
5 6 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 7 / $ 2 5 . 0 0 © 2 0 0 7 I E E E

of the application. Another issue with Web ap-
plication frameworks is the limited support
they provide for composing multiple parts on
the same page. The client-server relationship’s
stateless nature requires passing the current
state back and forth between browser and
server, inevitably leading to undesired coupling
between these parts.

Recent Web application frameworks have
tackled both of these problems. JWIG (Java
Extensions for High-Level Web Service Devel-
opment),2 RIFE (Full-Stack Open Source Java
Web Application Framework), Jakarta Struts,
and JBoss SEAM (Web 2.0 Application Frame-
work) solutions model control flow explicitly.
However, most of these approaches don’t inte-
grate well with the rest of the code, because it’s
necessary to specify the flow in external XML
page-flow specifications or to use a different
programming language. Continuation-based

approaches provide mechanisms to model con-
trol flow over several pages with one piece of
code.3–5 WebObjects, Ruby on Rails, Google
Web Toolkit, and .NET, on the other hand, of-
fer better abstractions by composing an appli-
cation from components, but they fail to model
control flow at a high level. With any solution,
combining multiple simultaneous flows inside
the same page is difficult.

In this article, after briefly discussing the key
challenges of modern Web application develop-
ment, we present Seaside (www.seaside.st), a
highly dynamic framework for developing Web
applications in Smalltalk. By exploiting Small-
talk’s dynamic nature and reflective capabili-
ties, Seaside offers a unique way to have multi-
ple control flows active simultaneously on the
same page. Furthermore, there’s no need to re-
compile and restart Seaside application servers
after each modification. Web developers can

focus 1
Seaside: A Flexible
Environment for Building
Dynamic Web Applications

P
age-centric Web development structures an application into indi-
vidual scripts, each responsible for processing a user request and
generating a response. Links pass control from one script to the
next. This imposes a go-to hardwiring of the control flow because

each page must know what comes next. Although software developers have
long considered go-to statements harmful,1 they are still present in today’s
mainstream frameworks, and they hamper the reuse of pages in different parts

dynamically typed languages

Stéphane Ducasse, Université de Savoie

Adrian Lienhard and Lukas Renggli, University of Bern, Switzerland

The Seaside
framework
provides a uniform,
pure object-oriented
view for Web
applications.
Exploiting
Smalltalk’s
reflective features,
Seaside reintroduces
procedure call
abstraction in
a client-server
context.

debug and update applications on the fly, thus
reducing development time considerably.

Web development challenges
To bring Web application development to

the same level as desktop application develop-
ment, a Web development environment or lan-
guage should offer the following key features:

First, it should have reusable and compos-
able components. A Web application logically
contains reusable components—input forms,
sortable reports, and so on. Building applica-
tions from reusable parts is natural. In addition,
these components should define their own con-
trol flow. Composing new components out of
several other components, each having a differ-
ent flow, should be easy to achieve.

Second, it needs to produce valid XHTML.
Producing valid XHTML code and connecting
it to the application logic is difficult, especially if
the XHTML code and application logic must be
developed in different environments. Template-
based XHTML generation lacks the host lan-
guage’s power and expressiveness. Seamless in-
tegration of development tools is often missing.

Third, it should enable hot debugging. Effi-
ciently identifying bugs is a major challenge for
Web developers. Web applications are becom-
ing increasingly more complex, and the charac-
teristics of client-server interaction make de-
bugging more complicated, especially because
advanced debugging support is often missing in
today’s mainstream approaches. The ability to
hot-debug exceptions and use break points
would speed up productivity considerably.
Once a problem was fixed, the session could re-
sume at the place where it had left off. There
should be no need to restart and navigate to the
problematic part of the application continually.

Fourth, it should support hot recompilation.
On-the-fly method recompilation—that is, re-
compiling a method while the application is run-
ning—is important because it lets developers up-
date the code without restarting the session.
This is especially beneficial for Web develop-
ment because it avoids time-consuming edit-
compile-run cycles. Hot recompilation is a nec-
essary requirement for hot-debugging support.

For a more in-depth presentation of these
problems, please see our previous work.6

Smalltalk’s reflective capabilities
Seaside introduces an abstraction layer

over the asynchronous interaction protocol

between the client and server to provide the il-
lusion of developing a desktop application.
Smalltalk’s reflective capabilities make this
high abstraction level possible. Smalltalk is a
uniform language that applies simple princi-
ples systematically. In Smalltalk, everything is
an object—an instance of a class. Objects ex-
clusively communicate through message pass-
ing. In addition, Smalltalk supports closures,
anonymous functions that can be passed
around, stored in variables, or executed at a
later time.

Smalltalk is written in itself and offers pow-
erful reflective capabilities: structural as well
as behavioral reflection.7 We limit our brief
overview to the reflective capabilities that en-
able creating a powerful Web development
framework that offers multiple control flow
composition, hot debugging, and hot recompi-
lation. The reflective features of Smalltalk are
comparable to those of the Common Lisp Ob-
ject System (CLOS),8 except that Smalltalk of-
fers full access to the execution stack. These
features include the following:

! Shape and class changing. Objects are in-
stances of classes. When the class changes
(that is, when instance variables are added,
renamed, or removed), Smalltalk automat-
ically migrates all instances of the class.

! On-the-fly recompilation. Developers can
define and recompile methods on the fly. A
changed method’s currently active execu-
tion contexts run to completion using the
old definition.

! Stack reification. In addition to self and
super, Smalltalk offers a third pseudovari-
able, thisContext, which represents the
execution stack on demand. For efficiency,
Smalltalk reifies the stack (that is, makes it
an object) only when the pseudovariable is
used. This object is causally connected to
the stack it represents. Therefore, not only
does this object represent the stack, but any
change made to the object reflects onto the
execution stack itself. Hence, developers
can manipulate the stack to change the pro-
gram’s execution.

Seaside’s key features
Seaside is open source, and many applica-

tions have used it since the first version of it
was released in 2002. Originally written by Avi
Bryant (a consultant at the time, and now

S e p t e m b e r / O c t o b e r 2 0 0 7 I E E E S O F T W A R E 5 7

owner of dabbledb.com), Seaside is continually
under active development by a growing com-
munity of contributors, including the third au-
thor of this article. Here, we discuss the key
features and characteristics of Seaside and how
they address the Web development challenges
that we identified earlier. Because of space lim-
itations, we won’t discuss the advanced AJAX
(Asynchronous JavaScript and XML) support
offered by Seaside (see http://scriptaculous.
seasidehosting.st for details). In the remainder
of this article, we use a simple application that
lets users manage a to-do list of pending tasks.
Figure 1 shows the main view, which contains
three components. The main component is
TodoApplication, which consists of the title
and two subcomponents. One subcomponent,
TodoFilterView, implements filters applied
to the list of to-do items that the other sub-
component, TodoListView, applies. A to-do
item consists of a title, a due date, and a com-
pletion status. Users can change an item’s sta-
tus by selecting its corresponding checkbox.

Components are the main building blocks in
a Seaside application. A component is an in-
stance of a user-defined subclass of Component
and defines the look and behavior of a portion
of a page. For each request, the session lets the
components evaluate their action callbacks and
render their current visual representation. In ac-
tion callbacks, components can define control
flow, for example, to temporarily pass control
to another component. The following summa-
rizes the three key features of Seaside and iden-
tifies the dynamic Smalltalk capabilities that
make them possible:

! Programmatic XHTML generation. Fol-
lowing Smalltalk’s principle of treating
everything as an object, Seaside provides a
very different approach to XHTML gener-
ation compared to template systems. Sea-
side generates XHTML through an object
layer using pure message sending. Using
block closures, Seaside binds action call-
backs to components.

! Multiple simultaneous control flows. Each
component can define its own control
flow independently from the other com-
ponents displayed on the same page. This
makes it possible to implement business
logic spanning multiple pages as one con-
tinuous piece of code. The enabling fea-
ture is the concept of continuations, which
harness Smalltalk’s ability to access and
manipulate an execution stack.

! Hot debugging, code-editing, and recom-
pilation. Seaside offers excellent develop-
ment support; most notably, it makes the
debugger work seamlessly with Web ap-
plication code. Smalltalk enables this
through hot recompilation and its treat-
ment of exceptions as first-class objects,
which can be inspected and resumed.

Domain-specific language
for generating XHTML

Seaside doesn’t keep XHTML code fragments
in external files; there is no template system. In-
stead, a high-level interface relieves developers
from checking correct tag nesting and attributes.
The Smalltalk block closure syntax defines a do-
main-specific language (DSL) for XHTML ren-
dering. Thus, through this dedicated language
defined in Smalltalk, Seaside lets developers pro-
grammatically generate XHTML code.

Rendering. When the framework generates a
response, each component visible on the page
invokes its hook method, renderContentOn:,
so that it can render a representation of itself
on a RendererCanvas instance passed as a
method argument by a convention named html.
(In Smalltalk, developers can read attributes and
local variables by using the name in an expres-
sion. They can write them by using the := con-
struct. In a first approximation, messages follow
the receiver methodName1: arg1 name2:

arg2 pattern, which is equivalent to the Java
syntax receiver.methodName1Name2(arg1,
arg2).)

5 8 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

TodoApplication

TodoFilterView

TodoListView

To-Do List
What can you do today?

Repair and clean the bike

http:/ / localhost/seaside/todo

1 February 2007 edit remove

Read “The ACME Novelty Library”
15 May 2007 edit remove

Buy birthday present
11 June 2007 edit remove

add

Filter: All Completed Pending Due Date

Figure 1. The to-do
application, built from
three different Seaside
components.

Figure 2 shows a sample rendering of an im-
plementation involving the TodoApplication
component.

The render canvas returns instances of
XHTML tags, called brushes. In the code given
in figure 2, for example, the object returned
from html div is a brush for the div tag.
Brushes define the interface to specify attributes
and the tag’s contents. Seaside passes the con-
tents (that is, nested tags or strings) as argu-
ments to the with: message. The closures en-
force the correct nesting of tags. It’s not possible
to forget a closing tag, because the compiler
complains about the invalid source code.
Strings, such as the title in figure 2, can be
passed directly to the render canvas and are
automatically encoded. Because the attributes
are set through accessor methods, the frame-
work ensures the validity of the tag declaration.

Action callbacks. So far, we have discussed only
how a component renders itself. But compo-
nents can also react to actions triggered by
users via action callbacks. Seaside lets users em-
ploy closures to define action callbacks on an-
chors and buttons, as well as on form elements
such as text input fields, check boxes, and select
boxes. Execution of these closures is delayed
until the user triggers the action. Buttons and
anchors use closures without arguments. Other
form fields use closures that expect an argu-
ment that is bound to the current value of the
element upon activation. The following code
snippet from the TodoListView class displays
an item’s checkbox and lets users check or
uncheck a to-do item.

html checkbox

submitOnClick;

value: anItem done;

callback: [:value !
anItem done: value].

html span: anItem title

The html checkbox statement returns a
checkbox brush, which automatically submits
the form when clicked. Furthermore, it sets
the checked Boolean value, depending on the
item’s current status. Finally, the action call-
back, which executes when the user clicks the
checkbox, expects one argument, a Boolean
value, reflecting the item’s new status.

These kinds of callbacks provide a high ab-
straction level over the low-level HTTP proto-

col. Application developers need not manually
fetch submitted parameters from HTTP re-
quests or validate and parse these strings with
every request. Instead, Seaside automatically
calls the appropriate handlers with real objects
as parameters.

Control flow
Whenever the user requests a new page by

clicking on a link or a button, Seaside executes
an action callback of a component. In this call-
back, the component can change the application
mode’s state, as we discussed in the previous sec-
tion. Moreover, callbacks can serve to define a
control flow while other components on the
page remain unchanged. Every component can
have its own control flow, which describes the
sequence in which it is temporarily replaced by
other components. Control flows in Seaside
need not be linear; developers can mix control
statements, loops, method calls, and domain
code with messages to display components. All
this is possible with plain source code; there is
no need to build complex state machines.

Users can employ the TodoFilterView>>
due method to set a due-date filter. The
TodoFilterView>>due method displays
two calendar components in sequence, letting
users select start and end dates as the range to
filter the items. This method first instantiates
and calls a calendar component to let the

S e p t e m b e r / O c t o b e r 2 0 0 7 I E E E S O F T W A R E 5 9

Figure 2. Sample
rendering involving
the TTooddooAApppplliiccaattiioonn
component in Seaside:
(a) the implementation
and (b) the generated
XHTML.

TodoApplication>>renderContentOn: html

self renderTitleOn: html.

...

TodoApplication>>renderTitleOn: html

html div class: ‘title’; with: [

html heading

level: 1;

with: self model title.

html paragraph

with: ‘What can you do today?’]

(a)

<div class=“title”>

<h1>Todo List</h1>

<p>What can you do today?</p>

</div>

(b)

user select a start date. When selected, this
date is returned and stored in the start local
variable. Because start is a date object, de-
velopers can employ it right away in the sec-
ond calendar component to ensure that the
end date is after the start date. Eventually, in
the method’s last line, a closure referencing the
start and end dates defines a filter. This closure
then serves to filter the to-do items, as shown
in figure 3.

As figure 3 shows, there is no need to seri-
alize states into strings and pass information
from one page to another. Temporary vari-
ables serve to keep track of the state between
the different steps of the flow. Control flows in
Seaside are based on the interplay between the
call: and answer: methods, as figure 4
shows. The framed Calendar in the due
method is an instance of a Seaside component.
Seaside invokes the select: method in Cal-
endar from an action callback—that is, when
the user confirms the date selection.

Call. One component can pass control to an-
other component. Thus, the latter temporarily
replaces the former. The developer achieves
this by sending the call: message to the old
component with the new component as the ar-
gument. In figure 4, sending the call:
method with an instance of a calendar compo-
nent installs this calendar atop the filter com-
ponent and passes it control. Other compo-
nents elsewhere on that page remain
functional and can be used independently of
the new component.

Answer. A component can return control to the
component from which it was called by using
the answer: method. When returning, a
component can additionally return an object
to the caller. In figure 4, the expression self
answer: aDate makes the calendar component
return a date object to the filter component.

Composing components
A user interface is built mostly from differ-

ent parts visible on the same screen, as our ex-
ample illustrates. Seaside implements these
parts as components that can be composed
from other components. The following code
describes how the to-do application’s top-level
component plugs together the filter and the to-
do list. Seaside stores the two components in
instance variables of the TodoApplication
component instance and places them inside
XHTML div elements to be rendered one af-
ter another. The title displays above the two
components.

TodoApplication>>

renderContentOn: html

self renderTitleOn: html.

html div

class: ‘filter’;

with: filterView.

html div

class: ‘list’;

with: listView

Earlier, we illustrated a control flow of the
filter component, and the selection of start
and end dates. The list view component, how-
ever, also defines several control flows—for
example, a confirmation dialog box displayed
when the user is about to delete a to-do item,
and dialog boxes for adding or editing items.
Without additional changes to the code, both

6 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Filter>>due
 d := self call:
d printString

Calendar

Calendar>>select: aDate
self answer: aDate

Filter>>due
d := self call:

 d printString
 -> 11.05.2007

Components in browserServer code

Filter

Filter

Calendar

Calendar

Figure 4. The basic elements of control flow in Seaside: the call:
and answer:methods.

Figure 3. Using the TTooddooFFiilltteerrVViieeww>>>>dduuee method to set a due-date
filter in Seaside.

TodoFilterView>>due

! start end !

start := self call: (Calendar new

addMessage: ‘Select Start Date’).

end := self call: (Calendar new

canSelectBlock: [:date ! date > start];

addMessage: ‘Select End Date’).

self filter: [:item !

item due between: start and: end]

components can have simultaneously active
control flows.

Figure 5 shows this process in the Web
browser, presenting four states of the to-do ap-
plication user interface. First the user decides to
define a filter on the items. Then the user decides
to remove the first to-do item and clicks on re-
move, which displays a confirmation dialog
box. Now there are two flows simultaneously
active, and the user can continue with either
one. In the example, the user selects the start
date and, hence, sees the end date calendar next.

Implementation points
Seaside inherits most of its dynamic capabil-

ities directly from Smalltalk’s strong reflective
capabilities. Here, we discuss the key imple-
mentation points that enable Seaside debugging
support and the call-answer protocol.

Hot debugging and recompilation
Most of today’s Web frameworks provide

only weak support for Web application debug-
ging. Typically, only a line number and a stack
trace results from an unhandled exception. Fix-
ing and finding bugs is tedious and often re-
quires introducing log statements to gather ad-
ditional data points.

Seaside adopts Smalltalk’s philosophy of
incremental programming in an interactive en-
vironment. Developers can add or edit code
while the Web application is running. This
greatly eases development. Figure 6 illustrates
Seaside’s debugging process—in this case, fix-
ing an array index out-of-bounds bug without
restarting the application.

Smalltalk exceptions are first-class objects
that reference the original execution context
from which they were raised. Exceptions are
not unwound until they are properly handled.
Therefore, Seaside can remember an earlier

raised exception in an instance variable, and
later open a debugger for this exception if the
developer so desires. The developer can then
fix the problem within the integrated develop-
ment environment and resume the application
at the point where he left off. This feature
makes debugging Web applications very pow-
erful. Recompiling and restarting the Web
server isn’t necessary. The developer can go
right back to the questionable page to see if he
fixed the error correctly and then resume the
testing session.

Stack reification for call and answer
Seaside implements a call-and-answer mech-

anism using continuations, which are im-
mutable representations of the execution stack
at a certain point in time. A continuation is ba-
sically a suspended process that is resumable
from the stored state several times. The follow-
ing Seaside code excerpt shows a slightly sim-
plified implementation of this call-and-answer
mechanism:

Component>>call: aComponent

^ Continuation currentDo:

[:continuation !
self replaceWith:

aComponent.

aComponent onAnswer:

[:result !
aComponent

replaceWith: self.

continuation

value:result].

WARenderNotification

raiseSignal]

Calling a component—that is, invoking the
call: method with an instance of a compo-
nent—captures a continuation and passes it

S e p t e m b e r / O c t o b e r 2 0 0 7 I E E E S O F T W A R E 6 1

...

Figure 5. Multiple flows
on the same page in the
to-do application user
interface. The user can
interact freely with
different components
and their flows.

into a closure as the continuation variable.
This closure replaces the current component,
self, with the one passed to the aComponent
method and assigns an event handler to the
called component, which Seaside will evaluate
when sending answer:. The last statement
raises an exception, causing Seaside to stop the
control flow evaluation and redisplay the page
with the new aComponent component in place.
This means sending call: to a component will
not immediately return an answer: message to
the caller after the method executes.

Later, during a subsequent HTTP request,
aComponent might send the answer: mes-
sage, and Seaside will evaluate the closure de-
fined as the answer handler. This message
swaps back the called component with the
original one and evaluates the continuation
with the answer argument that has been
passed to the handler. This causes the con-
tinuation to return to the point where it had
been captured (that is, to the top of the call:

method) and return the result to the caller.
Thanks to Smalltalk’s reflective nature, im-

plementing a continuation in Smalltalk takes
less than 30 lines of code. A continuation cap-
tures the current execution stack by fetching
the active context with the thisContext
pseudovariable and then proceeding up the ex-
ecution stack and copying all the frames.

When evaluating a continuation later on,
Seaside discards the active execution stack and
restores and reactivates the captured one by it-
erating through the stored stack frames and
chaining them together again. As a final step,
the argument passed into the continuation is
answered as a return value, making it possible
to return the answer to the call: statement.

Seaside keeps all captured continuations
within a cache, so using the Back button in the
Web browser isn’t a problem. For example,
when defining a filter in the TodoApplica-
tion, the user can change the start date after
setting it by pressing the Back button until the

6 2 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

(a) (b)

(c) (d)

Figure 6. Debugging
a Seaside application:
(a) when an unhandled
exception occurs, the
Web browser displays
a stack trace with a
link called debug;
(b) the developer clicks
on this link to activate
a debugger within
the development
environment to inspect
variables and modify
the code on the fly;
(c) the debugger now
displays the recompiled
method, during which
the Web browser
waits for the server’s
response; (d) when
the developer clicks
on proceed, Seaside
resumes processing
the request that had
caused the error, and
the resulting page
displays in the Web
browser.

dialog box for choosing the start date reap-
pears. Because it’s possible to invoke continu-
ations multiple times, the send message to the
call: method returns a second time, but now
with a different start date, and the flow con-
tinues from there on.

S easide provides a high-level abstraction
for implementing Web applications,
which alleviates developers from deal-

ing with the page-oriented client-server interac-
tion model imposed by HTTP. Seaside lets de-
velopers build applications as interacting
components that are freely composable, and ex-
presses an application’s control flow as plain
method invocations without requiring special
facilities such as state machines or configura-
tion files. The dynamic and reflective capabili-
ties of Smalltalk are enabling factors for the
Seaside core as well as for Seaside-enabled de-
velopment tools.

Seaside has been successfully adopted by
various commercial and open source Web ap-
plication projects during the past five years. A
lively community is constantly improving Sea-
side—for example, with a seamless interface
for AJAX-enabled applications. More re-
cently, Seaside was adopted by other Smalltalk
platforms—among them, commercial vendors
such as Cincom Smalltalk and GemStone.

References
1. E.W. Dijkstra, “Go To Statement Considered Harmful,”

Comm. ACM, vol. 11, no. 3, 1968, pp. 147–148.
2. A.S. Christensen, A. Moller, and M.I. Schwartzbach,

“Extending Java for High-Level Web Service Construc-
tion,” ACM Trans. Programming Languages and Sys-
tems, vol. 25, no. 6, 2003, pp. 814–875.

3. C. Queinnec, “The Influence of Browsers on Evaluators
or, Continuations to Program Web Servers,” Proc.
ACM SIGPLAN Int’l Conf. Functional Programming,
ACM Press, 2000, pp. 23–33.

4. P. Graunke et al., “Programming the Web with High-
Level Programming Languages,” Proc. European Symp.
Programming (ESOP 01), LNCS 2028, Springer, 2001,
pp. 122–136.

5. C. Queinnec, “Inverting Back the Inversion of Control
or, Continuations Versus Page-Centric Programming,”
SIGPLAN Notices, vol. 38, no. 2, 2003, pp. 57–64.

6. S. Ducasse, A. Lienhard, and L. Renggli, “Seaside—A
Multiple Control Flow Web Application Framework,”
Proc. 12th Int’l Smalltalk Conf. (ISC 04), European
Smalltalk User Group, 2004, pp. 231–257; www.iam.
unibe.ch/~scg/Archive/Papers/Duca04eSeaside.pdf.

7. F. Rivard, “Smalltalk: A Reflective Language,” Proc.
Reflection Conf., Xerox, 1996, pp. 21–38; www2.parc.
com/csl/groups/sda/projects/reflection96/docs/rivard/
rivard.html.

8. G. Kiczales, J. des Rivières, and D.G. Bobrow, The Art
of the Metaobject Protocol, MIT Press, 1991.

S e p t e m b e r / O c t o b e r 2 0 0 7 I E E E S O F T W A R E 6 3

About the Authors
Stéphane Ducasse is a full professor in LISTIC (Laboratoire d’Informatique, Systèmes,
Traitement de l’Information et de la Connaissance) at Université de Savoie, where he leads
the Language and Software Evolution Group. He is also the president of the European Small-
talk User Group. His research interests include dynamic languages, reflective systems, re-
engineering of object-oriented applications, program visualization, and maintenance. Du-
casse received his PhD in computer science from the University of Nice-Sophia Antipolis.
Contact him at stephane.ducasse@gmail.com.

Adrian Lienhard is a doctoral candidate in computer science at the University of Bern
and cofounder of netstyle.ch, a startup company specializing in business Web application de-
velopment. His research interests include reengineering of object-oriented systems, dynamic
languages, language design, and Web applications. He received his MSc in computer science
from the University of Bern. Contact him at lienhard@iam.unibe.ch.

Lukas Renggli is a doctoral candidate in computer science at the University of Bern.
He is also a core developer of Seaside and is an independent software consultant. His re-
search interests include programming languages, software engineering, software design,
metaprogramming, and Web application development. He received his MSc in computer sci-
ence from the University of Bern. Contact him at renggli@iam.unibe.ch.

IEEE Pervasive
Computing

delivers the latest peer-reviewed develop-
ments in pervasive, mobile, and ubiquitous
computing to developers, researchers, and
educators who want to keep abreast of
rapid technology change. With content
that’s accessible and useful today, this
publication acts as a catalyst for progress in
this emerging field, bringing together the
leading experts in such areas as

V I S I T www.computer.org/pervasive

Subscribe
Now!

• Hardware technologies

• Software infrastructure

• Sensing and interaction with the

physical world

• Graceful integration of human users

• Systems considerations, including

scalability, security, and privacy

