th European software engineer-
ing conference held jointly with the 7th ACM SIGSOFT international
symposium on Foundations of software engineering, pages 253–267,
London, UK, 1999. Springer-Verlag.

[23] A. Zeller. Isolating cause-effect chains from computer programs. In
SIGSOFT ’02/FSE-10: Proceedings of the 10th ACM SIGSOFT sympo-
sium on Foundations of software engineering, pages 1–10, New York,
NY, USA, 2002. ACM Press.

[24] A. Zeller. Why Programs Fail: A Guide to Systematic Debugging.
Morgan Kaufmann, Oct. 2005.

11

	Abstract
	1 Introduction
	2 Comparing Two Similar Executions
	3 The Echo-Debugger and the CDM Algorithm
	3.1 Echo-Debugging Architecture
	3.2 The Echo-Debugger

	4 The CDM algorithm
	5 Example: The Pillar Configuration Bug
	5.1 Starting Knowledge about the Pillar Configuration Bug
	5.2 The test and the source code change
	5.3 Echo-debugging the Pillar Configuration Bug

	6 Discussion
	7 Related Works
	8 Future Work
	9 Conclusion
	References

