
Microdown: a clean and extensible markup language
to support Pharo documentation

S. Ducasse
Inria, Univ. Lille, CNRS, Centrale Lille

Lille, France
stephane.ducasse@inria.fr

L. Dargaud
Inria, Univ. Lille, CNRS, Centrale Lille

Lille, France
dargaud.laurine@gmail.com

G. Polito
Univ. Lille, CNRS, Centrale Lille, Inria,
UMR 9189 - CRIStAL - Centre de

Recherche en Informatique Signal et
Automatique de Lille

Lille, France
guillermo.polito@univ-lille.fr

ABSTRACT
Markdown is imposing itself as a defacto standard for wiki-like syn-
tax. However, building a Markdown implementation that correctly
interacts with other implementations requires a careful design.
First, Markdown clumsily proposes multiple syntaxes for the same
elements. Second, there is a Markdown specification but many dif-
ferent sub-specifications and implementations, each of them with
different super/sub-sets, where github Markdown is one of the most
knowns. The Markdown standard does not support many features
that are important for book writing such as anchor definition, figure
and code block parameters. Finally, it does not offer coherent and
systematic extension mechanisms.

In this article we present Microdown. Microdown is a clean
subset of Markdown introducing clean extension mechanisms as
proposed in Pillar. The objective of Microdown is to have a syn-
tax compatible with most of the existing markdown implemen-
tations, extensible, usable for book writings, and non-ambiguous.
Microdown is the foundation for class and package comments in
Pharo image as well as full book and documentation.

ACM Reference Format:
S. Ducasse, L. Dargaud, and G. Polito. 2020. Microdown: a clean and exten-
sible markup language to support Pharo documentation . In International
Workshop on Smalltalk Technologies’20. ACM, New York, NY, USA, 8 pages.
https://doi.org/xxxxxxx

1 INTRODUCTION
There are many different markup languages to describe documents
such as ASCIIDoc, Pandoc, Markdown, and the less known Pil-
lar [ADCD16] (inspired from the original Wiki via the SmallWiki
implementation [DRW05] and in use since 2002). Among all these
options, Markdown is imposing itself as a defacto standard for wiki-
like syntax. Markdown is a lightweight markup language declined
in many implementations and supported by many tools, for ex-
ample with Github Markdown and its related online editing and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IWST ’20, Sept, 2020, Virtual
© 2020 Association for Computing Machinery.
https://doi.org/xxxxxxx

render tools. The fact that Github uses markdown for its online
documentation is massively promoting Markdown.

However, Markdown is clumsy. It proposes multiple syntaxes for
the same elements. In addition, it does not support many important
features mandatory for books or structured documents such as
explicit anchor definition, references to figures and code elements.
Finally, it does not offer coherent and systematic extension mecha-
nisms. This leads to Markdown dialects such as MarkDeep1 that is
a kitchen sink of features.

In this article, we present Microdown: a markup language based
on Markdown. Microdown takes the good pieces of Markdown so
that developers write class comments with a familiar syntax, and
this familiar syntax renders well in existing tools such as Github on-
line renderers. Also, Microdown proposes extensions and a flexible
extension mechanisms to produce books, slides and websites such
as compilation chains like Pillar (http://github.com/pillar-markup/).

Contrary to Markdown extensions such as MarkDeep, the design
of Microdown is to have a small core in the spirit of Smalltalk de-
sign, but with the extra constraint of supporting the main elements
of Markdown. Such minimality but also the familiarity with Mark-
down lower the user cognitive load but also of the maintenance of
the project.

Finally Microdown fulfils three important goals for Pharo: (1)
first it is the foundation to support the writing of better class and
package comments. Pharo uses it as a structured text and renders
such elements using rich text rendering, (2) all the Pharo external
documentations such as books, booklets will be migrated to Mi-
crodown to support on the fly loading and in image browsing, and
(3) all documentation written in Pharo will integrate more easily,
and up to some extent, with external Markdown-related tools. With
Microdown we unify the syntax for comments and for books while
keeping familiarity for users.

The article is structured as follows: first we describe some of the
limits of Markdown and the interesting features of Pillar. Second
we stress the design constraints we followed while designing Mi-
crodown. Then we present Microdown from a user perspective and
finally we show how Microdown will be used in Pharo 90. At the
time of writing this article the Pillar toolchain is under adaptation
to use Microdown as syntax for books.

1https://casual-effects.com/markdeep/features.md.html

https://doi.org/xxxxxxx
https://doi.org/xxxxxxx
http://github.com/pillar-markup/

IWST ’20, Sept, 2020, Virtual S. Ducasse, L. Dargaud, and G. Polito

2 MARKDOWN’S LIMITS
In this section we sketch the key limits of Markdown. Some blogs
such as https://medium.com/@Mister_Gold/stop-using-markdown-for-
documentation-5bda05ad17e3 identifies similar limits.

2.1 Multiple ways to express the same element
Markdown proposes multiple syntaxes to represent an element
such as a header. It means that different users may use different
variations and get alienated when reading other variations. For
example, Listing 1 shows two different syntaxes to define headings
of different levels.

Heading level 1

Heading level 2

Heading level 1

===============

Heading level 2

Listing 1: Different syntax for headers in Markdown

Markdown also supports a lazy mode where some blocks sepa-
rated by a newline are render as a single one. For example, Listing 2
shows two blockquotes in Markdown that will be merged in a single
one because of the lazy mode. Such mode could be good idea but
makes users producing documents with mixed types and writing
conventions. Some Markdown implementations do even support
extensions to disable such behaviour2.

> This is a blockquote.

> On multiple lines.

That may be lazy.

>

> This is the second paragraph.

Listing 2: Lazy mode in Markdown merges two blocks
separated by a new line

Having a single syntax without optional (lazy) markup usage
for a concept is better since it supports the generation of a more
coherent body of documents. In addition it simplifies the parser.

2.2 Fuzzy evaluation semantics
Even if Github’s Markdown has a specification as the one avail-
able in https://github.github.com/gfm the evaluation semantics of the
blocks that compose the language is sometimes unclear. The pres-
ence of elements such as blockquotes given its proposed semantics
looks like it is available only because the renderer does highlight-
ing or emphasizes the text. However, blockquotes accept nested
elements such as a headers or other blockquotes recursively, but
the definition of some elements such as references inside nested
blockquotes is totally unclear (Listing 3).

> This is a paragraph.

>

> > A nested blockquote.

>

> ### Headers work

>

> * lists too

>

2https://github.com/atodorov/Markdown-No-Lazy-Code-Extension

> and all other block-level **elements**.

>

> Even code blocks:

>```

> def hello

> puts "Hello world!"

> end

> ```

Listing 3: Nested blockquotes in Markdown

For example, should a header nested inside a blockquotes be
referenceable and part of a table of contents? Mixing codeblock
with blockquotes leads to unexpected results.

2.3 Serious lack of key features
Markdown does not support many important features such as ex-
plicit anchor definition. Instead, the writer is forced to change all
its references each time a header is changed. Also, figures and
code blocks cannot be referred to. They cannot have parameters
such as caption for code block or width for figures. This means
that the underlying model cannot be efficiently used to generate
parametrizable LaTeX.

2.4 No extension mechanisms
Markdowm does not offer coherent and systematic extension mech-
anisms. In Pillar, as we will show in section 3, there are two simple
yet powerful extension mechanisms that plugins can define:
Annotations. Pillar supports the definition of new complex anno-

tations. For example, ${citation=Duca99a|file=rmod.bib}$ is
the definition of a citation with arguments in Pillar syntax.

Environments. New environments can be defined.

3 KEY PILLAR FEATURES
Pillar is a document edition toolkit using the a syntax based on
the one of Pier (which is the evolution of SmallWiki [DRW05]).
The syntax was heavily influenced by the syntax of the original
Wiki developed by W. Cunningham. In addition, Pier and Pillar
introduced specific extension mechanisms not found in the original
Wiki syntax because Pillar was designed to support book writing.

The Pillar syntax supports the traditional features such as: header,
list (three kinds), internal links, figures with parameters (to specify
anchors, size and any other information), preformatted, paragraph
with different formattings, and tables.

In addition Pillar supports features not found in Markdown as
listed below and shown in Figure 12:

• Anchors. Figures, environments (mathematical environments,
environments or code blocks) and headers can define an
anchor that can then be referred by links.

• Annotations. Annotations, defined using ${ and }$ in text,
delimit a tag and a list of parameters. They represent an
element not supported by default in the core of Pillar. In
Listing 12 inputFile is an annotation for input files. Annota-
tions are used in Pillar to support footnote, slides, columns,
citations. A plugin expands its annotations into companion
structures that can be handled by various engines (expressed
as visitors).

https://medium.com/@Mister_Gold/stop-using-markdown-for-documentation-5bda05ad17e3
https://medium.com/@Mister_Gold/stop-using-markdown-for-documentation-5bda05ad17e3
https://github.github.com/gfm

Microdown: a clean and extensible markup language to support Pharo documentation IWST ’20, Sept, 2020, Virtual

• Environments. Environments are similar to annotations but
they define document structure. They contain other elements
such as headers, paragraph. They are similar to LaTeX envi-
ronments: they have a start, an end and support parameters
to customize them.

• Meta-data. Even if annotations could support the definition
of metadata Pillar offers a specific syntax for them.

Pillar has been successfully used for wiki, full books, slides, and
static web sites.

${inputFile:myFile.pillar}$

${inputFile:value=directory/myFile.pillar}$

${footnote:note=Pillar supports the definition annotations.}$

${begin:card}$

! aSection

@anAnchor

A paragraph about the card.

I will be interpreted as part of the card.

${end:card}$

Listing 4: Pillar extensibility: annotations and
environments with parameters

4 MICRODOWN DESIGN PRINCIPLES
The idea behind Microdown is not to invent yet another markup
language but to make the Pillar toolkit more familiar for new users.
In other words, Microdown introduces a more powerful and leaner
Markdown. Pillar’s features and design have proven to be good to
support our objectives (in the past slides, books, comments and
websites got built with Pillar)3. Still, there are several main forces
that shape the design of Microdown:

(1) Strong similarity to Markdown. It means in particular
that Microdown should be subset of Markdown. The idea is
that developers should be able to write in a subset of mark-
down package comments and Pharo browsers can import
and display it. The implications are strong. It means that
some key elements such as header, links, figures, lists, code-
blocks, should be the same syntactically. Even quoteblock
whose semantics is unclear should be supported since devel-
opers are using them to highlight information. As a general
principle we took, even with some reluctance, the Markdown
syntax when an element was present in Markdown.

(2) Small uniform core. Having a profusion of syntax and
markups is possible – MarkDeep is a typical example of this.
While such an approach is a possible path, we refrain to take
it because we want to make sure that we get the essence of
a document so that the same document can be displayed in
multiple supports. In addition, we do not want to overwhelm
Microdown writers. They also should not be alienated when
reading documents written in a specific subset. The unifor-
mity of the corpus is an important design decision. Finally
we want to have the simplest implementation possible for
maintenance reasons.

3Pillar did not reach a strong visibility. In part due to the niche aspect of Smalltalk.

(3) Extensible (supporting books, web sites, comments).
Microdown should offer evolutions and the design of spe-
cific plugins within the same syntax. The experience of Pillar
books and slides proved that this is possible to build this on
top of a small core.

A tolerant parser to handle Microdown-Markdown mismatches.
Although Microdown was designed thinking on Markdown, not
all the syntactic alternatives of Markdown are supported by Mi-
crodown, and Microdown extensions are not supported by Mark-
down. This causes a mismatch between both markup languages.
We have chosen to handle these cases in the same way Markdown
implementations do: use a more tolerant parser.

When developers use features not supported by Microdown, the
Microdown parser will parse it as plain text. Microdown writers
then get immediate feedback in the in-image tools that do not
display them nicely.

5 MICRODOWN IN A NUTSHELL
We present briefly the Microdown syntax. We show the selected
Markdown elements and the new syntax introduced for the exten-
sions. In addition we use the following terminology: we name block
elements those elements that start in a line and may span multiple
lines (header, section, paragraph, lists...), and intext elements those
elements that start and end in the same line such as bold. Block
elements elements may contain intext elements, but the inverse
does not hold. Intext elements may contain other intext elements.
Listing 5 shows an example of all these elements.

Microdown as Markdown or Pillar is based on the identification
of a block type based on the first line of the block. But discussed
later, the Microdown parsing approach is more robust than Pillar
since it follows the Markdown design that scope intext markup
termination to block end.

5.1 Mimicking Markdown
The basic principle for Microdown is to followMarkdown when the
element is available in Markdown. But it supports only one syntax
for one element where possible, and does not support lazy mode.

The following block elements are available in Microdown.
Horizontal line. A horizontal line is defined by three stars.
Headers.Headers inMicrodown are defined as 1 to 6 # sign followed

by the title of the section.
Code blocks. Code blocks are defined using 3 back ticks but in

addition support for parameters is available.
Ordered lists. Ordered lists follow the digit period syntax.
Unordered lists. Unordered lists accept the three markdown syn-

taxes *, - and + but we consider only keeping the first two.
Having two options is good for nesting lists but we consider
that using multiple nesting level is in general a bad style.
The nested list spacing follows the idea that the markup
should be aligned of Markdown (it requires two spaces for
unordered and three for ordered lists).

Figures. Figures use the Markdown syntax but in addition support
parameters as URL parameters, delimited by a ? as shown
in Listing 5. There we see that a figure can define a size
and a label (anchor) that can explicitly referenced by inline
references presented below.We are considering using anchor

IWST ’20, Sept, 2020, Virtual S. Ducasse, L. Dargaud, and G. Polito

instead of label (which is inherited from LaTeX) to be more
regular and close to the anchor block that we introduce (See
next Section).

Blockquotes. Blockquotes are syntactically supported using the
greater than sign on each line Microdown does not do re-
cursive parsing. In addition, Microdown does render block-
quotes closer to preformatted blocks than to quotes.

Tables. Tables follow GithubMarkdown table extensions but with a
stricter form. While in Github Markdown some information
in tables is optional, we decided that in Microdown infor-
mation should be systematically provided. This simplifies
the Microdown parser while making all Microdown tables
compatible with Github Mardown tables. We plan to support
right, left and centred as in Pillar.

The following intext elements are kept from Markdown.
Links. Links use the Markdown syntax (...)[url+params] but vari-

ables are not supported and will be interpreted as plain text.
This point avoids to have a define a scope and other language
rules for an optional feature.

Formatting. For in text markup, Microdown supports monospace
with one backtick, bold with ** and italic with _. We decided
not to support anymore Pillar subscript, superscript and
strike since they are barely used.

A horizontal line

Microdown Parser and Elements

```language=Pharo&caption=Beautiful&label=code1

Some code

```

[Pharo web site](http://www.pharo.org?alt=Pharo&key2=value2)

\![The famous Pharo Logo](https://files.pharo.org/media/logo/logo.

png?size=80&label=logo1)

\![This diagram shows...](file:///figures/diagram1.png?width=80&

label=fig1)

- item1

- item2

on two lines

- item 3

1. item one

3. item two

> This is

> a quote

Listing 5: Markdown selected and extended features.

5.2 Microdown
In addition to the essential Markdown elements mentioned above
that are extended to support parameters (codeblocks, figures and
links), Microdown introduces several Pillar elements: comments, an-
chors, references, annotations in text, environments, metadata and
math block elements as well as in text as shown in Listing 6. These
elements support building advanced documents such as books and

slides, and will be usually ignored and rendered as plain text by
other Markdown tools.

The following block elements are available in Microdown.
Comments. % as first element identifies that the line is a comment.
Anchors. An anchor is a way to make a block element the target of

a reference. The main basic usage is for sections. An anchor
is a block element and follows the Pillar definition @anchor

Mathematical environment.Amathematical environment is a block
accepting LaTeX math syntax and parameters. They are de-
limited by $.

Meta-data. Microdown express meta-data as STON expressions
[CDF+15]. Syntactically they are delimited by { and }.

Environments. An environment is a named block containing po-
tentially other blocks. Microdown syntax for environment
is <? and ?>. Environments are not fully stabilised and will
probably slightly be changed when the slide support will be
migrated from Pillar to Microdown. Currently the use of <?
has been favored because it is similar to the one of intext
annotations which are the equivalent to environments in
intext. Environments are an important extension point. New
elements can be supported without introducing new syntax.

The following intext elements are kept from Markdown. Since
blocks and intext markups live in different scope we decided to
reuse when possible the markups. This is the case for math intext
and annotations.
References.A reference, syntactically identified by *@mysection@*

(we used @ for looks closer to anchors definition), refers to
anchors, figures, code blocks, environment and math envi-
ronments.

Annotations. An annotation is a tagged markup with parameters.
They are delimited by <? and ?> as shown by the footnote
in Listing 6. With annotations, Microdown can be extended
without the need for introducing new syntactical elements.

Intext math. Intext math uses the same markups than the math
environment one, i.e., $ and accepts plain math as in LaTeX.

%This comment allows us to say that @level1 is an anchor for the

section.

This is a level 1 section

@level1

Microdown supports annotations <?footnote | value=A foonote is an

annotation.?> in text.

Microdown supports reference to anchor *@level1@* and figures (see

Fig. *@logo1@*) or environments.

<?slide | title=This is a great slide&key2=value2

type your content

<?column | width=45

This is a column

?>

?>

{

"author" : "S. Ducasse"

}

Microdown: a clean and extensible markup language to support Pharo documentation IWST ’20, Sept, 2020, Virtual

Microdown supports in text math for example $V_i = C_0 - C_3$ and

math environment

with parameters.

$key1=value1&key2=value2

V_i = C_0 - C_3

$

Listing 6: Microdown specific features.

6 MICRODOWN USES
This section shows the current use of Microdown. Such use is
not specific to Microdown and another markup language could be
used. Nevertheless we show it since in Pharo 9.0, class and package
comments will use Microdown as description language. We expect
that having better looking comments will encourage developers to
write better comments – This hypothesis will take several years to
be validated and it is not the focus of the current article.

6.1 Supporting Nicer Class/Package Comments
Figure 1 shows a class comment in Microdown. Browsers have
been extended to support a nicer rendering of such comments with
hyperlink to web resources but also in image entities such as classes,
methods or packages. Figure 2 shows the same comments displayed
to the user.

Figure 1: Editing comments using Microdown.

Figure 3 shows the rendering of a comment using mathematical
expressions.

6.2 About Hyperlinks to in Image Entities
In addition to displaying comments with a nicer output, the render-
ing engine takes care to support hyperlinks for navigation. To the
question of the introduction of a specific markup or markup family
at the level of Microdown, we decided not to modify Microdown
but to enhance the rendering engine to analyse monospace in text

Figure 2: Rendering comments.

and identify when the marked text corresponds to a class, package,
method name.

The following conventions are used:
• For class, the analysis is simple: it checks the class name.
Hence ‘Point‘ is a link to the Point class. Metaclasses are
similarly supported: ‘Point class‘ is a link to the Point class.

• For methods, the analysis supports the exact syntax of direct
compiled method access: Point class » #r:degrees:. Clicking
‘Point class » #r:degrees:‘ will bring a message browser on
the method r:degrees:.

• For the package, Pharo does not propose any specific syntax.
We decided to support the syntax #’Refactoring-Core’ to
represent navigation to the corresponding package.

When the analysis does not find any of the patterns above, the
text is displayed using the monospace conventions.

The net result is that:
• We limit the number of extensions.
• Pharo users can navigate fast and get benefit fromMicrodown
use.

• When the text is edited or rendered with another engine, we
do not end up with an orphan (not treated) element.

6.3 Class and Package Level Templates
Even if packages are represented as a class, their comments are
important. Since comments are attached to classes representing
different concepts such as test cases, project definitions (Metacello
Baselines), traits or packages, we designed a templating mechanism.
At the meta-level, packages, classes, traits, baselines and test classes
define specific comment templates. Users then can extend those
templates with comments specific to the commented class. Figure 4
shows that the comments of a test case shows immediately the list of
tests. Figure 5 shows that in case of Metacello project Baselines (and
similarly for packages containing a baseline) the template displays
the baseline definition since it is the most important information.
The fact that the displayed information is queried from the actual

IWST ’20, Sept, 2020, Virtual S. Ducasse, L. Dargaud, and G. Polito

Figure 3: An example of mathematical rendering.

implementation ensures that we do not get obsolete information
displayed as part of the comment.

Figure 4: Test classes shows their tests.

Figure 5: BaselineOf classes and packages show their actual
baselines to avoid to have to click to access the information.

Microdown: a clean and extensible markup language to support Pharo documentation IWST ’20, Sept, 2020, Virtual

6.4 A System Customisation Hook
A Microdown builder is available to let user define and extend the
templates without having to be concerned about the production
of correct Microdown text. The builder encapsulates the textual
representation of the elements.

In addition, we introduced the hook buildMicroDownUsing:
aBuilder withComment: aMicrodownString and customized it on
packages, classes, baselines, traits and test cases to be able to cus-
tomize the information that they display. Listing 7 shows the tem-
plate definition, in particular a baseline shows its baseline automat-
ically as shown in Figure 5. Similarly Listing 8 shows that when
browsing a package, the template looks for the companion baseline
to display the baseline as shown in Figure 5.

BaselineOf class >> buildMicroDownUsing: aBuilder withComment:

aString

aBuilder

header: [:b | b text: self name] withLevel: 1;

horizontalLine;

text: 'A baseline is a kind of map to load project.';

header: [:b | b text: 'Description'] withLevel: 3;

text: aString;

header: [:b | b text: 'Dependencies'] withLevel: 3;

codeblockTag: 'pharo'

withBody: (self instanceSide sourceCodeAt: #baseline:)

Listing 7: Microdown baseline template

RPackage >> buildMicroDownUsing: aBuilder withComment: aString

self class environment

at: self name

ifPresent: [:cls |

aBuilder

header: [:b | b text: self name] withLevel: 1;

horizontalLine;

text: 'A baseline is a kind of map to load project.';

header: [:b | b text: 'Description'] withLevel: 3;

text: aString;

header: [:b | b text: 'Dependencies'] withLevel: 3;

codeblockTag: 'pharo'

withBody:

(cls

sourceCodeAt: #baseline:

ifAbsent: ['No baseline! Houston we have a

problem'])]

ifAbsent: [aBuilder

header: [:b |

b

text: 'Package: ';

text: self name]

withLevel: 1;

horizontalLine;

text: aString]

Listing 8: Microdown package template

7 IMPLEMENTATION
Microdown4 is implemented as a parser generating a Pillar docu-
ment model. The Microdown parser produces a Microdown tree
which is then transformed into Pillar document elements. Such
elements are then later on rendered using a rich text renderer.

4http://pillar-markup/microdown

7.1 Microdown AST
The Microdown AST is decomposed in two main groups: the block
level elements such as comment, lists, and the intrablock elements
such as bold, link...

Block-Level Elements. Listing 9 shows the hierarchy of the Mi-
crodown block-level element. Only the leaves of the inheritance
tree are instantiated and represent a document.

MicAbstractBlock #(#parent #children #parser)

MicAbstractAnnotatedBlock #(#label #isClosed #body #firstLine)

MicAnnotatedBlock #()

MicContinuousMarkedBlock #(#text)

MicCommentBlock #()

MicQuoteBlock #()

MicTableBlock #(#rows #hasHeader)

MicListBlock #(#indent)

MicOrderedListBlock #(#startIndex)

MicUnorderedListBlock #()

MicListItemBlock #(#text)

MicParagraphBlock #(#text)

MicRootBlock #()

MicSingleLineBlock #()

MicAnchorBlock #(#label)

MicHeaderBlock #(#level #header)

MicHorizontalLineBlock #()

MicStartStopMarkupBlock #(#isClosed #body #firstLine)

MicEnvironmentBlock #(#arguments #name)

MicMetaDataBlock #()

MicSameStartStopMarkupBlock #(#arguments)

MicCodeBlock #(#firstTag)

MicMathBlock #()

Listing 9: Microdown block-level AST.

We introduced several parsing abstractions to factor out the be-
havior of an element accepting a new child or not. Such abstractions
are handy to factor out the logic.

• MicContinuousMarkedBlock is for elements whose any line
starts with the same markup such as table using |.

• MicSingleLineBlock is for element which are only composed
of a single line such as horizontal line or header.

• MicStartStopMarkup andMicSameStartStopMarkupBlock
are respectively for element delimited by a starting and clos-
ing markup that is either different or the same.

IntraBlock Elements. Listing 10 describes the hierarchy of intra-
block elements. Each one corresponding to one (e.g. ‘, $ or two
markups (e.g.)

MicAbstractInlineBlock #(#start #end #kind #children #substring)

MicAbstractInlineBlockWithUrl #(#url)

MicFigureInlineBlock #(#parameters)

MicLinkInlineBlock #()

MicAnchorReferenceInlineBlock #()

MicAnnotationInlineBlock #(#name #arguments)

MicBasicInlineBlock #()

MicBoldInlineBlock #()

MicItalicInlineBlock #()

MicMathInlineBlock #()

MicMonospaceInlineBlock #()

MicRawInlineBlock #()

MicStrikeInlineBlock #()

Listing 10: Microdown intrablock AST.

http://pillar-markup/microdown

IWST ’20, Sept, 2020, Virtual S. Ducasse, L. Dargaud, and G. Polito

The Microdown parser does not accept lazy definition of element
parts. In addition, there is only one way to do something, except
for bulleted list where * and - are accepted for compatibility with
Markdown.

The Microdown parser follows the Markdown parsing approach
in which the first line of a block allows the identification of a
block. In addition, Microdown takes advantage of the Markdown
parsing approach in which a block delimits a context in which
intext elements are scoped. This approach limits error propagation,
makes the parser more robust and provides an overall nice user
experience.

7.2 Block-based contexts
Microdown implementation follows the design described in https:
//github.github.com/gfm, in particular the parsing strategy.

In short, the strategy is that at any point in time, we might have
a number of children of the root which are open. The deepest open
one in the tree is called current. All the parents of current are open.

When a new line is read we do the following:
(1) Check if the new line can be consumed by current. As part

of this, a child of current can be made which can consume
the new line. For example, when consuming “‘ the root block
node will create, a new code block that will become current
and consume the body of the “‘ element then will close.

(2) If current cannot consume the new line, we close current,
move current to its parent, and repeat 1.

(3) The root node can consume anything, for instance bymaking
new nodes for storing the new line.

(4) The root node is not closed until input is exhausted.
The following listing 11 is the core logic. Each block level ele-

ment redefines canConsumeLine: and in combinaison with addLin-
eAndReturnNextNode: implements a kind of state machine of the
acceptance of new children by the current element.

handleLine: line

| normalized |

normalized := line copyReplaceAll: String tab with: String space.

[(current canConsumeLine: normalized)

ifTrue: [^ current := current addLineAndReturnNextNode:

normalized]

ifFalse: [current closeMe].

current := current parent.

self handleLine: normalized] on: Error do: [self

handleErrorInLine: line]

Listing 11: Microdown parsing logic.

7.3 Handling of broken formatting
The logic for handling broken formatting e.g., opened but not closed
or closed without an opening is an important point for simple
markups. It limits the propagation of an error to a block. An error
cannot span further down elements and provides a stability in
document processing by handling locally error.

Let us illustrate this point by comparing with Pillar parsing
approach. The Pillar parser does not handle well the non closing
of formatting. For example, listing 12 produces a paragraph with
unclosed monospace part that spans over two paragraphs. This

leads to LaTeX generation errors that are difficult to handle at the
level of the LaTeX exporter.

A part without monospace ==beginning

Another paragraph

Listing 12: Example of broken document.

In Microdown as well as in Markdown the same situation does
not produce a broken document. Listing 13 produces a valid doc-
ument composed of two paragraphs each with a part having an
uninterpreted monospace text.

A part without monospace `beginning

Another paragraph closing `end

Listing 13: Example of non broken document

8 CONCLUSION
In this article we presented Microdown a clean and lean Markdown
supporting extensibility mechanisms that make it suitable to write
full books such as Pharo by Example [BDN+09]. We show some of
the drawbacks of Markdown and key features of Pillar. Microdown
takes a good pieces of both using the syntax of Markdown to lower
the learning curve and improving familiarity. We show that Pharo
9.0 will use Microdown for rendering comments in rich text as well
as navigation facilities. Future work is to perform another pass on
the infrastructure to make sure that all the Pharo documentation,
books and slides can be expressed in Microdown. The ultimate
goal being to be able to load full chapters as documentation within
Pharo.

Acknowledgments. The authors are grateful to Kasper Osterbye
first proof of concept of Markdown parsing and Rich text rendering.
Thanks a lot, you help us! We want to thank Damien Pollet and
Oleksandr Zaitsev for their discussions.

REFERENCES
[ADCD16] Thibault Arloing, Yann Dubois, Damien Cassou, and Stéphane Ducasse.

Pillar: A versatile and extensible lightweight markup language. In In-
ternational Workshop on Smalltalk Technologies IWST’16, Prague, Czech
Republic, August 2016.

[BDN+09] Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz, Damien Pollet,
Damien Cassou, and Marcus Denker. Pharo by Example. Square Bracket
Associates, Kehrsatz, Switzerland, 2009.

[CDF+15] Damien Cassou, Stéphane Ducasse, Luc Fabresse, Johan Fabry, and Sven
Van Caekenberghe. Enterprise Pharo: a Web Perspective. Square Bracket
Associates, 2015.

[DRW05] Stéphane Ducasse, Lukas Renggli, and Roel Wuyts. SmallWiki — a meta-
described collaborative content management system. In Proceedings ACM
International Symposium on Wikis (WikiSym’05), pages 75–82, New York,
NY, USA, 2005. ACM Computer Society.

https://github.github.com/gfm
https://github.github.com/gfm

	Abstract
	1 Introduction
	2 Markdown's Limits
	2.1 Multiple ways to express the same element
	2.2 Fuzzy evaluation semantics
	2.3 Serious lack of key features
	2.4 No extension mechanisms

	3 Key Pillar features
	4 Microdown Design Principles
	5 Microdown in a Nutshell
	5.1 Mimicking Markdown
	5.2 Microdown

	6 Microdown Uses
	6.1 Supporting Nicer Class/Package Comments
	6.2 About Hyperlinks to in Image Entities
	6.3 Class and Package Level Templates
	6.4 A System Customisation Hook

	7 Implementation
	7.1 Microdown AST
	7.2 Block-based contexts
	7.3 Handling of broken formatting

	8 Conclusion
	References

