Evaluating Message Passing Control Techniques in Smalltalk

Stéphane Ducasse
Software Composition Group, UniveraitBern
ducasse@iam.unibe.ch
http://www.iam.unibe.ch/ ~ducasse/

Appeared in JOOP (Journal of Object-Oriented Programming) June 1999

Abstract the doesNotUnderstand: method [Pas86, Lal90,
PWG93]. Some other techniques exist like the def-
In a language like Smalltalk in which objects cominition of method wrappers [Bra96] or anonymous
municate only via message passing, message pakssses[McA95].
ing control is a fundamental tool for the analysis Up to now, no comparison between these tech-
of object behavior (trace, spying) or for the dehiques has been made that evaluates their applica-
inition of new semantics (asynchronous messagegity, benefits and drawbacks. This is a problem be-
proxy,...). Different techniques exist, from the weltause each solution possesses good and bad points
known approach based on the specialization of thad often people apply a technique without check-
doesNotUnderstand: method to the exploitationing all the consequences of their choice.
the method lookup algorithm done by the virtual |n this article we compare these techniques tak-
machine. Until now no comparison between theggy into account the reflective aspects used, the con-
techniques has been made. In this article we cofgs|ied objects, the integration of the control into the
pare the different techniques taking into account thgogramming environment, the limit and the cost
reflective aspects used, the scope, the limit and $fethe control. We start by giving an overview of
cost of the control. the different applications of message passing con-
Keywords: message passing control, instance spgo| in section 1.1. We define the criteria to com-
cialization, doesNotUnderstand:, error handling, pare the different techniques. For the sake of un-
method compilation, anonymous class, minimal Oerstanding, we summarize the reflective facilities
Ject of Smalltalk on which such techniques are based.
We then present each main technique in detail: er-
. . ror handling specialization in section 2, exploiting
1 Message Passmg Control: Athe VM method lookup in section 3, and modifica-
need tion of the compiled method in section 4. Finally
we conclude with a discussion of message passing

Message passing control is the corner stone ofc@ntrolin other languages.
broad range of applications from application anal-

ysis (trace[BH90, PWG93], interaction diagrams, . .
class affinity graphs) to the introduction of new Iarﬁ"l I_\/Iess_age Passing Control Applica-
guage features (multiple inheritance[BI82], inter- tions in Smalltalk

faces [Sch96], distributed systems[GGM95, Ben8
McC87], active objects [Brig89]...). CLOS is one 0
the rare languages that made the effortetglic-
itly provide message passing control at the me
level via its MOP [KdRB91, Bec95]. In Smalltalk,
message passing control is not explicitly provide
However, its reflective capabilities allows one t
define message passing control using various te
niques: The best-known is based on the definition of ipye to the space limitation we limited this short overview to
so calledminimal objectsand the specialization ofthe use of message passing control in Smalltalk.

pplications which use message passing con-
rol can be roughly sorted into three main cate-
ories. The first isapplication analysis and in-
rospectionthat is based on the development of
&ools that display interaction diagrams, class affin-
ty graphs, graphic traces [BH90, PWG93, Bra96,
Sﬂ_c%]. The second category &malltalk language

extension In such a case message passing carlass:, methodDictionary:, compiledMethodAt:
trol allows one to define new features from withif the clasBehavior in VisualWorks).

the language itself: Garf [GGM95], Distributed
Smalltalk [Ben87] or [McC87] introduce object dist aClass

tribution in a transparent manner. Language fega-OrderedCollection | - aMethodDictionary

tures like multiple inheritance [BI82], backtrack-| menedbict Horld.__ComplledMethod
ing facilities [LG88], instance-based programming
[Bec93b, Bec93a, Hop94], Java interfaces [Sch96]

or inter-objects connections [DBFP95] have beg¢n aCompiledMethod

introduced. Futures [Pas86, Lal90] or atomic mes- 16666915 En;%%cwe _#El 68 68...]
sages [FJ89, McA95] are also based on message (1" o scopyEmpty
passing control capabilities. The third categofy oot aBlock 2

is the definition of new object modelsmtroducing Co|naNboII§C(:tion

concurrent aspects such as active objects (Actalk [pQNCOII&tion = self copyEmpty: self size
[Bri89]) and synchronization between asynchronous
messages (Concurrent Smalltalk [YT87]). Othefigure 1: Relationship between class, method dic-
work proposes new object models like the comp@onary and compiled method in VisualWorks. The
sition filter model [ABV92] or CodA that is a meta-collect: method of theOrderedCollection class.
object protocol that controls all the activities of disThe instance variablsourceCode holds an index
tributed objects [McA95)]. that is used by the source manager to retrieve the
source code for the method.

1.2 Selected Reflective Features of In VisualWorks, methods are instances of the

Smalltalk CompiledMethod class. They can be created

Even if Smalltalk is a reflective language [GR8Y Invoking the methodcompile:notifying: of
FJ89, RivO6], it is not possible to change all its aglass Behavior. - As shown in figure 1, they are
pects. Indeed, the virtual machine (VM) defines tigred in the class method dictionary. A compiled
way the objects are represented in memory, and hBgthod defmeg mforma_tlon to access its source code
messages are handled. As message passing coff@jircecode), its compiled byte codesytes), the
implementations have to use the reflective facilitiéd@Ss that compiled itnfclass) and a variable part
offered by the VM, we now summarize them. called theliteral frame of the method that contains
The Smalltalk dialects referenced are: VisuapMalltalk literal objects, such as the symbols, ar-
Works (previously named ObjectWorks from Paf@yS: numbers, byte-arrays and blocks defined in the
cPlace newly ObjectShare), IBM Smalltalk (inteM€thod. .
grated into the VisualAge environment of IBM) and NOte that the source code of a method is stored
VisualSmalltalk (previously Smalltalk/V then PartSeParately from its byte codes and that a method
of Digitalk). Note that the examples will be preOnly needs its byte codes to be executed. The
sented using VisualWorks and that we will discud@€thod source can be changed without changing

the other solutions when there are significant diffef?€ executable byte codes of the method. More-
ences. over, a compiled method is similar to a Lisp lambda-

expression because it does not know its selector. To

Reification ~and Dynamic Creation. In know the name of a method (its selector) the class
Smalltalk, classes and methods are objects diod which it was compiled is asked. A compiled
are described by classes. It is not only possibieethod can be executed without being defined in a
as in Java [Fla97], to access to the informatianethod dictionary.
that represents such entities but also to modify andFinally, it is possible to invoke a given method
dynamically create instances of these classes. without first doing dynamic dispatch (methods

In VisualWorks, classes are dynamically creataclueWithReceiver:arguments: of class Com-
by invoking the methodubclass:instanceVaria- piledMethod in VisualWorks andexecuteWithRe-
bleNames:classVariableNames:poolDictiona- ceiver:andArguments in IBM Smalltalk). Note
ries:category: of the clasClass. It is possible to that this last functionality did not exist in the first
access and modify the inheritance link, the metharplementations of Smalltalk. This recent addition
dictionary and the methods defined in methogkplains why only a few implementations are based
dictionary of a class (methodsiperclass, super- on this possibility.

Moreover, the methogderform:with: defined on versions and therefore are subject to change. It is
the clasbject allows one to explicitly send a mes-common use and good style not to use such private
sage to any object in the systenanObject per- methods. However, the internal aspects of the pre-
form: #zork with:12 sends tcanObject the mes- sented techniques imply their use. We stress that if
sage whose selectorzerk and argument2. such methods would had been really private some

interesting techniques would have been simply im-

Changing Reference. Thebecome: primitive al- Eossible.

lows one to change object references. After invo
ing a become: b all the pointers that pointed on
a point tob and conversely. Note that the semart.3 Three Main Techniques
tics of this primitive depends on the Smalltalk im-
plementations: it is symmetric in VisualWorks andFirst of all message passing control is not limited to
asymmetric in IBM Smalltalk. the definition of auxiliary methods executed before

] .) and after the controlled method. Indeed, a full mes-
Changing of Class. An object can dynamically sage control should be able to modify the original
change its class, fromsourceclass to dargetclass. grguments, to change the semantics of the message
This change can be perceived as pointer swap whedin remote-calls or even to refuse the execution of
the two classes possess the same instance stigyethod [DBFPY5].
ture. In VisualWorks the methochangeClassTo- e jgentified 6 different techniques to implement

ThatOf: takes as argument an object whereas {Roqqaqe passing control. However, some of them
IBM Smalltalk the methodfixClassTo: takes a g gifficult to reproduce or lead to unportable code.
class. The implementors of VisualWorks are thefy,a¢s why we briefly present and sort these tech-
sure that the target class is an instantiable class WIH’ilques before describing the selected ones.
out having to test this at the VM level. The change
of class is only possible if the format of the sourcg¢ gqrce code modification. One way to control
and target classes are compatible. The format of Qfigssage passing is to instrument the code via source
class describes the memory layout of its instancgsye modification and recompilation. In case of im-
(methodsformat, setFormat: defined on théBe- plementing a control similating CLOS-like before
havior class in VisualWorks, anthstanceShape, 54 after methods, a controlled methsetX:setY:
instanceShape: defined on the clagSlass in IBM ¢4 |00k as follows after source code modifica-
Smalitalk). tion. As the object responsible for the message pass-
Message Reification and Error Handling Spe- ing contro! is.not necessarily the receiver itself, we
cialization. When an object receives an unknowHS€ an ellipsis to represent it. For example, in the
message, the Smalltalk virtual machine sends thaSe Of meta-object approaches [McA95], the re-
doesNotUnderstand: message to this object withC&IVer is notits own controller.
the reification of the message leading to this eggtX: t1 setY: t2
ror. On the clas®bject the methoddoesNotUn- pefore
derstand: raises an exception which, if it is not Original source code
trapped (unhandled exception), opens the debuggerafter
This method can be specialized to support message
passing control as will be shown in 2. Note that one might try to use the methalock

The reification of the message is done by the VMalueNowOrOnUnwindDo: anotherBlock that
by creating an instance of the cldgessage. For allows one to trap the return out of a method. This
example, the messagezork: 4 leads to the invo- method evaluateaBlock (the receiver) and when
cation of 3 doesNotUnderstand: aMessage for this block exits, it evaluateanotherBlock. How-
which aMessage possesses the following informaever, this is not appropriate, because, as we stated
tion: earlier, the execution of the controlled method can
aMessage selector -> #zork: pe _delegated t_o_ the message passing control and not
aMessage arguments -> #(4) limited to addltllonal actions like before_ and after

method executions. Note that to simplify the pre-

sentation we will present controlling method body in
A deontological remark. Some of the functional- case of a control simulating before and after CLOS-
ities presented above and used in the techniquedike methods and we will discuss how this can ex-
be described are qualified psvatein the Smalltalk tended to full control.

The main drawbacks of this technique are: ARemark. Message reification allows a particular
controlled methods have to be reparsed and recamterpretation of the message semantics such as
piled. Moreover, another recompilation is needed &synchronous messages [Fer89]. However, message
reinstall the original method. This technique is naeification on its own does not allow one to con-
applicable in deployed or stripped images in whidiol specific objects [Fer89, DBFP95]. Moreover, as
scanners and compilers have been removed. mentioned by Adele Goldberg in [GR89] message

> B d ion. Smalltalk is based reification has only been introduced in Smalltalk
- Byte code extension. Smalltalk is based on ag, . o pq handling due to efficiency reasons. Nev-

byte-code interpreter [GR89, IKWB7], so itis pos- ertheless, the combination of message reification

sible to add new byte—codg n or_der.to introduce N€¥d instance-based control techniques offers a wide
message passing semantics, like in the Concurrg&tt]ge of possibilities. For example, in CodA mes-
Smalltalk approach [YT87]. However as the resulg—age passing control is implemented using the tech-

i_ng interpreter is no longer standard and the appli fique 5, but the message reification provided by the
tlonhs are no longer portable, we do not discuss tIﬂl@chnique 4 is also used for the various message se-
technique. mantics offered in CodA [McA95].

3. Byte code modification. Another way to con-

trol message passing is to directly insert new byt¢-4 Some Comparison Criteria

code representing the control into the compiled

method byte-codes [MB85]. However, implementl0 compare the techniques on a common basis we
ing this technique is far from simple. More imporPropose the following comparison criteria.

tant, it heavily relies on knowledge of the byte codgqnirol granularity. Sometimes it is necessary to
instructions used by the virtual machines. The%gny control one specific message sent to one spe-
codes are not standardized and can change. cific object. In other cases, all the messages sent
4. Specialization of error handling. The idea to a set of objects should be controlled (note that

is to encapsulate controlled objects into so call@P€Cts can share the same message passing control
minimal objectsthat do not understand messagéi€finition without belonging to the same class).
and to specialize théoesNotUnderstand: method So a control can be applied to all the instances of

[Pas86, Brig9, PWG93] (see section 2). one class in a similar manner, or only to certain in-
stances, or only one instance. We call the first pos-

5. Exploiting the VM method lookup implemen- sibility a class-based contrpthe second @roup-
tation. This is realized by explicit subclassing opased controland the third one aimstance-based
by the introduction of anonymous classes in the igontrol.

stantiation chain [FJ89, McA95, Mic96, Riv97], or Moreover, we qualify a control agobalif all the
by the definition of a method dictionary array inmessages sent to an instance are controllerlaas-
VisualSmalltalk [Bec93b, Bec93a, Pel96] (see sepasedf all the methods of the class of the object are
tion 3). controlled and aselectiveif it is possible to only

6. Method substitution. The idea is to changeContrOI certain specific messages.

the compiled method associated to the selectorEmvironment Integration. Since Smalltalk im-
class method dictionary [BH90, Bra96, Riv97] (seplementations offer rich programming environ-
section 4). ments, we also consider the impact of the techniques
on the proposed tools. It is important to know if
The three last techniques can be implementéte browsers and their functionality (senders, imple-
from within the language itself at a reasonable leveientors, messages, class references, instance vari-
of abstraction and, they are portable. That's why vable references,...) continue to work after applying
only will present and compare them in detail in ththe message passing technique.
following sections. Effici T th " i
Note that we take into account only those tech- iciency. 10 compare fhe execution costs we
nigues that introduce a control sfandardmessage consider thgt the cpde executed during the control,
i . . such as a display in a trace, to be constant for all
passing from the language itself. The key point he{ﬁe techni :
: : ' ques. The cost takes into account only
s that we want to control objects already defined me mechanism used to control the invoked method
the Smalltalk language. Therefore we exclude aR/I_oreover we evaluate if the process requires meth;
proache; pased on meta—in'terpret(_ars that define tr})ecig to be,recompiled during the installation of and
own explicit message sending [Coi90]. during the reinstallation of the original methods.

4

Definition Cost. Finally we should mention if the 2.1 Minimal Object

proposed solution is easy to implement or if it needs) o))
quite complex mechanisms. The creation of aninimal objecBri89, PWG93],

also nameaapsuleor encapsulatoris based on the

Glossary. Controlling entities (classes and meth€réation of a class that does not inherit frd-
ods) are those that implement the message passffg ¢lass. Doing so all the messages sent to an

control. Original entities are those that are normalljStance of such class invoke tdeesNotUnder-
executed in absence of control. stand: method and then are controlled. The code

to invoke the original method can be the following
one:

2 Error Handling Specialization MinimalObject>>doesNotUnderstand: aMessage
..."control specific actions”

P]r_iginaIObject perform: aMessage selector
withArguments: aMessage arguments

As presented in 1.2, when an object receives an u
known message the methddesNotUnderstand:
is invoked. The technique consists of definmq-
imal objectsthat will encapsulate the object being The creation of classes that inherit fromil

controlled. A minimal object is an object for which(the unique instance of tHandefinedObject class
ideally each message provokes an error. Note that{f,ose value means referring to nowhere) does not
be viable in the Smalltalk environment such an osq 1o the desired solution. Indeed Smalltalk al-
ject should possess a minimal set of methods that Qs the creation of new root inheritance classes.
not lead to an error. We use thecome: primitive 14 45 50, the class creation protocol is redefined on
to _subsntute the object to _be controlled by a minimgl o classUndefinedObject to permit the creation
object that encapsulates it. of class that does not inherit from any other class.
The figure 2 illustrates the message passing cQfiowever, to integrate such classes in the Smalltalk
trol: (1) the original message is sent, (2) the VMpyironment, Smalltalk defines a specialized version
invokes the methodoesNotUnderstand: and (3) of thedoesNotUnderstand: method that automati-

the original method is executed. cally and lazily copies the methods from tBéject
class. We then obtain an incremental cop@bfect
old reference - acepalle class. . _ . _
/ or aspy The right technique to create a minimal object
controlled object is the following: (1) creation of a subclass Ob-

anCbj """ ‘>© ject, (2) assignment of the superclass linkniband

(3)\/\ X anthj m (3) definition of the minimal behavior by copying
Y @) the needed methods fro®bject. Here follows the

capsul e doesnot ™\ VM code taken from Actalk [Brig9].

Under st and: al\/tessage‘(‘z)‘ ==

new reference

MinimalObject class>>initialize
superclass := nil.
Figure 2: Installation of minimal objects and mes#(doesNotUnderstand: error: ™ isNil =
sage passing control by generation and control of== printString printOn: class inspect basiclnspect
errors. basicAt: basicSize instVarAt: instVarAt:put:)
do: [:selector | self recompile: selec-
Note that the use of thbecome: primitive is {©Or from: Object]
only necessary when one needs to congwist-
ing objects of the Smalltalk library [Pas86, Lal90

PWG93, GGMO5]. In [Bens?, McC87), the goal i&-2 - roPlems

not to control predefined ObjeCtS but to define COlT‘hiS approach |mp||es three main prob'ems identi_
trollable objects, so the reference exchange is fRld by [PWG93].

necessary: messages are controlled because they are

simply unknown for the object. Note that for thisThe self problem. The variableself is a pseudo-
particular case the methods inherited fr@bject variable with which objects refers to themselves
class should be recompiled to include control amdthout using explicit pointers. Messages that an
substitute primitives calls by controllable methodsbject sends to itself are not redirected to the min-
[McC87]. imal object and thus not controlled. Moreover, this

problem appears not only when an object sends mas- Exploiting of the VM Method
sages to itself. In fact a message can only be con- ;

trolled if: (1) the message is not sent by the object LOOkup Algorlthm
itself and (2) the reference from the sender of tt?e

message to the receiver of the message (the Or@_object—onented programming, the standard ap-

nal object) was not installed via a referencesedf roach for specializing behavior is subclassing. In
%malltalk, when an object receives a message, the

[PWG93]. The authors of Spies [PWG93] propos .)
a delicate and costly solution based on the dynai‘?@kuD OT the methoql starts in ObJeCt. class and fol-
lows the inheritance link. Theuper variable allows

analysis of the execution stack to detect if the me 10 invok dd thods. It fes i
sages sent should or should not be controlled. one o INvoke overriaden methods. 1is semantics 1

to start the lookup in the superclass of the class in
o _ which the method was found.
Class Control. Control of classes is |mpos§|ble Controlling sent messages is possible by interpos-
because classes can not be swapped by object§,gfhenween the object and its original class a new
different nature. ThelassBuilder usesbecome: o aqq that specializes the looked up methods. This
when a class is incrementally defined but the swa, e achieved by an explicit traditional subclass-
is done between two classes. ing (see figure 3) or an implicit subclassing based on
anonymous classes associated to each instances and

Minimal Object. As already mentioned a mini-a class change (see figure 4).
mal object should define a minimal set of meth-
ods such aslass, isKindOf,=, ==, instanceVarAt:;, Common Principle. This approach is composed
myDependents... This leads to the problem of thepy three aspects: (1) creation of the controlling class
interpretation by the minimal object of messagaRat will be interposed between the object and its
that were initially destined for the controlled objecriginal class, (2) definition of controlling methods
The problem is double because not only is the m&f-that class and (3) class change (see in 1.2). Con-
sage executed by the minimal object but the coftolling methods should have the same selectors as
trolled object does not receive the message. the original methods.

Pascoe proposed a heavy solution that consists
in fully duplicating the inheritance hierarchy and to
prefix all the methods destined for minimal object8.1 Explicit Subclassing
with an E [Pas86]. Even if such a solution works

well, it is heavy to set up and uses lots of memory.The interposed class is created by invoking the class
creation definition method. Moreover, an original

.) method can be invoked by the controlling method
2.3 Discussion by use of thesuper variable.

The newly created class can be inserted using

This approach proposes amstance-based control i .
with a global granularity: all the methods are Cor]perclass. into the class hierarchy, so the subclasses
) can benefit from the control of the methods. To sup-

trolled. Contrary to other approaches that presu ort a control of all the instances of the class, the

pose the knowledge of the messages that ShOUIdreFerence to the original class in the system dictio-

Il hi his th I ffer th
co_n.tro ed, this approach is the only one to o . ert neary class should be changed to refer the subclass.
ability to controlall the sent messages. It is not

mandatory to know in advance the potentially con-.))
trollable messages. D|scu55|on.b Th((ebconltrol %ffereg: byt thlls agproach
In addition to the above mentioned problems thjg & 9rOUP-Pasedor class-basedontrol and pos-

approach is not efficient as shown in 5.1. IndeetESSes gelectivegranularity. Note that it could be

the control is based on the error of the lookup &bssmle to create as many classes as controlled in-

the method associated with the message. Thus eg%%?tcszssugsthls would resultin a proliferation of ex-

control needs one additional lookup and a doubrl)e h i db h | h
traversal of the execution stack due to exceptionT e control is removed by another class change

handling. Moreover, each control implies a messaé?ee in 1.2). The ex_ecut|on COSt, is equal to the CC,’St
instance creation. a method execution. The main drawback of this

This approach is simole to implement when Onseolution is the creation of an explicit class, so this
P P Imp solution is not transparent from the point of view of
does not attempt to solve all its inherent problem)

such as those linked to the identity of the object. the controlled objects.

6

aClass aMethodDictionary 3. Change the class of the instance to refer@h

‘Point'| = [#ml |+—= aCMethod
7 =
the original method

Ve
3@s3 .-

-
2@2 2Class aMethodDictionary

a controlling method
.'(;(invoking the original
@1 4@4

4. Compile innCl the methods that should be
controlled.

VisualWorks Implementation. A possible instal-
lation of the control is illustrated in the following
example method. The line number corresponds to
the previous mentioned steps.

Object>>specialize

Figure 3: Explicit subclassing to control message | ”Clul_ havi

passing. TheCPoint class defines its own method?) NC! = Behavior new

e . 2) setlnstanceFormat: self class format;
dictionary containing controlled methods. Thu

2) superclass: self class;
1@1 and4@4 are controlled wherea3@3 and methodDictionary: MethodDictionary new.
2@3 are not controlled.

(3) self changeClassToThatOf: nCl basicNew

The fourth step is implemented by invoking the
methodcompile:notifying: of the classBehavior
Another solution is to interpose an anonymous clagséth a string representing the controlling method.
between the object and its class and to define cd&uch a method source code can be automatically
trolling methods local to this specific object agenerated. In the case of a control implementing

3.2 Implicit Subclassing

shown by Fig. 4.

aClass gMethodDictionary
'Point’ #ml | 4= aCMethod
v L=

the original method

3@3

aMethodDictionary
#ml a controlling method
aClass aCMethod

aMethodDictionary

before and after CLOS-like methods, the control-
ling method for the method namedtX:setY: could
look like:

anAnonymousClass>>setX: t1 setY: t2
... before

super setX: t1 setY: t2
... after

IBM Smalltalk Implementation. Joseph Pelrine
in [Pel96] describes a similar implementation:

.‘ aClass #ml | aCMethod
’ 1 . ject>> iali
1@1 E/ a controlling method Objecél specialize
4 invoking the original | nCl]
v (1) nCl:=Class new
2@2 2) superclass: self class;
2) instanceShape: self class instanceShape
Figure 4: Implicit subclassing using anonymoug) instvarNames: self class instvVarNames;

classes to provide instance-based control message

passing in VisualWorks.

setMethodDictionary: MethodDictionary new.
(3) self fixClassTo: class

The following steps define the control installa-

tion:

Integration and semantics ofclass. A good inte-
gration into the programming environment redefines

of Behavior? in VisualWorks or instance of Without that the control cannot be transparent. a

Class in IBM Smalltalk.

user could ask for theriginal class and obtain
the anonymous<lass. This method can be com-

2. Copy the class instance description (formabjled on the anonymous class as shown in the fol-
from the class tmCl and assign the inheritancdowing method. Note that an access to the anony-
link of nCl to the original class of the object. mous class is also compiledasicCompile: is a

2According to McAffer, Peter Deutsch mentioned that the

method that invokes in a protected mannerdbm-

classBehavior had been originally designed to allow such imPile:notifying: method defined in superclasses of

plementations [McA95] p. 68.

the original class.

AnonymousClass>>installEssentialMethods 3.3 The VisualSmalltalk Solution

self basicCompile: class ~ super class superclass’. Contrary to VisualWorks and IBM Smalltalk, in
self basicCompile: “isCantrolled " true’. _which each object refers to its class that has a
self basicCompile: "anonymousClass ” super class’ om0 dictionary, in VisualSmalltalk, each object
refers to an array of method dictionaries. Such an
array can be shared amongst all the instances of
Invocation of the original method. The original a class. Each method dictionary possesses an in-
method could be invoked from within the controlstance variable calledass referring to the class to
ling method defined in the anonymous class. An otrhich it belongs as shown in 5. The method dictio-
vious solution is to directly invoke the method usingaries are sorted from the class to its superclasses.
thesuper variable. However such a solution is onlyrhis different implementation allows one to control
possible if the control is done by the receiver via th@essage passing by using the VM method lookup
anonymous class implementation and not by anotljBec93b, Bec93a, Pel96] as shown in fig. 6.
object like in CodA [McA95] or in FLO [DBFP95]. In VisualSmalltalk controlling a message sent to
A possible solution in that case is to define the c&} SPecific instance is done by the following steps:
to the original method via a blocguper selector (1) creation of a copy of method dictionary array of
args]) that will be activated later byaalue method. e object, (2) in the first place of this array addition
This solution is costly because this kind of blocRf @ Néw method dictionary and (3) definition of the
closure cannot be optimized by the compiler. Arfontrolling methods in this method dictionary.

other solution is to refer to the compiled method i

stance in the controlling method using the same trick aboint anArray
as in MethodWrapper (see 4.2) and invoke direcﬂlyfa,,tm,,:(l,asi s — | aMethod
the methodyalueWithReceiver:arguments:). point v 10 with controlled
When the control is done by another object (likg aClass aMothod
a meta-object), the following code can be automat- —— anArray " Dictionary
ically generated for the original method with S€-methods =y aMethod
lector setX:setY:. Here the meta-object defines a aPoi Dictionary
methodcontrol:call:withArgs: that effectively does Clasi' .
the control. v 24 normal
anAnonymousClass>>setX: t1 setY: t2
~ self meta control: #setX:setY: Figure 6: Instance specialization in VisualSmalltalk:
call: [super setX: t1 setY: t2] 15@10 is controlled wherea®4@6 is not.

withArgs: (Array with: t1 with: t2)

Object>>isSpecialized
“self methodDictionaryArray

aPoint == self class methodDictionaries
class —
x| 15 | AUy aMecthodDictionary | Object>>specialize
Y| 10 // self isSpecialized ifTrue:["self].
self addBehavior: MethodDictionary new.
aClass |
aMcthY)dDictionary Object>>specialize: aString
hame ’POiV/t’ #m1| = aCompilcdMcthod | assoc]
mcthods self specialize.

assoc := Compiler compile: aString in: self class.

#m2 | aCompiledMcthod S .
™~ ' self methodDictionaryArray first add: assoc

Figure 5: Relationship between instances, classesype argumendaString represents the source of a
method dictionaries and compiled methods in Vbontrolling method.

sualSmalltalk: 15@10 an instance ofPoint does
not refer to its class directly. It refers to an arra@.4 General Discussion
of method dictionaries to which the claBsint also

refers to as method dictionary. The technique based on anonymous classes is briefly

mentioned in [FJ89], that qualified such classes as

lightweightclasses, and in CodA [McA95]. McAf- capsulated in the controlling method like in Method-
fer uses this technique to implement meta-objedtérappers.

and to control message passing. Ernest Micklei pro-]

posed a similar approach [Mic96]. However thé.1 Hidden Methods

meta-class is also controlied and his approaChAﬁother technique to control message passing is

more complex. NeoClasstalk uses this technlqyg associate a new selectofngl in Fig. 7) with

couplegl with a mEthOd cgde chang'e to |mpleme{p]te original method and to associate a controlled
dynamic specialization [Riv7] (sge in 4.3). method with the original method selectanl) in
These approaphes support batfstance-based the method dictionary. In case of before and after
control andselectivecontrol. Note that they can a|SOCLOS_|ike methods a controlling method could be
supportlass-basegrgroup-basedontrol by shar- chematically as:
ing the anonymous class amongst the controlled o%- '
jects. Moreover, when all the instances of a giverClass>>setX: t1 setY: t2
class have to share the same control, the methodbefore...
allinstances can be used to access to the instanceself XsetX: t1 setY: t2
of the original class. .. after...
These approaches are at the same time flexible
and efficient as shown in 5.1. The lookup and ek-
ecution of methods defined by the VM are use = i
at their optimum. As the cont)r/ol is not based op-2ont HoRX ety : ..;hgpglrgmﬁgg
method lookup failure, the cost is only one add T X SXCsetY: —>< Method
tional method execution. However, these techniques A . acontrolli?%T%
can only control methods that are known in advante 1@1 2@2 invoking the original
to be controlled.

The implementation of these approaches is relgigure 7: Addition of a new selector that refers to
tively simple and adaptable in the various dialectge controlled method and association.
However, an error during the installation can ir-) .
reparably break the system. Indeed method dictio-AS compiled methods do not refer explicitly to
naries and format of the instances are crucial if1€ir selector, it is not necessary to recompile the
formation for the VM. Moreover, method Comp"a_methods when they are associated with different se-
tion is not necessary to install the control becaul!@tors. Moreover, the installation of the controlled
the controlling methods can be copied and install§¢thods can be done by copying method skeletons
from predefined method skeletons (see 4.2). Theffld changing some method information: if we com-
fore these technigues have a good installation spd¥tf€ two controlling methods, the only difference is
and can be applied on deployed applications. Fhat they send different selectors Fo invoke their orig-

Finally, as a last important point, these method@@! methods. The selector that is used for such an
do not raise the problem of object identity becauddvocation can be easily changed by replacing it in

the receiver of a controlled message is the object {fle Method's literal frame. Therefore, to install a
self (see in 2.2). controlling method from a skeleton one only needs

to change the selector, to set up thelass instance

P— variable to refer to the class (see 1.2) and to change

4 Method Substitution the source code to refer to the source code of the

In Smalltalk, the methods defined in a class a@giginal method.

stored in a method dictionary associated with the

class. Such a dictio_nary as_:sociates each method&;_ez MethodWrappers

lector (a symbol) with an instance of cla€om-

piledMethod as shown in fig. 1. The previous solution has the serious drawback of
As shown in figure 7, changing the compilethtroducing new selector-method associations in the

method associated with a selector supports messagzhod dictionary and to polluting the interface of

passing control. TRACER [BH90] and Methodthe controlled object class. Although it is unlikely

Wrappers [Bra96] use this technique. NeoClasstdhat a user will invoke a hidden method, this solution

[Riv97] generalizes it. The original method can bis not good when inspecting the system. Method-

simply stocked in the method dictionary associatéirappers is a clever approach that does not stock

with another symbol as in TRACER or it can be erthe original methods in the method dictionary of the

lass aMethodDictionary

controlled objects class but in the compiled meth- A controlling method definition ensures that the
ods themselves [Bra96]. Instead of creating a nemethodvalueWithReceiver:arguments: is called.
association selector-compiled method, the origin@he following method source, that is automatically
method is substituted by a method that encapsulagesmerated, shows how the arguments are managed.
the original one — the wrapper has a reference to the

original method as shown in Fig. 8. |61:32Ir135>>0r|g|naISeIector: t

(t2 := Array new: 1) at: 1 put: t1.
“#() valueWithReceiver: self arguments: t2

4.2.1 Definition.

The following code describes the class Method-

Wrapper subclass dEompiledMethod. The in- When a message is sent to an object, it is neces-

stance variablelientMethod refers to the original sary 1o invoke certain methods on the method wrap-

method andelector represents the original method©" |tself_ (like valuewithReceiver:arguments in
the previous code). But Smalltalk does not offer

selector. a pseudo-variable to refer to the current invoked

CompiledMethod variableSub- method. Instead of using ththisContext pseudo-

class #MethodWrapper) variable that costly reifies the method execution con-
instanceVariableNames: 'clientMethod selector’ text, the author of MethodWrappers modifies the lit-

classVariableNames: ”
poolDictionaries:”
category: 'Method Wrappers’

erals of the method wrapper. He uses #{gliteral

object in the previous code to reserve place to put a

reference during the installation to the method wrap-

As shown by the control of the methalor of per itself. Note that using theelf pseudo-variable

the clasoint below, the class methazh:inClass: the source code of the prototype shown above was
' pot the right solution becauself represents the ob-

h h furth i . .
;?;Lﬁ;r:js gnwgaizi?pir::aedt r(;detth 2 (; ct?yn i:\;(t)kei:r: gbethléect on which the method was invoked and not the

methodinstall. method itself.
I As in the hidden method approach, MethodWrap-

(MethodWrapper on: #color inClass: Point) install pers do not need to be compiled to be installed. The
controlling method can be copied from a method
skeleton having the same number of arguments.

aClass aMethodDictionary Then, themclass instance variable, the literal and
Point’ Zml | < aM ethodWrapper the clientMethod shoulq be set. Moreover, to be
,/ = rmclass fully and transparently integrated in the Smalltalk

_/—gggpé%%ggd environment, the source code of the controlling
A l / 1 method references the source code of controlled one
o aometod (2

: as shown in Fig. 8.
1@12@2 | rscode = COPYEMPYY:

4.3 NeoClasstalk

Figure 8: After installation: the original method igVeoClasstalk is a new implementation of Smalltalk
encapsulated into a method wrapper. that introduces explicit meta-classes [Riv97]. Neo-

Classtalk allows the definition of class properties
MethodWrapper class also specializes theésuch as method trace, instance variable access trace
method valueWithReceiver:arguments to intro- and pre- and post- conditions. These properties
duce message passing control as follows. Nc€ based on aontrolled modification of method
that in such a case the control is limited to befogource code. It proposes a framework for the com-
and after method executions implemented by he"j@?SitiOﬂ of the different control policies. A meta-

methodbeforeMethod andafterMethod. programmer can specify a part of the method source
code that will be automatically compiled in the con-

trolled methods.
self beforeMethod. The_ NeoClasstalk implementation uses similgr
" [clientMethod valueWithReceiver: object teCh”'qU‘?_S to_ MethodWrapper (prototype and lit-
arguments: args] eral modification) but gives the control to the class.
valueNowOronUnwindDo: [self afterMethod] Moreover, NeoClasstalk uses a dynamic change of
class based on the definition of anonymous classes

WrapperMethod>>valueWithReceiver: anObject ar-
guments: args

10

(as shown in 3.2). TemporalComposition>>applyMethod

"rec is the receiver, args are the arguments
of the method, cm is the currently reified method”

Control Definition. In NeoClasstalk the execu{ ws|

tion of a method is invoked by the methexlecute:- ws := (String new: 100) writeStream.
receiver:arguments: defined on the clas®b- Wws nextPutAll: ‘execute: cm receiver: rec argu-
stractClass. The definition (source code) of ments: args’crtab;

this method is defined by the methgénerate- nextPutAll: "system generated method”;cr;crtab.

BodyOn: of the classTemporalComposition. self generateBodyOn:ws. <
the method to override”

Let us suppose that we want to define a mesws contents
sage passing control that realizes a trace of the
invoked methods. To do so, we define a new -
class TraceAllMessages (subclass offemporal- TemporalComposition>>generateApplyBodyOn: aStr
Composition) and we specialize the methgen-
erateApplyBodyOn: that controls a part of the - .
methogpszurceycode generationmcste'recei- nextPutAll: super execute: cm receiver: rec ar-
.) guments: args’
ver:arguments:. The following code shows the ad-

dition of the textual definition (source code part) of .
a trace to the normal method definition. The last line NOt€ that by changing the methgenerateAp-

ensures that the normal behavior of the method wfﬂ|yB°dVO”1 i_t is also possible to change the com-
be added in this definition. plete semantics of the control.

aStr crtab;

TraceAllMessages>>generateApplyBodyOn: aStream

aStream nextPutAll: ’| window| 4.4 Discussion
window := self transcript. .
cm printNameOn: window. These techniques possesslass-basedontrol and
window cr; endEntry.’. a selectivegranularity. Indeed all the instances of
super generatedApplyBodyOn: aStream a class are controlled without the ability to select

them. The control execution cost is the cost of a

To control the clas®oint one should invoke the method execution.

temporajComposition: method as follows:. The first solution based on the definition of new
association selector/method in the method dictio-
TraceAllMessages new temporalComposition: Point. Nary polluted the interface of the objects. This prob-
lem does not appear with the other approaches. Neo-
) o Classtalk takes in charge the recompilation of the
_TraceAllMessages new creates an implicit Class mathods and proposes a well defined context for the
with method wrappers. temporalComposition: yefinition and the composition of the method con-
Point changes the class of the claBsint so that | However, its solution is complex, and this com-
it will be instance of the clas&raceAllMessages. plexity is not due to the concepts used as the auto-
matic recompilation, but by the framework defini-
tion based on explicit meta-clasée€ontrary to the

other approaches the reproduction of the mechanism
A part of the Framework. As shown below, is difficult.

the methodapplyMethod defined on the class
TemporalComposition specifies the definition of
the source code of the methedecute:receiver:-

arguments:. A part of this definition is under

Finally, contrary to the approach based on iden-
tity change, the main advantage of message passing
control by means of anonymous classes (see in 3.2)
or method wrappers (MethodWrappers and Neo-

the responsibility of the methogenerateApply- o1y is that the tools defined in the browsers
BodyOn:. The methodpplyMethod ensures a se- ’ .
uch as (implementors, senders...) continue to fully

mantic context of the generated method such as %%ction
insurance that the original method will be invoked" '

(as shown by the messagaper execute:... be- 3Note that NeoClasstalk proposes tools for selecting class
low). properties that simplifies the life of the lambda programmer.

11

5 Summary and Conclusion classing (anonymous classes) have the same over-

Before presenting how other object-oriented |ahead. Moreover, these two techniques have the same

guages support message passing control, we sﬁﬁ‘—arheag thanrt]he tﬁcTnicllue b?sﬁd on ?}idgen meth-
marize and compare the techniques. ods. It shows that the lookup of the method sia

per in the two first approaches is equivalent to the
5.1 Overview lookup viaself in the hidden method approach. This

The following table gives a quick overview of thdS not surprising in presence of method cache mech-
presented techniques in terms of the criteria dabisms performed by the Virtual Machine. This
fined in 1.4. We present here only the main or deomparison shows that the technique based on error
fault characterics. For a deeper analysis, the reafl@ndling is five times slower. The method wrapper
should refer to the previous discussions. e approach has the same cost. This situation comes
tity column refers to the granularity of the controifom the fact that method wrappers must create ar-
that states which entities can be controlled,rties- rays for their arguments and that in our tests we
sagecriteria shows if all or some messages can 1§ not remove the call of thealueNowOrOnUn-
controlled, the last criteria establishes if the soljvindDo: method.

tion is well integrated in the Smalltalk environment As an experiment, we change the Method
in terms of browser functionality (senders and im&/rapper’'s implementation, the controlling method
plementors) and transparency from the user pointéintinued to call the methodvalueWithRe-

view. ceiver:arguments: but we remove the call to the
methodvalueNowOrOnUnwindDo:. The results,
Technique | entity message,| integration | named Inlined Method Wrapper are two times faster
Error han-| instance-| global | average than the normal Method Wrapper. Moreover, this
dling based

approach could be optimized by inlining in the call
inside the controlling method body instead of calling
the methodvalueWithReceiver:arguments: de-
fined on the clasMethodWrapper.

Explicit group- selective | average
Subclassing | based
Anonymous | instance- | selective | good

Class based

Hidden class- selective | bad . .

Methods based 5.2 Message Passing Control in Other

Method class- selective | good Languages.

Wrapper based . . .)

NeoClasstalk class- class good CLOS is the object system integrated into Common
based Lisp. Itis one of the few class based languages to of-

fer the ability to define instance specific methods us-
The next table compares the different approachieg theeql specializeikee89]. Moreover CLOS is
for the runtime overhead. These tests were pailso one of the rare languages to provide a meta ob-
formed on a Power Mac 7100/166 with 24MBect protocol (MOP) in which message passing con-
memory using Visualworks2.5. The results are theol is an entry point [KARB9I1].
mean over five series of 10000 calls with 0,1,2 and |n CLOS the message passing concept is replaced
3 arguments. Moreover, during our numerous tes§§ the generic functichThe CLOS MOP allows
such results show some variability, therefore wsne to control all the aspects of the generic func-
consider that a difference up to 10 milliseconds tfon application: the application of the generic func-
not really significant. tion (compute-discriminatingfunction), the appli-
cation of the effective metho@§mpute-effective-

Technique 0 1 2 3 method-function) or the application of a single
Ezpl'c't Subclass-| 40.0 | 40.0 | 46.6 | 39.8 method composing the effective methadifpute-
Anonymous Class| 400 | 40.2 | 432 [432]| Method-function).

Hidden Methods | 400 | 432 | 432 | 43.4 In the prototype based languages, Moostrap al-
Method Wrapper | 200 | 233 | 243.4| 250 Io_vys a message_passing contro_l based on t_he d_efi—
Inlined Method | 100 | 126 | 140 | 153 nition of a reflective protocol: object meta-object is
Wrapper responsible for the method lookup and application

Error handling 213.4| 229 | 233.4| 240

4A generic function is a group of methods. During the appli-

. ation of a generic function, methods from that group are selected
As we can expect, the comparison shows that th&onstitute an effective method application. This is the effective

techniques based on the explicit and implicit sulethod that is executed.

12

[MC93]. passing control is possible by different approaches.
In the realm of less flexible languages, the deffhis study shows the power offered by languages

nition of OpenC++ -that can be perceived in its lagke CLOS or Smalltalk that provide reflective facil-

version as an open compiler [Chi95] - shows the iities that are not limited to introspective reflection

terest for a control of message passing. More rge in the new version of Java (1.1).

cently, the definition of MetaJava offers the ability

to control message passing in Java [Gol97]. In thigcknowledgments. The author would like to

implementation anonymous classes calddow thank J. Brant, P. Cointe, M. Fornarino, J. McAf-
classesare interposed between the instance and ft§, E. Micklei, O. Nierstrasz, F. Pachet, J. Pelrine,

original class (see in 3.2). However, in the new. Rieger and F. Rivard.
version called MetaXa, the interpreter is extended
by the introduction of new byte-codes. As a diredReferences

consequence MetaXa’s applications are no longer _ _
ABV92] M. Aksit, L. Bergmans, and S. Vural. An object-

portable. oriented language-database integration model: The
Java in its newest version 1.1 reified certain as- composition-filters approach. ECOOP’92, LNCS

pects of the language such as the classes, the meth- 615 pp 372-395, 1992.

ods and the instance variables (see Core Reflectjper93a] K. Beck. Instance specific behavior: Digitalk imple-

API [Flag7]). However, this reification isnly in- mentation and the deep meaning of it siimalitalk

trospective reflection. Indeed, the clas$ésld, Report 2(7), May 1993.

Method andConstructor are declared as final. ThiS[BeC93b] K. Beck. Instance specific behavior: How and why.
. . . Smalltalk Report2(6), Mar 1993.
implies that they cannot be specialized. Moreover, por2(8)
only the Java VM can create new instances of thedS§°%%1 K. Beck. Amodest meta propossinalitalk Report
. . July/August 1995.
classes. Only the value of the instance variables can , _
be modified and the methods can be invoked usihBenS?] J. K. Bennett. The Design and Implementation of
g9 Distributed Smalltalk. IFDOPSLA'87 pp 318-330,

the handle() method. Such an approach was nec- 1987.

essary to _Oﬁer tools comparab!e tO_ .the .Sm_allta[ngo] H.-D. Bocker and J. Herczeg. What tracers are made
browsers in Java. However, this reification is not of. In OOPSLA/ECOOP’90pp 89-99, 1990.
causally connected to the language. There is no pasisz] A. H. Borning and D. H. Ingalls. Mutiple Inheritance
sibility to modify the methods or the classes from in Smalltalk-80. InProc. of NCAI AAA| pp 234
within the language itself. This means the reflective 237, 1982.

facilities are not really adapted to extend or modifijgra96] J. Brant. Method Wrappers. http://st-www.cs.uiuc.-
the |anguage edu/users/brant/Applications/MethodWrappers.ht-

ml, 1996.

. [Bri89] J. Briot. Actalk: A Testbed for Classifying and De-
5.3 Conclusion signing Actor Languages in the Smalltalk-80 Envi-

This comparison highlights that the most com- ronment. INECOOP’89 pp 109-129, 1989.

monly used technique based on the specializationl@fi95] S. Chiba. A Metaobject Protocol for C++. @OP-
the doesNotUnderstand: method is not the best SLA'9S pp 285-299, 1995.

one. As a first explanation of this situation, on&0i%] P. Cointe. The ClassTalk System: A Labora-

- . tory to Study Reflection in Smalltalk. 1©OP-
should note that the ability to directly execute a SLA/ECOOP'90 Workshop on Reflection and Met-

method has only lately been introduced in the inter- alevel Architectures1990.
preters (methodsalueWithRe_ceivgr:arguments: [DBFP95] S. Ducasse, M. Blay-Fornarino, and A. Pinna. A
on CompiledMethod class in VisualWorks and Reflective Model for First Class Dependencies. In
executeWithReceiver:andArguments: in IBM OOPSLA'95 pp 265-280, 1995.
Smalltalk). Moreover, this comparison shows th#ituc97] S. Ducasse. Des techniques de aiatde 'envoi de
the techniques based on VM lookup method or message en ”St”]i”ta”“ObJeL 3(4), 1997. Numero
method wrappers should be considered by more pro- pecialsmatiale o
rammers than it i rrentlv th) [Fer89] J. Ferber. Computational reflection in class based
gra erst a_ tis currently the case . object oriented languages. @OPSLA'89 pp 317—
The reflective aspects of Smalltalk and their 326, 1989.
causal connection to the Ianguage It_SElf offer Str_qnng89] B. Foote and R. E. Johnson. Reflective facilities in
advantages for the language extensions or modifica- Smalltalk-80. INOOPSLA'89 pp 327-336, 1989.
e : :
tions>. We illustrate them by showing how messa%laQ?] D. FlanaganJava in a Nutshell O'Reilly, 2nd edi-

- . . . tion, 1997.
5A reflective aspect of a language is said causal if any change

in the reified aspect immediately influences the represented pset and conversely.

13

[GGMY5]

[Gol97]

[GR89]

[Hop94]

[IKM +97]

[KdRB91]
[Kee89]
[Lal90]

[LG8S]

[MB85]

MC93]

[McA95]

[McC87]
[Mic96]

[Pas86]

[Pelos]

[PWGY3]

[Riv96]

[RivO7]

[Scho6]

[YT87]

B. Garbinato, R. Guerraoui, and K. Mazouni. Im-
plementation of the GARF replicated objects plate-
form. Distributed Systems Engineering Journal

Mar. 1995.

M. Golm. Design and Implementation of a Meta Ar-
chitecture for Java. Master’s thesis, IMMD at F.A.
University, Erlangen-Nuernberg, 1997.

A. Goldberg and D. Robson.Smalltalk-80: The
Language and its implementatioAddison-Wesley,
1989. ISBN: 0-201-13688-0.

T. Hopkins. Instance-Based Programming in
Smalltalk. Esug Tutorial, 1994.

D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and
A. Kay. Back to the Future: The Story of Squeak,
A Practical Smalltalk Written in Itself. I©OPSLA
'97, 1997.

G. Kiczales, J. des Rivieres, and D. G. Bobrde
Art of the Metaobject ProtocoMIT Press, 1991.

S. E. Keene. Object-Oriented Programming in
Common-Lisp Addison-Wesley, 1989.

W. Lalonde.Inside Smalltalk (volume twolPrentice
Hall, 1990.

W. R. LaLonde and M. V. Gulik. Building a Back-
tracking Facility in Smalltalk Without Kernel Sup-
port. In Proceedings of OOPSLA'8®p 105-122,

1988.

S. L. Messick and K. Beck. Active Variables in
Smalltalk-80. Cr-85-09, Tektronix, Computer Re-
search Lab., 1985.

P. Mulet and P. Cointe. Definition of a reflective ker-
nel for a prototype-based langage. IBOTAS'93,
LNCS 742pp 128-144, 1993.

J. McAffer. A Meta-Level Architecture for Prototyp-
ing Object System®hD thesis, University of Tokyo,
1995.

P. L. McCullough. Transparent Forwarding: First
steps. INOOPSLA'87 pp 331-341, 1987.

E. Micklei. Spying messages to objects. Esug Tuto-
rial, 1996.

G. A. Pascoe. Encapsulators: A new software
paradigm in Smalltalk-80. IOPSLA’86 pp 341—
346, 1986.

J. Pelrine. Meta-level programming in smalltalk.
Esug Tutorial, 1996.

F. Pachet, F. Wolinski, and S. Giroux. Spying as an
Object-Oriented Programming Paradigm T@OLS
EUROPE’93 pp 109-118, 1993.

F. Rivard. Smalltalk : a Reflective Language. In
REFLECTION'96 pp 21-38, 1996.

F. Rivard. Evolution du comportement des objets
dans les langagesclassesaflexifs, 1997. Ecole des
Mines de Nantes, Tése de I'Universi¢’de Nantes.

B. Schaeffer. Smalltalk: Elegance and Efficiency.
Ecoop Tutorial, 1996.

Y. Yokote and M. Tokoro. Experience and Evolution
of Concurrent Smalltalk. IODOPSLA’87 pp 406—
415, 1987.

14

