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Abstract

In a language like Smalltalk in which objects com-
municate only via message passing, message pass-
ing control is a fundamental tool for the analysis
of object behavior (trace, spying) or for the def-
inition of new semantics (asynchronous messages,
proxy,...). Different techniques exist, from the well
known approach based on the specialization of the
doesNotUnderstand: method to the exploitation
the method lookup algorithm done by the virtual
machine. Until now no comparison between these
techniques has been made. In this article we com-
pare the different techniques taking into account the
reflective aspects used, the scope, the limit and the
cost of the control.
Keywords: message passing control, instance spe-
cialization, doesNotUnderstand:, error handling,
method compilation, anonymous class, minimal ob-
ject

1 Message Passing Control: A
need

Message passing control is the corner stone of a
broad range of applications from application anal-
ysis (trace[BH90, PWG93], interaction diagrams,
class affinity graphs) to the introduction of new lan-
guage features (multiple inheritance[BI82], inter-
faces [Sch96], distributed systems[GGM95, Ben87,
McC87], active objects [Bri89]...). CLOS is one of
the rare languages that made the effort toexplic-
itly provide message passing control at the meta-
level via its MOP [KdRB91, Bec95]. In Smalltalk,
message passing control is not explicitly provided.
However, its reflective capabilities allows one to
define message passing control using various tech-
niques: The best-known is based on the definition of
so calledminimal objectsand the specialization of

the doesNotUnderstand: method [Pas86, Lal90,
PWG93]. Some other techniques exist like the def-
inition of method wrappers [Bra96] or anonymous
classes[McA95].

Up to now, no comparison between these tech-
niques has been made that evaluates their applica-
bility, benefits and drawbacks. This is a problem be-
cause each solution possesses good and bad points
and often people apply a technique without check-
ing all the consequences of their choice.

In this article we compare these techniques tak-
ing into account the reflective aspects used, the con-
trolled objects, the integration of the control into the
programming environment, the limit and the cost
of the control. We start by giving an overview of
the different applications of message passing con-
trol in section 1.1. We define the criteria to com-
pare the different techniques. For the sake of un-
derstanding, we summarize the reflective facilities
of Smalltalk on which such techniques are based.
We then present each main technique in detail: er-
ror handling specialization in section 2, exploiting
the VM method lookup in section 3, and modifica-
tion of the compiled method in section 4. Finally
we conclude with a discussion of message passing
control in other languages.

1.1 Message Passing Control Applica-
tions in Smalltalk

Applications1 which use message passing con-
trol can be roughly sorted into three main cate-
gories. The first isapplication analysis and in-
trospection that is based on the development of
tools that display interaction diagrams, class affin-
ity graphs, graphic traces [BH90, PWG93, Bra96,
Mic96]. The second category isSmalltalk language

1Due to the space limitation we limited this short overview to
the use of message passing control in Smalltalk.
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extension. In such a case message passing con-
trol allows one to define new features from within
the language itself: Garf [GGM95], Distributed
Smalltalk [Ben87] or [McC87] introduce object dis-
tribution in a transparent manner. Language fea-
tures like multiple inheritance [BI82], backtrack-
ing facilities [LG88], instance-based programming
[Bec93b, Bec93a, Hop94], Java interfaces [Sch96]
or inter-objects connections [DBFP95] have been
introduced. Futures [Pas86, Lal90] or atomic mes-
sages [FJ89, McA95] are also based on message
passing control capabilities. The third category
is the definition of new object models, introducing
concurrent aspects such as active objects (Actalk
[Bri89]) and synchronization between asynchronous
messages (Concurrent Smalltalk [YT87]). Other
work proposes new object models like the compo-
sition filter model [ABV92] or CodA that is a meta-
object protocol that controls all the activities of dis-
tributed objects [McA95].

1.2 Selected Reflective Features of
Smalltalk

Even if Smalltalk is a reflective language [GR89,
FJ89, Riv96], it is not possible to change all its as-
pects. Indeed, the virtual machine (VM) defines the
way the objects are represented in memory, and how
messages are handled. As message passing control
implementations have to use the reflective facilities
offered by the VM, we now summarize them.

The Smalltalk dialects referenced are: Visual-
Works (previously named ObjectWorks from Par-
cPlace newly ObjectShare), IBM Smalltalk (inte-
grated into the VisualAge environment of IBM) and
VisualSmalltalk (previously Smalltalk/V then Parts
of Digitalk). Note that the examples will be pre-
sented using VisualWorks and that we will discuss
the other solutions when there are significant differ-
ences.

Reification and Dynamic Creation. In
Smalltalk, classes and methods are objects and
are described by classes. It is not only possible,
as in Java [Fla97], to access to the information
that represents such entities but also to modify and
dynamically create instances of these classes.

In VisualWorks, classes are dynamically created
by invoking the methodsubclass:instanceVaria-
bleNames:classVariableNames:poolDictiona-
ries:category: of the classClass. It is possible to
access and modify the inheritance link, the method
dictionary and the methods defined in method
dictionary of a class (methodssuperclass, super-

class:, methodDictionary:, compiledMethodAt:
of the classBehavior in VisualWorks).

bytes
mclass
sourceCode
1
2

aCompiledMethod

aMethodDictionaryOrderedCollection
methodDict
...

[

#[21 68 68...]

collect: aBlock
    |newCollection|
    newCollection := self  copyEmpty: self size
    ...

#copyEmpty
16666918

...

#add:       CompiledMethod
#collect   

aClass

Figure 1: Relationship between class, method dic-
tionary and compiled method in VisualWorks. The
collect: method of theOrderedCollection class.
The instance variablesourceCode holds an index
that is used by the source manager to retrieve the
source code for the method.

In VisualWorks, methods are instances of the
CompiledMethod class. They can be created
by invoking the methodcompile:notifying: of
classBehavior. As shown in figure 1, they are
stored in the class method dictionary. A compiled
method defines information to access its source code
(sourceCode), its compiled byte codes (bytes), the
class that compiled it (mclass) and a variable part
called theliteral frameof the method that contains
Smalltalk literal objects, such as the symbols, ar-
rays, numbers, byte-arrays and blocks defined in the
method.

Note that the source code of a method is stored
separately from its byte codes and that a method
only needs its byte codes to be executed. The
method source can be changed without changing
the executable byte codes of the method. More-
over, a compiled method is similar to a Lisp lambda-
expression because it does not know its selector. To
know the name of a method (its selector) the class
for which it was compiled is asked. A compiled
method can be executed without being defined in a
method dictionary.

Finally, it is possible to invoke a given method
without first doing dynamic dispatch (methods
valueWithReceiver:arguments: of class Com-
piledMethod in VisualWorks andexecuteWithRe-
ceiver:andArguments in IBM Smalltalk). Note
that this last functionality did not exist in the first
implementations of Smalltalk. This recent addition
explains why only a few implementations are based
on this possibility.
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Moreover, the methodperform:with: defined on
the classObject allows one to explicitly send a mes-
sage to any object in the system.anObject per-
form: #zork with:12 sends toanObject the mes-
sage whose selector iszork and argument12.

Changing Reference. Thebecome: primitive al-
lows one to change object references. After invok-
ing a become: b all the pointers that pointed on
a point to b and conversely. Note that the seman-
tics of this primitive depends on the Smalltalk im-
plementations: it is symmetric in VisualWorks and
asymmetric in IBM Smalltalk.

Changing of Class. An object can dynamically
change its class, from asourceclass to atargetclass.
This change can be perceived as pointer swap when
the two classes possess the same instance struc-
ture. In VisualWorks the methodchangeClassTo-
ThatOf: takes as argument an object whereas in
IBM Smalltalk the methodfixClassTo: takes a
class. The implementors of VisualWorks are then
sure that the target class is an instantiable class with-
out having to test this at the VM level. The change
of class is only possible if the format of the source
and target classes are compatible. The format of one
class describes the memory layout of its instances
(methodsformat, setFormat: defined on theBe-
havior class in VisualWorks, andinstanceShape,
instanceShape: defined on the classClass in IBM
Smalltalk).

Message Reification and Error Handling Spe-
cialization. When an object receives an unknown
message, the Smalltalk virtual machine sends the
doesNotUnderstand: message to this object with
the reification of the message leading to this er-
ror. On the classObject the methoddoesNotUn-
derstand: raises an exception which, if it is not
trapped (unhandled exception), opens the debugger.
This method can be specialized to support message
passing control as will be shown in 2.

The reification of the message is done by the VM
by creating an instance of the classMessage. For
example, the message3 zork: 4 leads to the invo-
cation of3 doesNotUnderstand: aMessage for
whichaMessage possesses the following informa-
tion:

aMessage selector -> #zork:
aMessage arguments -> #(4)

A deontological remark. Some of the functional-
ities presented above and used in the techniques to
be described are qualified asprivatein the Smalltalk

versions and therefore are subject to change. It is
common use and good style not to use such private
methods. However, the internal aspects of the pre-
sented techniques imply their use. We stress that if
such methods would had been really private some
interesting techniques would have been simply im-
possible.

1.3 Three Main Techniques

First of all message passing control is not limited to
the definition of auxiliary methods executed before
and after the controlled method. Indeed, a full mes-
sage control should be able to modify the original
arguments, to change the semantics of the message
as in remote-calls or even to refuse the execution of
a method [DBFP95].

We identified 6 different techniques to implement
message passing control. However, some of them
are difficult to reproduce or lead to unportable code.
That’s why we briefly present and sort these tech-
niques before describing the selected ones.

1. Source code modification. One way to control
message passing is to instrument the code via source
code modification and recompilation. In case of im-
plementing a control similating CLOS-like before
and after methods, a controlled methodsetX:setY:
could look as follows after source code modifica-
tion. As the object responsible for the message pass-
ing control is not necessarily the receiver itself, we
use an ellipsis to represent it. For example, in the
case of meta-object approaches [McA95], the re-
ceiver is not its own controller.

setX: t1 setY: t2
...before
Original source code
...after

Note that one might try to use the methodaBlock
valueNowOrOnUnwindDo: anotherBlock that
allows one to trap the return out of a method. This
method evaluatesaBlock (the receiver) and when
this block exits, it evaluatesanotherBlock. How-
ever, this is not appropriate, because, as we stated
earlier, the execution of the controlled method can
be delegated to the message passing control and not
limited to additional actions like before and after
method executions. Note that to simplify the pre-
sentation we will present controlling method body in
case of a control simulating before and after CLOS-
like methods and we will discuss how this can ex-
tended to full control.
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The main drawbacks of this technique are: All
controlled methods have to be reparsed and recom-
piled. Moreover, another recompilation is needed to
reinstall the original method. This technique is not
applicable in deployed or stripped images in which
scanners and compilers have been removed.

2. Byte code extension. Smalltalk is based on a
byte-code interpreter [GR89, IKM+97], so it is pos-
sible to add new byte-code in order to introduce new
message passing semantics, like in the Concurrent
Smalltalk approach [YT87]. However as the result-
ing interpreter is no longer standard and the applica-
tions are no longer portable, we do not discuss this
technique.

3. Byte code modification. Another way to con-
trol message passing is to directly insert new byte-
code representing the control into the compiled
method byte-codes [MB85]. However, implement-
ing this technique is far from simple. More impor-
tant, it heavily relies on knowledge of the byte code
instructions used by the virtual machines. These
codes are not standardized and can change.

4. Specialization of error handling. The idea
is to encapsulate controlled objects into so called
minimal objectsthat do not understand messages
and to specialize thedoesNotUnderstand: method
[Pas86, Bri89, PWG93] (see section 2).

5. Exploiting the VM method lookup implemen-
tation. This is realized by explicit subclassing or
by the introduction of anonymous classes in the in-
stantiation chain [FJ89, McA95, Mic96, Riv97], or
by the definition of a method dictionary array in
VisualSmalltalk [Bec93b, Bec93a, Pel96] (see sec-
tion 3).

6. Method substitution. The idea is to change
the compiled method associated to the selector in
class method dictionary [BH90, Bra96, Riv97] (see
section 4).

The three last techniques can be implemented
from within the language itself at a reasonable level
of abstraction and, they are portable. That’s why we
only will present and compare them in detail in the
following sections.

Note that we take into account only those tech-
niques that introduce a control ofstandardmessage
passing from the language itself. The key point here
is that we want to control objects already defined in
the Smalltalk language. Therefore we exclude ap-
proaches based on meta-interpreters that define their
own explicit message sending [Coi90].

Remark. Message reification allows a particular
interpretation of the message semantics such as
asynchronous messages [Fer89]. However, message
reification on its own does not allow one to con-
trol specific objects [Fer89, DBFP95]. Moreover, as
mentioned by Adele Goldberg in [GR89] message
reification has only been introduced in Smalltalk
for error handling due to efficiency reasons. Nev-
ertheless, the combination of message reification
and instance-based control techniques offers a wide
range of possibilities. For example, in CodA mes-
sage passing control is implemented using the tech-
nique 5, but the message reification provided by the
technique 4 is also used for the various message se-
mantics offered in CodA [McA95].

1.4 Some Comparison Criteria

To compare the techniques on a common basis we
propose the following comparison criteria.

Control granularity. Sometimes it is necessary to
only control one specific message sent to one spe-
cific object. In other cases, all the messages sent
to a set of objects should be controlled (note that
objects can share the same message passing control
definition without belonging to the same class).

So a control can be applied to all the instances of
one class in a similar manner, or only to certain in-
stances, or only one instance. We call the first pos-
sibility a class-based control, the second agroup-
based controland the third one aninstance-based
control.

Moreover, we qualify a control asglobal if all the
messages sent to an instance are controlled, asclass-
basedif all the methods of the class of the object are
controlled and asselectiveif it is possible to only
control certain specific messages.

Environment Integration. Since Smalltalk im-
plementations offer rich programming environ-
ments, we also consider the impact of the techniques
on the proposed tools. It is important to know if
the browsers and their functionality (senders, imple-
mentors, messages, class references, instance vari-
able references,. . . ) continue to work after applying
the message passing technique.

Efficiency. To compare the execution costs we
consider that the code executed during the control,
such as a display in a trace, to be constant for all
the techniques. The cost takes into account only
the mechanism used to control the invoked method.
Moreover, we evaluate if the process requires meth-
ods to be recompiled during the installation of and
during the reinstallation of the original methods.
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Definition Cost. Finally we should mention if the
proposed solution is easy to implement or if it needs
quite complex mechanisms.

Glossary. Controlling entities (classes and meth-
ods) are those that implement the message passing
control.Original entities are those that are normally
executed in absence of control.

2 Error Handling Specialization

As presented in 1.2, when an object receives an un-
known message the methoddoesNotUnderstand:
is invoked. The technique consists of definingmin-
imal objectsthat will encapsulate the object being
controlled. A minimal object is an object for which
ideallyeach message provokes an error. Note that to
be viable in the Smalltalk environment such an ob-
ject should possess a minimal set of methods that do
not lead to an error. We use thebecome: primitive
to substitute the object to be controlled by a minimal
object that encapsulates it.

The figure 2 illustrates the message passing con-
trol: (1) the original message is sent, (2) the VM
invokes the methoddoesNotUnderstand: and (3)
the original method is executed.

anObj

(3)

(2)
Understand: aMessage
capsule doesNot

a capsule
or a spy

anObj m
(1)

controlled object

VM

old reference

new reference

Figure 2: Installation of minimal objects and mes-
sage passing control by generation and control of
errors.

Note that the use of thebecome: primitive is
only necessary when one needs to controlexist-
ing objects of the Smalltalk library [Pas86, Lal90,
PWG93, GGM95]. In [Ben87, McC87], the goal is
not to control predefined objects but to define con-
trollable objects, so the reference exchange is not
necessary: messages are controlled because they are
simply unknown for the object. Note that for this
particular case the methods inherited fromObject
class should be recompiled to include control and
substitute primitives calls by controllable methods
[McC87].

2.1 Minimal Object

The creation of aminimal object[Bri89, PWG93],
also namedcapsuleor encapsulator, is based on the
creation of a class that does not inherit fromOb-
ject class. Doing so all the messages sent to an
instance of such class invoke thedoesNotUnder-
stand: method and then are controlled. The code
to invoke the original method can be the following
one:

MinimalObject>>doesNotUnderstand: aMessage
...”control specific actions”
originalObject perform: aMessage selector

withArguments: aMessage arguments
...

The creation of classes that inherit fromnil
(the unique instance of theUndefinedObject class
whose value means referring to nowhere) does not
lead to the desired solution. Indeed Smalltalk al-
lows the creation of new root inheritance classes.
To do so, the class creation protocol is redefined on
the classUndefinedObject to permit the creation
of class that does not inherit from any other class.
However, to integrate such classes in the Smalltalk
environment, Smalltalk defines a specialized version
of thedoesNotUnderstand: method that automati-
cally and lazily copies the methods from theObject
class. We then obtain an incremental copy ofObject
class.

The right technique to create a minimal object
is the following: (1) creation of a subclass ofOb-
ject, (2) assignment of the superclass link tonil and
(3) definition of the minimal behavior by copying
the needed methods fromObject. Here follows the
code taken from Actalk [Bri89].

MinimalObject class>>initialize
superclass := nil.
#(doesNotUnderstand: error: ˜˜ isNil =

== printString printOn: class inspect basicInspect
basicAt: basicSize instVarAt: instVarAt:put:)

do: [:selector | self recompile: selec-
tor from: Object]

2.2 Problems

This approach implies three main problems identi-
fied by [PWG93].

The self problem. The variableself is a pseudo-
variable with which objects refers to themselves
without using explicit pointers. Messages that an
object sends to itself are not redirected to the min-
imal object and thus not controlled. Moreover, this
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problem appears not only when an object sends mes-
sages to itself. In fact a message can only be con-
trolled if: (1) the message is not sent by the object
itself and (2) the reference from the sender of the
message to the receiver of the message (the origi-
nal object) was not installed via a reference toself
[PWG93]. The authors of Spies [PWG93] proposed
a delicate and costly solution based on the dynamic
analysis of the execution stack to detect if the mes-
sages sent should or should not be controlled.

Class Control. Control of classes is impossible
because classes can not be swapped by objects of
different nature. TheClassBuilder usesbecome:
when a class is incrementally defined but the swap
is done between two classes.

Minimal Object. As already mentioned a mini-
mal object should define a minimal set of meth-
ods such asclass, isKindOf,=, ==, instanceVarAt:,
myDependents... This leads to the problem of the
interpretation by the minimal object of messages
that were initially destined for the controlled object.
The problem is double because not only is the mes-
sage executed by the minimal object but the con-
trolled object does not receive the message.

Pascoe proposed a heavy solution that consists
in fully duplicating the inheritance hierarchy and to
prefix all the methods destined for minimal objects
with an E [Pas86]. Even if such a solution works
well, it is heavy to set up and uses lots of memory.

2.3 Discussion

This approach proposes aninstance-based control
with a global granularity: all the methods are con-
trolled. Contrary to other approaches that presup-
pose the knowledge of the messages that should be
controlled, this approach is the only one to offer the
ability to control all the sent messages. It is not
mandatory to know in advance the potentially con-
trollable messages.

In addition to the above mentioned problems this
approach is not efficient as shown in 5.1. Indeed,
the control is based on the error of the lookup of
the method associated with the message. Thus each
control needs one additional lookup and a double
traversal of the execution stack due to exception
handling. Moreover, each control implies a message
instance creation.

This approach is simple to implement when one
does not attempt to solve all its inherent problems
such as those linked to the identity of the object.

3 Exploiting of the VM Method
Lookup Algorithm

In object-oriented programming, the standard ap-
proach for specializing behavior is subclassing. In
Smalltalk, when an object receives a message, the
lookup of the method starts in object class and fol-
lows the inheritance link. Thesuper variable allows
one to invoke overridden methods. Its semantics is
to start the lookup in the superclass of the class in
which the method was found.

Controlling sent messages is possible by interpos-
ing between the object and its original class a new
class that specializes the looked up methods. This
can be achieved by an explicit traditional subclass-
ing (see figure 3) or an implicit subclassing based on
anonymous classes associated to each instances and
a class change (see figure 4).

Common Principle. This approach is composed
by three aspects: (1) creation of the controlling class
that will be interposed between the object and its
original class, (2) definition of controlling methods
in that class and (3) class change (see in 1.2). Con-
trolling methods should have the same selectors as
the original methods.

3.1 Explicit Subclassing

The interposed class is created by invoking the class
creation definition method. Moreover, an original
method can be invoked by the controlling method
by use of thesuper variable.

The newly created class can be inserted usingsu-
perclass: into the class hierarchy, so the subclasses
can benefit from the control of the methods. To sup-
port a control of all the instances of the class, the
reference to the original class in the system dictio-
nary class should be changed to refer the subclass.

Discussion. The control offered by this approach
is a group-basedor class-basedcontrol and pos-
sesses aselectivegranularity. Note that it could be
possible to create as many classes as controlled in-
stances but this would result in a proliferation of ex-
plicit classes.

The control is removed by another class change
(see in 1.2). The execution cost is equal to the cost
of a method execution. The main drawback of this
solution is the creation of an explicit class, so this
solution is not transparent from the point of view of
the controlled objects.
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aCMethod

aCMethod

aClass

’Point’

aClass

’CPoint’

aMethodDictionary

#m1

aMethodDictionary

#m1

a controlling method 
invoking the original

the original method

2@2

1@1 4@4

3@3

Figure 3: Explicit subclassing to control message
passing. TheCPoint class defines its own method
dictionary containing controlled methods. Thus,
1@1 and 4@4 are controlled whereas3@3 and
2@3 are not controlled.

3.2 Implicit Subclassing

Another solution is to interpose an anonymous class
between the object and its class and to define con-
trolling methods local to this specific object as
shown by Fig. 4.

aCMethod

aClass
’’

aClass
’’

a controlling method 
invoking the original

aCMethod

aMethodDictionary

#m1

aCMethod

aMethodDictionary

#m1 a controlling method 

aMethodDictionary

#m1

aClass

’Point’

the original method

2@2

1@1

3@3

Figure 4: Implicit subclassing using anonymous
classes to provide instance-based control message
passing in VisualWorks.

The following steps define the control installa-
tion:

1. Create an anonymous class,nCl, instance
of Behavior2 in VisualWorks or instance of
Class in IBM Smalltalk.

2. Copy the class instance description (format)
from the class tonCl and assign the inheritance
link of nCl to the original class of the object.

2According to McAffer, Peter Deutsch mentioned that the
classBehavior had been originally designed to allow such im-
plementations [McA95] p. 68.

3. Change the class of the instance to refer tonCl.

4. Compile in nCl the methods that should be
controlled.

VisualWorks Implementation. A possible instal-
lation of the control is illustrated in the following
example method. The line number corresponds to
the previous mentioned steps.

Object>>specialize
| nCl|

(1) nCl := Behavior new
(2) setInstanceFormat: self class format;
(2) superclass: self class;

methodDictionary: MethodDictionary new.
(3) self changeClassToThatOf: nCl basicNew

The fourth step is implemented by invoking the
methodcompile:notifying: of the classBehavior
with a string representing the controlling method.
Such a method source code can be automatically
generated. In the case of a control implementing
before and after CLOS-like methods, the control-
ling method for the method namedsetX:setY: could
look like:

anAnonymousClass>>setX: t1 setY: t2
... before

super setX: t1 setY: t2
... after

IBM Smalltalk Implementation. Joseph Pelrine
in [Pel96] describes a similar implementation:

Object>>specialize
| nCl|

(1) nCl := Class new
(2) superclass: self class;
(2) instanceShape: self class instanceShape
(2) instVarNames: self class instVarNames;

setMethodDictionary: MethodDictionary new.
(3) self fixClassTo: class

Integration and semantics ofclass. A good inte-
gration into the programming environment redefines
locally in the anonymous class theclass method.
Without that the control cannot be transparent: a
user could ask for theoriginal class and obtain
the anonymousclass. This method can be com-
piled on the anonymous class as shown in the fol-
lowing method. Note that an access to the anony-
mous class is also compiled.basicCompile: is a
method that invokes in a protected manner thecom-
pile:notifying: method defined in superclasses of
the original class.
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AnonymousClass>>installEssentialMethods
self basicCompile: ’class ˆ super class superclass’.
self basicCompile: ’isControlled ˆ true’.
self basicCompile: ’anonymousClass ˆ super class’

Invocation of the original method. The original
method could be invoked from within the control-
ling method defined in the anonymous class. An ob-
vious solution is to directly invoke the method using
thesuper variable. However such a solution is only
possible if the control is done by the receiver via the
anonymous class implementation and not by another
object like in CodA [McA95] or in FLO [DBFP95].

A possible solution in that case is to define the call
to the original method via a block ([super selector
args]) that will be activated later by avalue method.
This solution is costly because this kind of block
closure cannot be optimized by the compiler. An-
other solution is to refer to the compiled method in-
stance in the controlling method using the same trick
as in MethodWrapper (see 4.2) and invoke directly
the method (valueWithReceiver:arguments:).

When the control is done by another object (like
a meta-object), the following code can be automat-
ically generated for the original method with se-
lector setX:setY:. Here the meta-object defines a
methodcontrol:call:withArgs: that effectively does
the control.

anAnonymousClass>>setX: t1 setY: t2
ˆ self meta control: #setX:setY:

call: [super setX: t1 setY: t2]
withArgs: (Array with: t1 with: t2)

Figure 5: Relationship between instances, classes,
method dictionaries and compiled methods in Vi-
sualSmalltalk: 15@10 an instance ofPoint does
not refer to its class directly. It refers to an array
of method dictionaries to which the classPoint also
refers to as method dictionary.

3.3 The VisualSmalltalk Solution

Contrary to VisualWorks and IBM Smalltalk, in
which each object refers to its class that has a
method dictionary, in VisualSmalltalk, each object
refers to an array of method dictionaries. Such an
array can be shared amongst all the instances of
a class. Each method dictionary possesses an in-
stance variable calledclass referring to the class to
which it belongs as shown in 5. The method dictio-
naries are sorted from the class to its superclasses.
This different implementation allows one to control
message passing by using the VM method lookup
[Bec93b, Bec93a, Pel96] as shown in fig. 6.

In VisualSmalltalk controlling a message sent to
a specific instance is done by the following steps:
(1) creation of a copy of method dictionary array of
the object, (2) in the first place of this array addition
of a new method dictionary and (3) definition of the
controlling methods in this method dictionary.

Figure 6: Instance specialization in VisualSmalltalk:
15@10 is controlled whereas24@6 is not.

Object>>isSpecialized
ˆself methodDictionaryArray
== self class methodDictionaries

Object>>specialize
self isSpecialized ifTrue:[ˆself].
self addBehavior: MethodDictionary new.

Object>>specialize: aString
| assoc|
self specialize.
assoc := Compiler compile: aString in: self class.
self methodDictionaryArray first add: assoc

The argumentaString represents the source of a
controlling method.

3.4 General Discussion

The technique based on anonymous classes is briefly
mentioned in [FJ89], that qualified such classes as
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lightweightclasses, and in CodA [McA95]. McAf-
fer uses this technique to implement meta-objects
and to control message passing. Ernest Micklei pro-
posed a similar approach [Mic96]. However the
meta-class is also controlled and his approach is
more complex. NeoClasstalk uses this technique
coupled with a method code change to implement
dynamic specialization [Riv97] (see in 4.3).

These approaches support bothinstance-based
control andselectivecontrol. Note that they can also
supportclass-based, orgroup-basedcontrol by shar-
ing the anonymous class amongst the controlled ob-
jects. Moreover, when all the instances of a given
class have to share the same control, the method
allInstances can be used to access to the instances
of the original class.

These approaches are at the same time flexible
and efficient as shown in 5.1. The lookup and ex-
ecution of methods defined by the VM are used
at their optimum. As the control is not based on
method lookup failure, the cost is only one addi-
tional method execution. However, these techniques
can only control methods that are known in advance
to be controlled.

The implementation of these approaches is rela-
tively simple and adaptable in the various dialects.
However, an error during the installation can ir-
reparably break the system. Indeed method dictio-
naries and format of the instances are crucial in-
formation for the VM. Moreover, method compila-
tion is not necessary to install the control because
the controlling methods can be copied and installed
from predefined method skeletons (see 4.2). There-
fore these techniques have a good installation speed
and can be applied on deployed applications.

Finally, as a last important point, these methods
do not raise the problem of object identity because
the receiver of a controlled message is the object it-
self (see in 2.2).

4 Method Substitution
In Smalltalk, the methods defined in a class are
stored in a method dictionary associated with the
class. Such a dictionary associates each method se-
lector (a symbol) with an instance of classCom-
piledMethod as shown in fig. 1.

As shown in figure 7, changing the compiled
method associated with a selector supports message
passing control. TRACER [BH90] and Method-
Wrappers [Bra96] use this technique. NeoClasstalk
[Riv97] generalizes it. The original method can be
simply stocked in the method dictionary associated
with another symbol as in TRACER or it can be en-

capsulated in the controlling method like in Method-
Wrappers.

4.1 Hidden Methods

Another technique to control message passing is
to associate a new selector (Xm1 in Fig. 7) with
the original method and to associate a controlled
method with the original method selector (m1) in
the method dictionary. In case of before and after
CLOS-like methods a controlling method could be
schematically as:

aClass>>setX: t1 setY: t2
...before...
self XsetX: t1 setY: t2
... after....

a controlling method 
invoking the original

aClass

’Point’
aCMethod

aCMethod

aMethodDictionary

#setX:setY:
#XsetX:setY:

2@21@1

the original method

Figure 7: Addition of a new selector that refers to
the controlled method and association.

As compiled methods do not refer explicitly to
their selector, it is not necessary to recompile the
methods when they are associated with different se-
lectors. Moreover, the installation of the controlled
methods can be done by copying method skeletons
and changing some method information: if we com-
pare two controlling methods, the only difference is
that they send different selectors to invoke their orig-
inal methods. The selector that is used for such an
invocation can be easily changed by replacing it in
the method’s literal frame. Therefore, to install a
controlling method from a skeleton one only needs
to change the selector, to set up themclass instance
variable to refer to the class (see 1.2) and to change
the source code to refer to the source code of the
original method.

4.2 MethodWrappers

The previous solution has the serious drawback of
introducing new selector-method associations in the
method dictionary and to polluting the interface of
the controlled object class. Although it is unlikely
that a user will invoke a hidden method, this solution
is not good when inspecting the system. Method-
Wrappers is a clever approach that does not stock
the original methods in the method dictionary of the
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controlled objects class but in the compiled meth-
ods themselves [Bra96]. Instead of creating a new
association selector-compiled method, the original
method is substituted by a method that encapsulates
the original one – the wrapper has a reference to the
original method as shown in Fig. 8.

4.2.1 Definition.

The following code describes the class Method-
Wrapper subclass ofCompiledMethod. The in-
stance variableclientMethod refers to the original
method andselector represents the original method
selector.

CompiledMethod variableSub-
class #MethodWrapper

instanceVariableNames: ’clientMethod selector’
classVariableNames: ’’
poolDictionaries:’’
category: ’Method Wrappers’

As shown by the control of the methodcolor of
the classPoint below, the class methodon:inClass:
returns a wrapped method that can further be in-
stalled on a compiled method by invoking the
methodinstall.

(MethodWrapper on: #color inClass: Point) install

aMethodDictionary

#m1

aClass

’Point’

1@12@2 mclass
sourceCode copyEmpty:

....

aMethodWrapper
mclass
clientMethod
sourceCode

aCMethod
1

Figure 8: After installation: the original method is
encapsulated into a method wrapper.

MethodWrapper class also specializes the
methodvalueWithReceiver:arguments to intro-
duce message passing control as follows. Note
that in such a case the control is limited to before
and after method executions implemented by helper
methodbeforeMethod andafterMethod.

WrapperMethod>>valueWithReceiver: anObject ar-
guments: args

self beforeMethod.
ˆ [clientMethod valueWithReceiver: object

arguments: args]
valueNowOrOnUnwindDo: [self afterMethod]

A controlling method definition ensures that the
methodvalueWithReceiver:arguments: is called.
The following method source, that is automatically
generated, shows how the arguments are managed.

aClass>>originalSelector: t1
| t2|
(t2 := Array new: 1) at: 1 put: t1.
ˆ#() valueWithReceiver: self arguments: t2

When a message is sent to an object, it is neces-
sary to invoke certain methods on the method wrap-
per itself (like valueWithReceiver:arguments in
the previous code). But Smalltalk does not offer
a pseudo-variable to refer to the current invoked
method. Instead of using thethisContext pseudo-
variable that costly reifies the method execution con-
text, the author of MethodWrappers modifies the lit-
erals of the method wrapper. He uses the#() literal
object in the previous code to reserve place to put a
reference during the installation to the method wrap-
per itself. Note that using theself pseudo-variable
in the source code of the prototype shown above was
not the right solution becauseself represents the ob-
ject on which the method was invoked and not the
method itself.

As in the hidden method approach, MethodWrap-
pers do not need to be compiled to be installed. The
controlling method can be copied from a method
skeleton having the same number of arguments.
Then, themclass instance variable, the literal and
the clientMethod should be set. Moreover, to be
fully and transparently integrated in the Smalltalk
environment, the source code of the controlling
method references the source code of controlled one
as shown in Fig. 8.

4.3 NeoClasstalk

NeoClasstalk is a new implementation of Smalltalk
that introduces explicit meta-classes [Riv97]. Neo-
Classtalk allows the definition of class properties
such as method trace, instance variable access trace
and pre- and post- conditions. These properties
are based on acontrolled modification of method
source code. It proposes a framework for the com-
position of the different control policies. A meta-
programmer can specify a part of the method source
code that will be automatically compiled in the con-
trolled methods.

The NeoClasstalk implementation uses similar
techniques to MethodWrapper (prototype and lit-
eral modification) but gives the control to the class.
Moreover, NeoClasstalk uses a dynamic change of
class based on the definition of anonymous classes

10



(as shown in 3.2).

Control Definition. In NeoClasstalk the execu-
tion of a method is invoked by the methodexecute:-
receiver:arguments: defined on the classAb-
stractClass. The definition (source code) of
this method is defined by the methodgenerate-
BodyOn: of the classTemporalComposition.

Let us suppose that we want to define a mes-
sage passing control that realizes a trace of the
invoked methods. To do so, we define a new
classTraceAllMessages (subclass ofTemporal-
Composition) and we specialize the methodgen-
erateApplyBodyOn: that controls a part of the
method source code generation ofexecute:recei-
ver:arguments:. The following code shows the ad-
dition of the textual definition (source code part) of
a trace to the normal method definition. The last line
ensures that the normal behavior of the method will
be added in this definition.

TraceAllMessages>>generateApplyBodyOn:aStream
aStream nextPutAll: ’| window|

window := self transcript.
cm printNameOn: window.
window cr; endEntry.’.

super generatedApplyBodyOn: aStream

To control the classPoint one should invoke the
temporalComposition: method as follows:.

TraceAllMessages new temporalComposition: Point.

TraceAllMessages new creates an implicit class
with method wrappers. temporalComposition:
Point changes the class of the classPoint so that
it will be instance of the classTraceAllMessages.

A part of the Framework. As shown below,
the methodapplyMethod defined on the class
TemporalComposition specifies the definition of
the source code of the methodexecute:receiver:-
arguments:. A part of this definition is under
the responsibility of the methodgenerateApply-
BodyOn:. The methodapplyMethod ensures a se-
mantic context of the generated method such as the
insurance that the original method will be invoked
(as shown by the messagesuper execute:... be-
low).

TemporalComposition>>applyMethod
”rec is the receiver, args are the arguments
of the method, cm is the currently reified method”

| ws|
ws := (String new: 100) writeStream.
ws nextPutAll: ’execute: cm receiver: rec argu-
ments: args’;crtab;

nextPutAll: ”system generated method”;cr;crtab.
self generateBodyOn:ws. ”<-
the method to override”
ˆ ws contents

TemporalComposition>>generateApplyBodyOn:aStr

aStr crtab;
nextPutAll: ’ˆ super execute: cm receiver: rec ar-

guments: args’

Note that by changing the methodgenerateAp-
plyBodyOn: it is also possible to change the com-
plete semantics of the control.

4.4 Discussion

These techniques possess aclass-basedcontrol and
a selectivegranularity. Indeed all the instances of
a class are controlled without the ability to select
them. The control execution cost is the cost of a
method execution.

The first solution based on the definition of new
association selector/method in the method dictio-
nary polluted the interface of the objects. This prob-
lem does not appear with the other approaches. Neo-
Classtalk takes in charge the recompilation of the
methods and proposes a well defined context for the
definition and the composition of the method con-
trol. However, its solution is complex, and this com-
plexity is not due to the concepts used as the auto-
matic recompilation, but by the framework defini-
tion based on explicit meta-classes3. Contrary to the
other approaches the reproduction of the mechanism
is difficult.

Finally, contrary to the approach based on iden-
tity change, the main advantage of message passing
control by means of anonymous classes (see in 3.2)
or method wrappers (MethodWrappers and Neo-
Classtalk) is that the tools defined in the browsers
such as (implementors, senders...) continue to fully
function.

3Note that NeoClasstalk proposes tools for selecting class
properties that simplifies the life of the lambda programmer.
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5 Summary and Conclusion
Before presenting how other object-oriented lan-
guages support message passing control, we sum-
marize and compare the techniques.

5.1 Overview
The following table gives a quick overview of the
presented techniques in terms of the criteria de-
fined in 1.4. We present here only the main or de-
fault characterics. For a deeper analysis, the reader
should refer to the previous discussions. Theen-
tity column refers to the granularity of the control
that states which entities can be controlled, themes-
sagecriteria shows if all or some messages can be
controlled, the last criteria establishes if the solu-
tion is well integrated in the Smalltalk environment
in terms of browser functionality (senders and im-
plementors) and transparency from the user point of
view.

Technique entity message integration
Error han-
dling

instance-
based

global average

Explicit
Subclassing

group-
based

selective average

Anonymous
Class

instance-
based

selective good

Hidden
Methods

class-
based

selective bad

Method
Wrapper

class-
based

selective good

NeoClasstalk class-
based

class good

The next table compares the different approaches
for the runtime overhead. These tests were per-
formed on a Power Mac 7100/166 with 24MB
memory using Visualworks2.5. The results are the
mean over five series of 10000 calls with 0,1,2 and
3 arguments. Moreover, during our numerous tests
such results show some variability, therefore we
consider that a difference up to 10 milliseconds is
not really significant.

Technique 0 1 2 3
Explicit Subclass-
ing

40.0 40.0 46.6 39.8

Anonymous Class 40.0 40.2 43.2 43.2
Hidden Methods 40.0 43.2 43.2 43.4
Method Wrapper 200 233 243.4 250
Inlined Method
Wrapper

100 126 140 153

Error handling 213.4 229 233.4 240

As we can expect, the comparison shows that the
techniques based on the explicit and implicit sub-

classing (anonymous classes) have the same over-
head. Moreover, these two techniques have the same
overhead than the technique based on hidden meth-
ods. It shows that the lookup of the method viasu-
per in the two first approaches is equivalent to the
lookup viaself in the hidden method approach. This
is not surprising in presence of method cache mech-
anisms performed by the Virtual Machine. This
comparison shows that the technique based on error
handling is five times slower. The method wrapper
approach has the same cost. This situation comes
from the fact that method wrappers must create ar-
rays for their arguments and that in our tests we
do not remove the call of thevalueNowOrOnUn-
windDo: method.

As an experiment, we change the Method
Wrapper’s implementation, the controlling method
continued to call the methodvalueWithRe-
ceiver:arguments: but we remove the call to the
methodvalueNowOrOnUnwindDo:. The results,
named Inlined Method Wrapper are two times faster
than the normal Method Wrapper. Moreover, this
approach could be optimized by inlining in the call
inside the controlling method body instead of calling
the methodvalueWithReceiver:arguments: de-
fined on the classMethodWrapper.

5.2 Message Passing Control in Other
Languages.

CLOS is the object system integrated into Common
Lisp. It is one of the few class based languages to of-
fer the ability to define instance specific methods us-
ing theeql specializer[Kee89]. Moreover CLOS is
also one of the rare languages to provide a meta ob-
ject protocol (MOP) in which message passing con-
trol is an entry point [KdRB91].

In CLOS the message passing concept is replaced
by the generic function4 The CLOS MOP allows
one to control all the aspects of the generic func-
tion application: the application of the generic func-
tion (compute-discriminatingfunction), the appli-
cation of the effective method (compute-effective-
method-function) or the application of a single
method composing the effective method (compute-
method-function).

In the prototype based languages, Moostrap al-
lows a message passing control based on the defi-
nition of a reflective protocol: object meta-object is
responsible for the method lookup and application

4A generic function is a group of methods. During the appli-
cation of a generic function, methods from that group are selected
to constitute an effective method application. This is the effective
method that is executed.
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[MC93].
In the realm of less flexible languages, the defi-

nition of OpenC++ -that can be perceived in its last
version as an open compiler [Chi95] - shows the in-
terest for a control of message passing. More re-
cently, the definition of MetaJava offers the ability
to control message passing in Java [Gol97]. In this
implementation anonymous classes calledshadow
classesare interposed between the instance and its
original class (see in 3.2). However, in the new
version called MetaXa, the interpreter is extended
by the introduction of new byte-codes. As a direct
consequence MetaXa’s applications are no longer
portable.

Java in its newest version 1.1 reified certain as-
pects of the language such as the classes, the meth-
ods and the instance variables (see Core Reflection
API [Fla97]). However, this reification isonly in-
trospective reflection. Indeed, the classesField,
Method andConstructor are declared as final. This
implies that they cannot be specialized. Moreover,
only the Java VM can create new instances of these
classes. Only the value of the instance variables can
be modified and the methods can be invoked using
the handle() method. Such an approach was nec-
essary to offer tools comparable to the Smalltalk
browsers in Java. However, this reification is not
causally connected to the language. There is no pos-
sibility to modify the methods or the classes from
within the language itself. This means the reflective
facilities are not really adapted to extend or modify
the language.

5.3 Conclusion

This comparison highlights that the most com-
monly used technique based on the specialization of
the doesNotUnderstand: method is not the best
one. As a first explanation of this situation, one
should note that the ability to directly execute a
method has only lately been introduced in the inter-
preters (methodsvalueWithReceiver:arguments:
on CompiledMethod class in VisualWorks and
executeWithReceiver:andArguments: in IBM
Smalltalk). Moreover, this comparison shows that
the techniques based on VM lookup method or
method wrappers should be considered by more pro-
grammers than it is currently the case.

The reflective aspects of Smalltalk and their
causal connection to the language itself offer strong
advantages for the language extensions or modifica-
tions5. We illustrate them by showing how message

5A reflective aspect of a language is said causal if any change
in the reified aspect immediately influences the represented as-

passing control is possible by different approaches.
This study shows the power offered by languages
like CLOS or Smalltalk that provide reflective facil-
ities that are not limited to introspective reflection
like in the new version of Java (1.1).
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