
Challenges to support automated random
testing for dynamically typed languages

Stéphane Ducasse
RMoD – INRIA Lille Nord Europe,

France
http://stephane.ducasse.free.fr/

Manuel Oriol
University of York, UK
manuel@cs.york.ac.uk

Alexandre Bergel
Pleiad Lab, Department of Computer
Science (DCC), University of Chile,

Chile
http://bergel.eu

Abstract
Automated random testing is a proven way to identify bugs
and precondition violations, and this even in well tested li-
braries. In the context of statically typed languages, current
automated random testing tools heavily take advantage of
static method declaration (argument types, thrown excep-
tions) to constrain input domains while testing and to iden-
tify errors. For such reason, automated random testing has
not been investigated in the context of dynamically typed
languages. In this paper we present the key challenges that
have to be addressed to support automated testing in dy-
namic languages.

1. Introduction
Random testing is a form of automatic testing that randomly
generates data input and test cases. Random testing shines
in its effectiveness to identify software faults against manual
testing [CPO+11]. Random tests are appealing because they
are relatively easy and cheap to obtain.

Autotest [CPL+08, COMP08] and Yeti [OT10]1 have
proven that automated random testing is an effective way
to identify bugs and generate test cases which reproduce
them. Autotest typically finds more bugs than any kind of
manual testing in very small amounts of time [COMP08].
While all types of testing find different kinds of bugs, there is
an overlap between bugs found by random testing and bugs
found by other techniques.

Dynamically typed languages, including Pharo, [BDN+09]
should be able to take advantages of the benefits of au-

1 http://www.yetitest.org

[Preprint of International Workshop on Smalltalk Technologies 2011.]

tomated random testing. Unfortunately, current automated
random testing tools heavily rely on of static type annota-
tion: method signatures, including argument types, return
types and thrown exceptions, constrain input domains used
by a random test. In addition, static types qualify the soft-
ware faults found by random tests (e.g., whether a fault is
effectively a bug or a false positive). In this paper we present
the key challenges and paths that further researchers may
follow to support automated testing in dynamic languages.

First we present the principles of random automated test-
ing in Java (Section 2) by explaining the strategies of YETI,
one of the best automated random testing tools. We subse-
quently identify the challenges that dynamic languages pose
and we sketch some possible tracks of solutions (Section 3).
The focus of this article is not to propose a solution but to
stress the challenges that have to be addressed to support au-
tomated random testing for dynamically typed languages.

2. Random Automated Testing in Java: The
Facts

2.1 Random Automated Testing Principles
To explain how random testing tools for statically typed lan-
guages work, we present how the York Extensible Testing
Infrastructure (YETI) – a language agnostic automated ran-
dom testing tool – works.

YETI is an application coded in Java. It tests programs at
random in a fully automated manner. It is designed to sup-
port various programming languages – for example, func-
tional, procedural and object-oriented languages can easily
be bound to YETI. YETI is a lightweight platform with
around 10,000 lines of code for the core, the strategies and
the Java binding and is available under BSD license.

Figure 1 shows the general process of an automated ran-
dom testing tool. An instance database is created with some
seeds (for example, 0, 1, -1 for numbers). Such database
is used during the instance generation period. The instance
generation step requires instances for both the receiver and
arguments of a message. It uses class type profiles (types
method declaration) which are stored in another database.

1 2011/8/16

http://www.yetitest.org

Then tests are created by calling methods, the tests may
check the returns values and the thrown exceptions. During
tests execution, when a new instance is created it may be
added to the instance database. To determine whether a fault
is actually found, the declared exceptions and precondition
(argument types are used) are key to determine whether a
fault is a bug in the analyzed software or whether it is a false
positive.

Instance
Generation

Error

Test
Generation

Class type
profile

database

Test
Execution

on success instances
created during tests

may be added to the data

Instance
database

on error template profile
is improved

and bugs are registered

Bugs

Figure 1. Automated random testing process

YETI contains three parts: the core infrastructure, the
strategies, and the language-specific bindings. The core in-
frastructure contains the code to represent routines (methods
or functions), a graph of types (class profile database), and a
pool of typed objects (instance database). Routines use argu-
ments of certain types and return an object of a certain type
(if any) for which they are considered constructors.

// Input: Program/Strategy
// Output: found bugs
foundBugs = new Vector<Bug>();
M0 = strategy.getModuleToTest();
while (not endReached){
R0=strategy.getRandomRoutineFromModule(M0);
Vector<Variables> arguments =
new Vector<Variable>();

for(T in R0.getArgumentTypes()){
arguments.addLast(strategy.getInstanceOfType(T));

}
try {
new Variable(languageBinding.call(R0,arguments));

} catch (Exception e) {
if (languageBinding.representsFailure(e)){
foundBugs.add(e);

}
}

}

Figure 2. Algorithm of automated random testing. Bolded
source lines show where a dynamic language cannot provide
the necessary typing information.

Similarly to other automated random testing tools, YETI
follows the algorithm in Figure 2. In this algorithm, getMod-
uleToTest, getRandomRoutineFromModule, and getInstance-
OfType are defined within the strategies. How to make a call

(call) and how to interpret the results (representsFailure) are
both defined in the language binding.

reuse value from
object pool

generate value at
random

pick value from the
object pool

return null

return value

Pnew

1-Pnew

Pnull 1-Pnull

generate value at
random

Figure 3. Generation of values.

By default YETI uses a strategy that generates calls and
selects values at random. Two main probabilities can be ad-
justed: the percentage of null values pnull, and the percent-
age of newly created objects to use when testing pnew. Fig-
ure 3 shows the overall process followed when YETI needs
an instance for a test and calls getInstanceOfType. By default,
YETI uses 10% as a default value for both pnew and pnull.

In the Java binding, YETI uses class loaders to find defini-
tions of classes to tests, reflection to make calls, and a sepa-
rate thread to run them. Any undeclared RuntimeException or
Error is interpreted as a failure and failures are grouped into
unique failures by comparing their call stack trace beyond
the first line. Receiver and arguments are discarded: to avoid
the fact that if we would reuse sets of arguments/receiver we
could trigger the same bug.

To understand how strong typing impacts the testing pro-
cess, we identify 4 main areas where the typing informa-
tion is used extensively. For each of these areas, we indicate
whether a dynamically typed language has an easy way of
supporting it:

Type description and pool of objects. Types are necessary
to construct message arguments. In YETI, a type is
mainly made of a list of supertypes, a list of subtypes,
a list of “constructors” (by constructors we mean method
returning an instance of the class), and a list of instances.
Constructors are all routines that return a value of the
type, and the list of instances is a pool of objects of that
type.
Many dynamically typed languages offer support for list-
ing existing instances for a given class, which can be used
as example for feeding the testing tool. Supertypes and
subtypes are easily and efficiently accessible via reflec-

2 2011/8/16

tion. It is however more difficult to know the return type
of a routine because 1) it is not declared and 2) it may
vary over multiple executions.

Instance generation. In YETI, generating an instance is
done through a “constructor” for such an instance. If the
routine to call needs arguments, these are typed and it is
easy to reuse instances of such types already present in
the system through their type or create new ones through
their own constructors.

Test generation and execution. To generate and execute
a test, YETI either uses or generates instances of the
needed types and makes a call.
Without restriction to given types for the arguments, call-
ing a method with random instances is very unlikely to
produce a meaningful test.

Feedback and bug identification. In YETI, because the
type is supposedly valid due to the typing information,
collecting runtime exception is meaningful as only a su-
perficial check on the APIs is needed to make sure that
unique failures are in fact bugs.
As mentioned previously, testing an untyped routine
leads to calls that have a high risk of failing. It is also
not useful to know that a routine fails when using ar-
guments of types which were not foreseen to be usable
there.

As we can see in the previous description, typing infor-
mation is used at every single step of the process.

2.2 YETI Facts
By using such typing information YETI is able to run a mil-
lion tests per minute – this represents a barely noticeable
overhead over reflexive invocation. So far, YETI found thou-
sands of bugs and was able to test many programs such as the
Java core libraries, GWT 2, and all programs in the Qualitas
Corpus [TAD+10]. YETI also has a graphical user interface
which allows the test engineers to monitor how a testing ses-
sion performed so far.

3. Challenges for Dynamic Languages
We now explore the challenges and possible solutions posed
by the absence of static types to support automated random
testing.

3.1 Instance generation and execution
Obtaining instances to execute the tests is key in automated
random testing. Instances are necessary to feed random tests.
Constructing messages (which received objects as argument)
intended to be sent to object receivers are used as input of a
test.

In Smalltalk, the fact that no constructor is natively
supported by the language makes the generation of well

2 http://code.google.com/webtoolkit/

formed instance challenging. One way to circumvent this
lack of constructor is to use existing instances (and thus well
formed) as an input for random testing. An approach is to
use heuristics based on method categories and some patterns
for methods. The fact that in Pharo and Squeak the method
new automatically invokes the method initialize is a good step
to obtain more systematically well initialized instances.

Getting instances is easily done through exploring the in-
stances currently in the system. In Smalltalk, it is possible
to get access to all the instances of a class using messages
allInstances. Reflection is simple and efficient to use. Access-
ing existing instances can provide specific information that
generated instances could not present.

However, using existing instances as input in random
tests presents two issues:

1. Partially initialization – Since Smalltalk does not offer
any guarantee on whether an object is properly initialized
or not, the standard Pharo distribution contains uninitial-
ized or partially initialized instances. Those objects have
their invariant broken. As an example we have found an
instance of the class Point which contains the nil value as
x and y and totally unused by the system. A properly ini-
tialized point contains numerical values instead.

2. Fragile objects – Randomly modifying existing objects
may lead to situation where the system is put in a danger-
ous state. Such objects may either be discarded for not
being used as a random test input or be copied. Copy-
ing objects may be an option, however it may lead to an
overhead in case of a deep copy, if ever possible at all.

In addition, since we do not know the supposed type of
the arguments, it is not clear what instances to pass.

Using type inference. To know the argument type, one
possibility is to use type inference. Different approaches are
possible: lightweight with low precision [PMW09] or heavy
computation (and with the problem of the availability of the
approach) [SS04]. We believe that a lightweight approach
is a first step to be used. As an example, RoelTyper only
considers single method body to identify argument type of
the method, therefore the precision of the type information is
low. Another heavy approach could be to annotate methods
with type information but this clearly does not scale.

Using libraries like MethodWrappers or other techniques
to monitor method execution [BFJR98, Duc99] could be a
possible way to collect type information. However, this is
not the panacea because (1) we face a bootstrap problem -
we need to use some pre-existing information (existing tests
could be used to run but again the results would be driven
by test quality and in absence of large coverage we may get
incomplete type information). In statically type languages,
the process does not require existing tests to run. (2) not all
the methods should be executed randomly.

3 2011/8/16

http://code.google.com/webtoolkit/

Executing destructive methods. Once we get access to in-
stances to which messages can be sent, we should consider
which methods to invoke. There again care is important be-
cause it is not trivial to identify potentially destructive meth-
ods. Smalltalk offers powerful features such as pointer swap-
ping, class changing, quitting the VM, unloading classes....
Not invoking these methods is important. The Finder tool
manually specifies a list of problematic methods. Another
approach can be to ask programmers to tag the methods with
meta information. As a general point, we believe that know-
ing methods which may endanger the system when run ran-
domly is a valuable information that can make the system
more robust in presence of tools such as the Finder in Pharo
or Squeak [BDN+09].

3.2 How to identify errors?
While the other problems can be fixed with the (tedious)
addition of meta-data, identifying that a bug is found is a
difficult question. Indeed raised exceptions are not part of
method declaration in Smalltalk as this is the case in Java.
Therefore we cannot simply identify a bug by looking if the
exception raised was part of the declared raised exception.
In addition, since there are no contracts, they cannot be
used to filter wrongly passed arguments. In addition, since
a wide range of objects can be passed as arguments (and
could be invalid) we cannot use the fact that the arguments
are valid when analyzing an exception. The combination
of the absence of argument type, contracts and declared
exception is clearly what makes the real error identification
a challenge.

As a first way to distinguish between various situations
we can consider the object receiver contained in the top
frame of the method stack and to identify different errors.

Receiver on top of stack and message not understood.
The idea here is how do we make sure that one sends mes-
sages that are understood by the receiver. Such situation
should not happen because the tools should enumerate the
methods from the receiver class. However, even such simple
assumption is not always true: a message can be cancelled
in superclasses using “should not implement” exception and
superclass methods are banned from subclasses.

Receiver not on the top of the stack and error. This is
the regular case when we get an error is because you send
a message and this method sends another one and along the
road there is an error. The question then is what to do? Such
a situation can arise due to different causes:

Badly initialized objects. For example, executing methods
on an object that is not well initialized or whose invariant
is broken can happen. The automatic detection of such
case is difficult. Such object can either be created by a
bogus initialization or the result of inadequate method
execution. It is thus important to know that instances in
the instance database are in a valid state.

Breaking precondition. It may happen that messages not re-
specting non explicit invariant lead to errors. For example
sending the message reciprocal to 0@0 leads to a problem
because x reciprocal does not work on number zero.

(0@0) reciprocal
-> x reciprocal @ y reciprocal.

-> x reciprocal

Probably the receiver being different of 0 should be a
precondition on Number»reciprocal and similarly, x != 0
and y != 0 should be the precondition of Point»reciprocal.
Another example is #() first (accessing the first element
of an empty array). Here clearly a precondition would
help to capture that this behavior is not an error but just
a normal behavior. In addition considering specific error
raised by the class can be a good starting help.

#() first
-> errorSubscriptBounds:

The definition of the at: method (which leads to the previ-
ous error) shows that some errors could be used to build
up a list of raised errors. Such errors could then be used
to define preconditions.

Object>>at: index
"Primitive. Assumes receiver is indexable.

Answer the value of an indexable element in the receiver.
Fail if the argument index is not an Integer or is out of bounds.
Read the class comment for a discussion about that the fact
that the index can be a float."

<primitive: 60>
index isInteger ifTrue:

[self class isVariable
ifTrue: [self errorSubscriptBounds: index]
ifFalse: [self errorNotIndexable]].

index isNumber
ifTrue: [^self at: index asInteger]
ifFalse: [self errorNonIntegerIndex]

Since there is no contract declared, software bugs can-
not be distinguished from contract violation. This clearly
shows that preconditions could be useful for automated ran-
dom testing in addition to the other properties they bring to
software quality.

3.3 Understanding results
While performing some preliminary experiments with au-
tomated random testing in Smalltalk, we identified also the
following challenge: How can we identify the impact of a
bogus instances on the resulting generated errors?

For example we got an instance of Point, the point nil@nil
as an available instance and it generated a lot of false posi-
tives by generating errors when executing methods that were

4 2011/8/16

totally correct when we picked any other instances available
in the system. We identified this instance in a ad-hoc way
and we believe that tools to support the understanding of the
results are needed. Notice that this problem does not happen
in YETI because YETI uses types and contracts as speci-
fications for valid input. In Smalltalk, this is obviously not
possible so the nil@nil example is a good one.

If somebody had specified formally Point, then nil@nil
would have been illegal. In the case of Pharo, this instance
lives in the system, so it was taken as possible input, and
polluted your output. We analyzed why such instance was
there and it was unused. Since Pharo 1.3 this instance was
removed, still this is an interesting case for understanding
the impact of an instance of the resulting method that are
raising errors.

To illustrate this challenge, here are the data we got when
performing our experiments. The existing instance nil@nil
broke a lot of messages: in our experiments we obtained
3695 problematic messages. While checking the problematic
messages we found that we obtained 371 buggy receivers
(points with at least one zero) and a number of buggy meth-
ods r, reciprocal, guarded, negated, degrees, max, theta, as-
FloatPoint, abs, isZero, truncated, rightRotated, eightNeighbors,
ceiling, leftRotated, asIntegerPoint, min, normal, transposed,
normalized, sign, floor, fourNeighbors, deepCopy, fourDirections,
angle, rounded.

When filtering the buggy selectors by removing the bogus
instance (nil@nil) from the instance database, we reduced
the number of problematic methods to two: normalized and
reciprocal. Such methods raised errors because of points with
one zero. We identified the problems with nil@nil because we
looked at all the instances that generated errors and noticed
it. In this case this was simple: we got points with nil, or at
least one zero. We tried to see how a tool could have help us
and report a problem but we did not found a simple approach
based on a correlation or statistics. In our dataset, sorting
the number of problematic methods according to the receiver
was not a great help.

Being able to represent results and the influence of re-
ceiver/arguments on the generated problems is thus of im-
portance to reduce noise.

4. Paths towards random testing
To enable automated random testing for dynamic languages,
we propose to follow these milestones:

• Dynamic Type Inference using Random Testing. One of
the first actions to be done is to use type inference to get
some type information. The minimum is to use a sim-
ple static analysis as proposed by RoelTyper [PMW09].
Combining an approach like the one of RoelTyper with
the type collected by MethodWrapper is an interesting
track to follow. However, using MethodWrapper or any
execution based appraoch requires both tests availability
and

• Random testing for dynamically typed languages using
existing instances. Once type inference is available, it be-
comes possible to use instances in an image and perform
either random testing or exhaustive testing of programs
in an automated way. The performance associated to the
testing is then dependent on the quality of the existing in-
stances. It seems thus likely that such a technique should
be applied while the program to test is stalled after being
run for a while.
In parallel, identifying classes defining an initialize method
(or inheriting one) should be considered to identify
classes where creating instances using the method new
may provide well initialized instances.

• Automated random testing for dynamically typed lan-
guages. The next step is to be create meaningful instances
at random. As of now, creating random instances is easy.
Making sure these are meaningful is quite difficult with-
out additional support. It might be useful in this case to
add support for contracts (pre-, postconditions, and class
invariants) and to let programmers specify such contracts
to decide whether instances are valid for testing. This
might, for example, allow the filtering for testing of in-
stances such as nil@nil.

• Sandboxing for testing. As a more long-term goal it might
also be interesting to consider how to restrain testing so
that it does not corrupt the tested images and external
resources.

Acknowledgements
This work was supported by Ministry of Higher Education
and Research, Nord-Pas de Calais Regional Council and
FEDER through the ’Contrat de Projets Etat Region (CPER)
2007-2013’ and the Royal Academy of Engineering.

References
[BDN+09] Andrew P. Black, Stéphane Ducasse, Oscar Nierstrasz,

Damien Pollet, Damien Cassou, and Marcus Denker.
Pharo by Example. Square Bracket Associates, 2009.

[BFJR98] John Brant, Brian Foote, Ralph Johnson, and Don
Roberts. Wrappers to the rescue. In Proceedings Eu-
ropean Conference on Object Oriented Programming
(ECOOP’98), volume 1445 of LNCS, pages 396–417.
Springer-Verlag, 1998.

[COMP08] Ilinca Ciupa, Manuel Oriol, Bertrand Meyer, and
Alexander Pretschner. Finding faults: Manual testing
vs. random+ testing vs. user reports. In IEEE Interna-
tional Symposium on Software Reliability Engineering
(ISSRE), Nov 2008.

[CPL+08] Ilinca Ciupa, Alexander Pretschner, Andreas Leitner,
Manuel Oriol, and Bertrand Meyer. On the predictabil-
ity of random tests for object-oriented software. In In-
ternational Conference On Software Testing, Verifica-
tion And Validation (ICST 2008), July 2008.

5 2011/8/16

[CPO+11] I. Ciupa, A. Pretschner, M. Oriol, A. Leitner, and
B. Meyer. On the number and nature of faults found
by random testing. Software Testing, Verification and
Reliability, 21(1):3–28, 2011.

[Duc99] Stéphane Ducasse. Evaluating message passing control
techniques in Smalltalk. Journal of Object-Oriented
Programming (JOOP), 12(6):39–44, June 1999.

[OT10] Manuel Oriol and Sotirios Tassis. Testing .net code
with yeti. In 15th IEEE International Conference on
Engineering of Complex Computer Systems, ICECCS
2010, Oxford, United Kingdom, 22-26 March, 2010.
IEEE Computer Society, 2010.

[PMW09] Frédéric Pluquet, Antoine Marot, and Roel Wuyts. Fast
type reconstruction for dynamically typed program-
ming languages. In DLS ’09: Proceedings of the 5th
symposium on Dynamic languages, pages 69–78, New
York, NY, USA, 2009. ACM.

[SS04] S. Alexander Spoon and Olin Shivers. Demand-driven
type inference with subgoal pruning: Trading precision
for scalability. In Proceedings of ECOOP’04, pages
51–74, 2004.

[TAD+10] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han,
Jing Li, Markus Lumpe, Hayden Melton, and James
Noble. Qualitas corpus: A curated collection of java
code for empirical studies. In 2010 Asia Pacific Soft-
ware Engineering Conference (APSEC2010), Decem-
ber 2010.

6 2011/8/16

	Introduction
	Random Automated Testing in Java: The Facts
	Random Automated Testing Principles
	YETI Facts

	Challenges for Dynamic Languages
	Instance generation and execution
	How to identify errors?
	Understanding results

	Paths towards random testing

