
Pragmas: Literal Messages as Powerful Method
Annotations

S. Ducasse
RMoD - INRIA

http://stephane.ducasse.free.fr

E. Miranda
Miranda.org

http://www.mirandabanda.org

A. Plantec
Université de Bretagne

Occidentale
alain.plantec@univ-

brest.fr

ABSTRACT
Often tools need to be extended at runtime depending on the
availability of certain features. Simple registration mecha-
nisms can handle such a situation: It often boils down to
represent an action and describe such action with some meta-
data. However, ad-hoc registration mechanisms have some
drawbacks: they are often not uniform and do not fit well
with code navigability. In addition, metadata is not automat-
ically synchronized with the data or behavior it describes. In
this article we present the notion of pragmas, method anno-
tations, as it was introduced in VisualWorks and now it is
an important extensibility mechanism of Pharo. We present
some examples of pragmas within Pharo.

1. INTRODUCTION
Often tools need to be extended at runtime depending on

the availability of certain features. This is typically the case
for menubar offering access to currently loaded tools. Be-
fore pragmas were introduced in VisualWorks [Vis10], the
launcher’s menubar was static and had lots of disabled en-
tries for launching tools that were sold separately such as
DLLAndCConnect. It was a clear sign that a registration
mechanism was missing at method level.

Simple registration mechanisms can handle such a situa-
tion: It often boils down to represent an action and describe
such action with some metadata [DDN02]. However, ad-hoc
registration mechanisms have some drawbacks:

• They often are not uniform. The user has to adapt to
each of them.

• They do not fit well with code navigability and their
existence and use may be difficult to discover.

Publication rights licensed to ACM. ACM acknowledges that this contribution
was authored or co-authored by an employee, contractor or affiliate of a national
government. As such, the Government retains a nonexclusive, royalty-free right
to publish or reproduce this article, or to allow others to do so, for Government
purposes only.

IWST ’16 August 22-26th 2016, Prague, Czech Republic.

ACM ISBN 978-1-4503-4524-8/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2991041.2991050

• One important aspect with registration mechanisms is
how to keep metadata and method in sync. With ad-
hoc registration mechanisms, metadata is not automat-
ically synchronized with the data or behavior it de-
scribes. It is often the responsibility of the user to keep
such information up to date.

• Finally ad-hoc registration mechanisms do not fit well
with the variability of arguments.

In this article we present pragmas, method annotations, as
it was introduced in VisualWorks [Vis10, WD04] and now it
is an important extensibility mechanism of Pharo [BDN+09].
Method pragmas are method level annotations that integrate
smoothly with the Smalltalk syntax and tools.

The outline of the paper is the following: first we present
a simple set of requirements for code annotations. Then we
present the history and motivation behind the first implemen-
tation of pragmas. In the subsequent sections we present the
API and propose an analysis of pragmas. Finally, we present
some examples of pragmas within Pharo. In particular, we
show that while pragmas as method annotations are inher-
ently static constructs, they are the basis to build dynamic
solutions that react to method annotation changes.

2. AN ANALYSIS FOR PROGRAM AN-
NOTATIONS

A good use of method annotations is to associate metadata
with a particular method. Building an ad-hoc registration
mechanism is not complex. Typically, ad-hoc registration
mechanisms use a collector object holding a list of object
representing metadata. Users should explicitly call the col-
lector to register to it and the system using the metadata uses
such collector. However such practice is a problem because
the method and its metadata are not automatically kept in
sync. So another layer of triggering should be put in place
to make sure that each time a method changes its metadata
is (or not) updated. The programmer has to look in different
places to find and update the information.

Now we list the properties that a good program annotation
mechanism should exhibit.

http://dx.doi.org/10.1145/2991041.2991050

Annotation Requirements.
Here is a simple list of requirements for program annota-

tion mechanisms.

• Uniformity. Introducing a special syntax for annota-
tions can lead to large engineering efforts and should
be minimized when possible.

• Handle variability. A good annotation system should
be able to handle the variability of the annotation needs.
Since method annotations are static in the sense that
they annotate program elements, they cannot access
runtime elements such as receiver and method argu-
ments.

• Discoverable/Searchable. The introduction of a new
mechanism should also consider the impact on the dis-
covery of such new constructs. When cross-referencers
are more advanced than mere textual matching (e.g.
message sends), it is important that annotations can be
found as a high-level concept.

• Synchronized metadata. The annotation and its asso-
ciated element should be kept synchronized. The dis-
tance between the annotation and its element should
be as short as possible to make sure that the users can
understand that an element is annotated.

• Any type of program element. An annotation mecha-
nism should be able to annotate any program elements.

We now present method pragmas, a method level annota-
tion system integrating smoothly with the Smalltalk syntax
and the tools, and keeping minimal distance with the anno-
tated method. But we start first with a little history of prag-
mas, since pragmas have been designed around 2003 for Vi-
sualWorks.

3. SOME HISTORY FIRST
Steve Dahl and Eliot Miranda developed pragmas at Parc-

Place, with Vassili Bykov adding abstractions for accessing
them. The first step was to redesign some ugly class-side
code to set unwind bits in ensure: and ifCurtailed: [Ame97,
BCDL13] by a pragma the compiler would recognize and
set the bits itself. The first real use was to make the Vi-
sualWorks launcher’s menus extensible. With pragmas the
launcher’s menu was defined with the base system’s tools
and then extended as each tool package was loaded, or cut-
back as each tool was unloaded. This development decou-
pled the launcher from introducing new tools.

VisualWorks then started using pragmas for the browser
and one could plug-in a single tool without redefining the
browser’s menu methods, which decoupled each extension.
All this was done in the context of the parcel system [WD04].
pragmas allowed one to decouple these tools where they col-
lided in places like menu definition and tool registration.

Then, Tami Lee, who was managing the COM connection
that turned a VisualWorks image into a COM server, became
the first "user" of pragmas. She used pragmas to replace a lot

of class-side methods that defined the signatures of methods
that comprised the server. One could define the COM signa-
ture for a method in the method itself, and the class side lost
about three separate methods that defined all that metadata.
One could read the server method itself and understand its
semantics without having to consult the class-side methods.
One didn’t have to know that there was metadata hidden on
the class side because it was defined in the method itself.

Then Vassili Bikov used it for the inspector framework,
Trippy, which was a huge improvement over the old Inspec-
tor framework, again resulting in a much more pluggable,
decoupled and extensible system. Vassili also added the ab-
stractions for accessing pragmas in methods.

Then VisualWorks added checking so that one could re-
strict the compiler to accept only legal pragmas for a given
class. But if we defined the legal pragmas in a class-side
method, say legalpragmas, then this would be exactly the
kind of single point for extensions that causes collisions be-
tween packages, each of which might want to add its own
set of pragmas. The solution was to use a pragma to mark
a class-side method as defining a set of legal pragmas for a
class. One could have more than one method defining a set
of legal pragmas; packages wishing to add their own cool
pragmas were decoupled.

4. PRAGMA: METHOD ANNOTATION
FOR SMALLTALK

pragmas are a Smalltalk-centric way of adding arbitrary
metadata to methods; Smalltalk-centric in that a pragma is a
Message instance. It may be queried for senders, executed,
etc, and it can be parsed using the standard compiler — they
add no new syntax.

A pragma represents the occurrence of an annotation in
a compiled method. A pragma is a literal message pattern
that occurs between angle brackets at the start of a method
after any temporaries. A common example is the primitive
pragma: the argument identifies the Virtual Machine primi-
tives to be executed.

LargeInteger >> // anInteger
"Primitive. Divide the receiver by the argument and return the re-

sult. Round the result down towards negative infinity to make it a whole in-
teger. Fail if the argument is 0. Fail if either the argument or the re-
sult is not a SmallInteger or a LargePositiveInteger less than 2-
to-the-30th (1073741824)."

<primitive: 32>
^ super // anInteger

But one can add one’s own and use them as metadata at-
tached to a method. Because pragmas are messages, one can
browse senders and implementors and perform them. One
can query a method for its pragmas by sending it the pragmas
message, which answers an Array of pragma instances, one
for each pragma in the method. A pragma holds information
about its defining class, method, its selector, as well as the
information about the pragma keyword and its arguments.

Instances are retrieved using one of the pragma search class
methods.

In Pharo, the expression :

SystemNavigation new browseAllSelect: [:m| m pragmas notEmpty]

browses all methods with pragmas in the system. The ex-
pression:

SystemNavigation new
browseAllSelect: [:m| m primitive isZero

and: [m pragmas notEmpty]]

browses all non-primitive methods with pragmas.

5. DISCOVERING THE API
In this section, we present the essential aspects of the

Pragma API as in Pharo [BDN+09]. We start with the static
navigation and then we show how pragmas can be executed.

Declaring a Pragma.
First a pragma should be declared or attached to a method

using the < > syntax. Such syntax is the same as that used
to mark primitive methods [Gol84]. Here we see that the
method gtInspectorColorIn: of the class Color is annotated
with the pragma gtInspectorPresentationOrder: 30. This pragma
takes 30 as argument.

Color >> gtInspectorColorIn: composite
<gtInspectorPresentationOrder: 30>

composite morph
title: ’Color’;
display: [BorderedMorph new color: self]

The pragma syntax follows that of message sends. But
since pragmas are static code annotations their argument can
only contain literal objects.

Accessing method annotation.
A method can be annotated by several pragmas. We can

access a pragma from the annotated method using the prag-
mas message (see Figure 1).

pragma := (Color >> #gtInspectorColorIn:) pragmas first.
pragma arguments
> 30

Once we get the pragma object itself we can access its se-
lector using the message keyword (which should be renamed
selector to match the message API).

pragma keyword
> #gtInspectorPresentationOrder:

Accessing annotated method.
From a pragma we can access the method it annotates us-

ing the message method. The message selector returns the
method selector. As we will discussed in following section
such API could be improved.

selector
methodClass
pragmas

CompiledMethod keyword
methodClass
selector
sentTo: anObject
withArgumentsDo:

Pragma

Figure 1: Pragma API.

pragma selector
> #gtInspectorColorIn:
pragma method
> Color>>#gtInspectorColorIn:
pragma methodClass
> Color

Querying pragmas.
pragmas act as a registration mechanism since they can

be queried at different scopes (full system, package, class).
Once pragmas are collected, the programmer can have ac-
cess to the pragma itself and its annotated method. The
Pragma class provides some functionality to query the meth-
ods. The following expression gathers all the pragma named
#alarm: limited to the class Pragma itself.

Pragma allNamed: #alarm: in: Pragma

The next expression shows that we can scope the lookup
to a branch in the hierarchy.

Pragma allNamed: aSym from: Point to: Object

The PragmaCollector tool developed in Pharo offers more
advanced querying facilities and change notifications.

Executing a Pragma.
A pragma is not just a method annotation. Pragmas are

similar to messages1. Similarly to a message, a pragma can
also be executed once provided with a receiver. The message
sendTo: anObject allows one to execute pragma by providing
one receiver.

Imagine that we have the following code: In a class we de-
fine the method test. This method is annotated with a pragma
named alarm:. Then we define a class named Alarmer. This
class defines the method alarm:.

AClass >> test
<alarm: ’Executing pragma’ >
^ 12

Alarmer >> alarm: aString
UIManager default alert: aString

The following code snippet then asks the pragma asso-
ciated to the method AClass»#test to execute itself with an
instance of Alarmer. As a result, the alarm: method is exe-
cuted.
1Messages in Smalltalk are instances of the classes Message

(AClass >> #test) pragmas first sendTo: Alarmer new

The class Pragma defines another method supporting its
execution. The message Pragma»#withArgumentsDo: aBlock
executes a block on the values of the pragma arguments. We
can get a similar result than with the message sendTo: using
the message withArgumentsDo: as follows:

(AClass >> #test) pragmas first withArgumentsDo: [:each | UIMan-
ager default alert: each]

6. MANAGING PRAGMAS DYNAMICALLY
WITH THE PRAGMACOLLECTOR

Querying pragmas can be achieved by using dedicated
services provided by the Pragma class. But a tool may de-
pend on the actual set of pragmas. In such a situation, a tool
may need to adapt its internal state whenever a method con-
taining a particular pragma is added, removed or updated.
This is the role of the PragmaCollector and we describe it
now.

This section describes the PragmaCollector and the pattern
that is typically used by tools to dynamically update their
internal state according to the actual set of pragmas.

6.1 The PragmaCollector
PragmaCollector responsibilities are to store a set of par-

ticular pragma instances and to dynamically keep its set of
pragmas up-to-date. The selection of pragmas is based on a
filter which can be passed as a valuable with one argument at
instantiation time. As an example, the following code shows
how to instantiate a PragmaCollector to get the actual set of
primitives.

(PragmaCollector
filter: [:pragma | pragma keyword = ’primitive:’]) reset

At initialization time, a PragmaCollector registers itself as
a SystemAnnouncer subscriber. (SystemAnnouncer is the cen-
tral notification for system events such as class creation, method
modifications, etc). The consequence is that a particular
message is sent to the PragmaCollector each time a method
is added, removed or updated in the system. When such an
event occurs, an announcement is sent to all the registered
PragmaCollector instances. Then a PragmaCollector may up-
date its set of pragmas accordingly if the method is defined
with a valid pragma according to the PragmaCollector filter.
As an example, the sequence diagram of Figure 2 depicts
how a PragmaCollector can update its set of pragmas dynam-
ically when a method is added in the system.

A PragmaCollector also owns an announcer that registers
objects which need to be notified each time the PragmaCol-
lector set of pragmas is changed. PragmaAnnouncement is the
superclass of all pragma related announcement classes. In
the case of an addition, removal or update, the correspond-
ing announcement classes are, respectively, PragmaAdded,
PragmaRemoved and PragmaUpdated. Thus, a tool can regis-
ter itself as a listener of its PragmaCollector announcer to be
able to adapt its internal state.

The following presents a pattern which is typically used
by tools to keep their internal state up-to-date.

Figure 2: A sequence diagram for the method adding
case

6.2 Menu Builder Pattern
The Pharo root menu building uses pragmas. The menu

tree is built by evaluating all the class methods declared us-
ing the pragma <worldMenu>: the receiver is the class own-
ing the method and a menu builder is passed as argument. A
pragma without argument is used and the annotated method
is called with a builder as argument: this pattern is used to
handle the fact that building menu can have multiple exclu-
sive parameters (See Section 7.2 for another application of
this pattern).

A menu builder builds and stores a menu tree. It uses a
PragmaCollector instance to get the actual set of <worldMenu>
annotated methods. Note that pragmas are spread over the
classes supporting a modular design. Here we show two
examples one in WorldState and one in StartupPreferences-
Loader.

WorldState class >> quitItemsOn: aBuilder
<worldMenu>
(aBuilder group: #QuitPharo)

order: 9999;
with: [

(aBuilder item: #’Save’)
target: self;
selector: #saveSession;
help: ’save the current version of the image on disk’;
keyText: ’S’;
icon: Smalltalk ui icons smallSaveIcon.

(aBuilder item: #’Save as...’)
target: self;
selector: #saveAs;
help: ’save the current version of the image on disk un-

der a new name.’;
icon: Smalltalk ui icons smallSaveAsIcon.

(aBuilder item: #’Save and quit’)
target: self;
selector: #saveAndQuit;
help: ’save the current image on disk, and quit Pharo.’;
icon: Smalltalk ui icons smallQuitIcon.

...]

StartupPreferencesLoader class >> systemStartupMenuOn: aBuilder

Figure 3: GTInspector in action. Three of the different views of a compiled method exposed to the developer.

<worldMenu>

(aBuilder item: #SystemStartup)
label: ’Startup’;
parent: #System;
order: 2;
help: ’System startup related’;
icon: Smalltalk ui icons scriptManagerIcon

7. SOME PRAGMA APPLICATIONS
Pragmas are heavily used both in VisualWorks and Pharo.

The examples cover different categories. Pragmas are used
for pluggable UIs (extensible menus, inspectors, setting dec-
laration) where the method specifies an operation within the
framework and the pragma specifies where and how the op-
eration fits within a UI. Pragmas are also used as metadata
used by a compilation system: the VisualWorks COM server
exports Smalltalk methods through COM to make a Visual-
Works COM server. The types for Smalltalk methods used
to be specified in a single class-side initialize method. The
use of pragmas allowed the metadata to be added to each
server method, allowing the system to be extensible again.

In the following we present examples that are heavily used
in Pharo: the customization of inspector panes and setting
declarations.

7.1 Use 1: GTInspector Panes
GTInspector is an extensible inspector. It uses pragmas

to extend classes with the different views that are exposed
the user in the inspector. The following methods show three
of the views exposed by the CompiledMethod class. Figure 3
shows some of the different panes that the programmer has
access to.

CompiledMethod >> gtInspectorASTIn: composite
<gtInspectorPresentationOrder: 35>
(GTSimpleRBTreeBrowser new treeIn: composite)

title: ’AST’;
display: [:anObject | anObject ast]

CompiledMethod >> gtInspectorBytecodeIn: composite
<gtInspectorPresentationOrder: 30>
^ (GTBytecodeBrowser new treeIn: composite)

title: ’Bytecode’

CompiledMethod >> gtInspectorSourceIn: composite
<gtInspectorPresentationOrder: 30>
^ composite pharoMethod

title: ’Source’;
smalltalkClass: [self methodClass];
display: [self getSource];

act: [self browse] icon: GLMUIThemeExtraIcons glam-
orousBrowse entitled: ’Browse’

7.2 Use 2: Settings
A setting is a description of a preference value. To be

viewed and updated through the Setting Browser, a prefer-
ence value must be described by a setting. Such a setting is
built by a particular method tagged with a specific pragma.
This specific pragma <systemsettings> serves as a classifica-
tion tag which is used to automatically identify the method
as a setting.

One Setting.
Let’s take the example of the caseSensitiveFinds prefer-

ence. It is a boolean preference which is used for text search-
ing. If it is true, then text finding is case sensitive. This pref-
erence is stored in the CaseSensitiveFinds class variable of
the class TextEditor. Its value can be queried and changed by,

respectively, TextEditor class»caseSensitiveFinds and TextEdi-
tor class»caseSensitiveFinds: given below:
TextEditor class >> caseSensitiveFinds

^ CaseSensitiveFinds ifNil: [CaseSensitiveFinds := false]

TextEditor class >> caseSensitiveFinds: aBoolean
CaseSensitiveFinds := aBoolean

CodeHolderSystemSettings class >> caseSensitiveFindsSetting-
sOn: aBuilder

<systemsettings>
(aBuilder setting: #caseSensitiveFinds)

target: TextEditor;
label: ’Case sensitive search’ translated;
description: ’If true, then the "find" command in text will al-

ways make its searches in a case-sensitive fashion’ translated;
parent: #codeEditing.

Figure 4: The Case sensitive search setting.

The domain of preferences is large: To describe all possi-
ble preference kinds (color, strings, boolean, url, emails) and
default values, we would need a lot of pragma parameters –
many of which would not be relevant for certain settings.
The method definitions below show variations of such pa-
rameters.Therefore The Settings framwork uses pragmas as
a simple tag and associate this pragma usae with a builder
whose responsibility is to offer an adequate and flexible API
to specify settings.

In the method declaring a setting, the pragma <system-
settings> identifies the method as declaring a setting. The
Settings framework invokes this identified method with a
builder that the method uses to define the actual setting ob-
ject.

SourceCodeFonts class >> settingsOn: aBuilder
<systemsettings>

(aBuilder setting: #useSourceCode)
parent: #appearance;
order: 4;
target: self;
icon: Smalltalk ui icons smallConfigurationIcon;
label: ’Source Code Fonts’;
description: ’Use Source Code Pro Fonts’;
precondition: [FT2Library current notNil];
dialog: [self fontSourceCodeRow].

A Layered Architectural as Benefit.
The use of pragmas supported the building of a layered

architecture. Figure 5 shows three packages: The Settings
package defines tools to manage settings such as a Setting
Browser that the user opens to change her/his preferences.
It uses descriptions packaged in package UI-Basic Setting.
Such descriptions describe behavior of elements packaged
in package UI-Basic. The class RealStateAgent follows the
behavior expressed in its class variable UsedStrategy.

Figure 5 shows important points of the architecture put in
place: The Settings package can be unloaded and a package
defining preferences does not depend on the Settings pack-
age. This architecture is supported by the following points:

Customization points. Each application customization po-
ints should be defined. In Figure 5, the class Real-
StateAgent of the package UI-Basic defines the class
variable UsedStrategy which defines where the windows
appear. The flow of the package UI-Basic is modu-
lar and self-contained: the class RealStateAgent does
not depend on the Settings framework. The class Real-
StateAgent has been designed to be parameterized.

Description of customization point. In Figure 5, the pack-
age UI-Basic Setting defines a method. The important
point is that the method declaring the setting does not
refer directly to Setting classes but describes the setting
using a builder. This way the description could even be
present in the UI-Basic package without introducing a
reference.

Collecting settings for user presentation. The Setting Br-
owser collects settings by querying pragmas and uses
their description to change the value of preferences.
The control flow of the program and the dependencies
are always from the package Settings to the package
that has preferences and not the inverse.

8. ANALYZING PRAGMAS
Now we analyze the pragmas both from a conceptual and

implementation point of view.

8.1 First class method annotations
We now evaluate how pragmas answer the requirements

for method annotations.

Uniformity.
Pragmas do not introduce any new syntactical elements

and as such their integration and tooling is facilitated. In
particular, no special handling has been necessary to be able
to query pragmas as message senders. Pragmas are automat-
ically part of "Senders of..." results and this eases discover-
ability.

Handle variability.
Pragmas are generic enough to handle the use cases in the

Pharo system (as well as the ones of VisualWorks). Since
pragmas are static annotations, only literal objects can be

Figure 5: A package declares and uses customization points as variables. As an example, UsedStrategy is declared as
a class variable of RealEstateAgent. Such customization points are described with Setting instances that are created by
the automatic running of setting declaration methods. The Setting Browser collects the setting instances by querying
pragmas and presents them to the user.

used as parameters. However, since we can invoke the asso-
ciated methods, it is possible to use argument-less pragmas
and pass an argument to the method that acts as a builder
(The Setting framework [BCDL13] uses this technique - see
Section 6.2 for example). In Pharo 50 there are 143 different
pragmas for 4337 annotations with the following distribu-
tion based on their arity: 95-0, 30-1, 11-2, 5-3, 1-4 and 1-5.
The pragma (preference:category:description:type:) with 4
arguments with 4 elements is not used in Pharo but a behav-
ior compatible with the Squeak settings. One of the biggest
limits of pragmas is that they do not handle class annota-
tions.

Discoverable/Searchable.
Pragmas are perfectly discoverable using normal message

browsers. The tools managing the navigation in the IDE are
able to handle pragmas. As already mentioned, SystemNavi-
gation queries return messages as well as pragma usage. De-
bugging pragmas has nothing really specific, a developer can
query all the annotated methods with a given pragma and use
the Pragma API to access all the data necessary to debug.

Synchronized metadata.
Metadata, when it cannot be extracted automatically from

the entity it describes, can always be out of sync. When
metadata can be extracted directly from the entity it would
describe then there is no need to have metadata expressed
since it would duplicate such information and lead to poten-
tial desynchronization. While pragmas per se do not ensure
that methods and their annotations will not be desynchro-
nized, their locality and minimal distance to the entity they
describe is a good incentive for the programmers to make
sure that a method and its annotations are kept in sync.

As a summary, pragmas favor synchronized metadata be-
cause pragmas are embedded in their methods. In addition
Pharo offers automatically trigger notifications on pragma
modifications. This help building advanced behavior such

as adding a pane to open inspectors as soon as we define the
method that describes the pane, adding or removing a menu
entry, etc.

Any type of program element.
Pragmas are limited to method annotations. Class and

package annotations are missing. Developers can annotate
class methods to represent class and package annotations.
However, annotating class methods to define class annota-
tions relies on the interpretation by the pragmas user, since
it could conflict with the annotation of a single class meth-
ods.

8.2 About decoupled information
Using a monolithic design where all metadata is described

in a single place makes sure that the programmer fully con-
trol the order of the declaration. Such control comes at the
price of offering a modular way to build applications. Such
order may be not relevant in certain cases but it is important
for example in UI elements such as menu items or inspector
panes.

When pragmas are used to describe menu items or panes,
the pragma collector client has several possibilities to sort
items: order given by the collection of the pragmas or any
alphabetic sort based on a pragma properties. When order is
relevant, often metadata includes an explicit order. In case
of conflict a local ordering is done. Such practice is not
tight to pragmas, metadescription frameworks such Magritte
[Ren06, DGKR09] use the same simple strategy.

8.3 For a polymorphic API with Message

It is a bit confusing that while a pragma is supposed to
be using the message syntax it does not follow the Mes-
sage API. keyword should be renamed selector and selector
should be renamed methodSelector as in Figure 6. Hence
methodSelector returns the annotated method selector, simi-
larly methodClass returns the class of the annotated class and

selector
methodClass
pragmas

CompiledMethod
selector
methodClass
methodSelector

Pragma

Figure 6: Suggested API polymorphic to Message API.

selector returns the selector of the pragma.

8.4 Compile-time vs. Runtime
The question of pragma validation at compile-time is worth

discussions. Most pragmas are annotations that are queried
at runtime and do not lead to any computation at compile-
time. However, some pragmas do cause processing at com-
pile time. For example, an FFI signature pragma can be
checked at compile-time. By default, there is no type or ar-
ity checking in the current implementation. It follows the
general that no message is Smalltalk is checked at compile-
time. When a new method with different arity (and name) is
defined, the compiler just compiles it without checking that
it may not correspond to a given family. The same applies to
pragmas. If checking would be required, it could be possi-
ble to define Pragma ’Class’ or ’Signature’ and the compiler
could check whether a pragma is compliant with its Signa-
ture.

8.5 Coupled Actions: Declaration and Ex-
ecution

The ability to execute a pragma is a key element to its
design. Indeed in many use cases the pragma helps specify
the method to be executed. This is the case in inspector,
settings, and menu extensions.

The method is a component to be included in some larger
structure, e.g., it is an action method on a menu, or it is an
implementation of a pane in an inspector. The pragma is the
message to be sent to the object that manipulates that larger
structure to add the method to it. This is how menu pragmas
work in VisualWorks and Pharo. There is a menu builder
object. To add a method to a menu (and which menu is de-
scribed by the pragma) the menu builder sets the method as
its current method and then performs the pragma. In Visual-
Works, the parameters in the pragma allow the MenuBuilder
to add the method in the right way to the menu. In Pharo, the
pragma is without argument but the method has an argument
that acts as a builder. The design is similar in the Settings
framework [BCDL13]. The execution of the pragma is what
actually adds the method to the menu. So it’s a combination
of specification and execution.

9. RELATED WORK
Java, C# and Javascript support annotations and used them

really frequently. In Java, a method annotation is defined
by @ For example, the following @Test declares that the
method is a test method. Annotations are before methods.
For exemple, JUnit requires an annotation before test meth-
ods:

@Test
Public void the method()

In Java, annotations are defined directly close to the lan-
guage elements they target. Annotations can target classes,
methods, variables, parameters and packages but also to lo-
cal variables, method parameters, packages, even other an-
notations and also some Java specific program elements such
as constructors, interfaces, enums 2.

Java defines a set of annotations that are built into the lan-
guage. For example, @Override checks that the method is
an override. @Deprecated marks the method as obsolete.
@SuppressWarnings instructs the compiler to suppress the
compile time warnings specified in the annotation parame-
ters. In Java 8, new type annotations has been introduced
@NonNull, @ReadOnly, @Regex, @Tainted and @Untainted,
@m (for measure). Java SE 8 allows type annotations any-
where that a type is used. Previously, annotations were only
allowed on definitions.

Annotations can be applied to other annotations such as
@Retention to specify how the marked annotation is stored
(whether in code only, compiled into the class, or available
at runtime through reflection), @Target marks another anno-
tation to restrict what kind of Java elements the annotation
may be applied to.

Annotations are either used at compile-time or runtime.
The annotation has to be itself annotated to be available at
runtime. For example, the following specifies that the anno-
tation interface is available at runtime and can be applied to
packages, fields, constructors, types and methods.

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.TYPE, ElementType.METHOD, Element-
Type.CONSTRUCTOR, ElementType.PACKAGE, ElementType.FIELD)
public @interface Note

String value();
Priority priority() default Priority.MEDIUM;

If an annotation doesn’t have a @Retention meta-annotation
with the value RUNTIME, it won’t be visible at runtime.

Statically we can manipulate annotation using the Plug-
gable Annotation Processing API (described in JSR 269). It
allows you to write a meta program that can get information
of the classes and the annotations they have. This is intended
to be used in the generation of code, documentation and any
infrastructure previous to the running of your code. APT is
often used as a preprocessor.

The other way is to use the reflection objects provided by
the environment, a developer can ask a class all the anno-
tated things (methods, the class it self and attributes) and
perform all the sort of reflection Java lets you perform. The
programmer can only access known classes (by reference or
by name). In Java developers use classloaders to access all
the classes and then access their annotations.

2The full list is here: https://docs.oracle.com/javase/7/docs/api/
java/lang/annotation/ElementType.html

https://docs.oracle.com/javase/7/docs/api/java/lang/annotation/ElementType.html
https://docs.oracle.com/javase/7/docs/api/java/lang/annotation/ElementType.html

10. CONCLUSION
In this paper we presented pragmas: method annotations

that act as statically described message sends. Pragmas do
not require Smalltalk syntax modification and are fully inte-
grated in the IDE and tools supporting code navigation. In
addition, we presented the PragmaCollector: a tool that dy-
namically keeps a set of pragmas up-to-date. Each time a
method is recompiled or redefined the pragmas are updated.
We presented two use cases deployed in Pharo since a couple
of years. Finally we showed that pragmas support the design
of modular libraries and as such more modular systems.

Acknowledgements
This work was supported by Ministry of Higher Education
and Research, Nord-Pas de Calais Regional Council, CPER
Nord-Pas de Calais/FEDER DATA Advanced data science
and technologies 2015-2020. The authors want to thank the
anonymous reviewers for their excellent reviews.

11. REFERENCES
[Ame97] American National Standards Institute, Inc.

Draft American National Standard for
Information Systems — Programming
Languages — Smalltalk. American National
Standards Institute, 1997.

[BCDL13] Alexandre Bergel, Damien Cassou, Stéphane
Ducasse, and Jannik Laval. Deep Into Pharo.
Square Bracket Associates, 2013.

[BDN+09] Andrew P. Black, Stéphane Ducasse, Oscar
Nierstrasz, Damien Pollet, Damien Cassou, and
Marcus Denker. Pharo by Example. Square
Bracket Associates, Kehrsatz, Switzerland,
2009.

[DDN02] Serge Demeyer, Stéphane Ducasse, and Oscar
Nierstrasz. Object-Oriented Reengineering
Patterns. Morgan Kaufmann, 2002.

[DGKR09] Stéphane Ducasse, Tudor Gîrba, Adrian Kuhn,
and Lukas Renggli. Meta-environment and
executable meta-language using Smalltalk: an
experience report. Journal of Software and
Systems Modeling (SOSYM), 8(1):5–19,
February 2009.

[Gol84] Adele Goldberg. Smalltalk 80: the Interactive
Programming Environment. Addison Wesley,
Reading, Mass., 1984.

[Ren06] Lukas Renggli. Magritte — meta-described
web application development. Master’s thesis,
University of Bern, June 2006.

[Vis10] VisualWorks. Cincom Smalltalk.
http://www.cincomsmalltalk.com/, archived at
http://www.webcitation.org/5p1rRxls5, 2010.

[WD04] Roel Wuyts and Stéphane Ducasse.
Unanticipated integration of development tools
using the classification model. Journal of
Computer Languages, Systems and Structures,
30(1-2):63–77, 2004.

	Introduction
	An Analysis for Program Annotations
	Some History First
	Pragma: Method Annotation for Smalltalk
	Discovering the API
	Managing pragmas Dynamically with the PragmaCollector
	The PragmaCollector
	Menu Builder Pattern

	Some Pragma Applications
	Use 1: GTInspector Panes
	Use 2: Settings

	Analyzing pragmas
	First class method annotations
	About decoupled information
	For a polymorphic API with Message
	Compile-time vs. Runtime
	Coupled Actions: Declaration and Execution

	Related Work
	Conclusion
	References

