
Seaside – Dynamic Language Power

for Web Development

Stéphane Ducasse a Adrian Lienhard b Lukas Renggli b

aLanguage and Software Evolution Group, Université de Savoie, France
bSoftware Composition Group, University of Bern, Switzerland

Abstract

Nowadays, many complex applications are built with a web browser as their
main user interface. However, despite the increasing popularity of the web as an
application platform, implementing and maintaining web applications still remains
difficult and lags behind conventional desktop application development.

The underlying technologies such as HTTP for the interaction and XHTML/CSS
for the presentation were originally built to display and link static documents. Unfor-
tunately, most mainstream frameworks provide only little abstraction over the page-
oriented structure imposed by those technologies. Inevitably, the goto-like manner
of how pages are linked leads to spaghetti code and hampers reuse.

In this article we present Seaside, a web application framework that provides an
uniform and pure object-oriented view on web applications. In this way, Seaside
avoids the unwieldily goto-like style. Exploiting the reflective features of Smalltalk,
Seaside reintroduces procedure call abstraction in the client-server context.

Seaside’s key concepts are: (i) a component architecture supporting multiple,
simultaneously active control flows, (ii) a programmatic XHTML generation, and
(iii) fully supported on-the-fly debugging, code-editing, and recompilation. In this
article we discuss these key features of Seaside and explain how they are made
possible by the dynamic nature and the reflective capabilities of Smalltalk.

Keywords: J.8 Internet Applications, D.1.5 Object-Oriented Programming,
D.3.2.i Extensible languages

Email addresses: stephane.ducasse@univ-savoie.fr (Stéphane Ducasse),
lienhard@iam.unibe.ch (Adrian Lienhard), renggli@iam.unibe.ch (Lukas
Renggli).

1 Introduction

Page-centric web development structures an application into individual scripts,
each responsible for processing a user request and generating a response. Links
pass the control from one script to the next. This imposes a goto-like hard-
wiring of the control flow because each page is required to know what comes
next. Although goto statements have been considered harmful for a long time
[1], unknowingly they are still used with today’s main stream frameworks and
hamper the reuse of pages in different parts of the application.

Another issue of web application frameworks is the limited support they pro-
vide for composing multiple parts on the same page. The stateless nature of
the client-server relationship imposes the requirement that the current state
is passed back and forth between browser and server, inevitably leading to an
undesired coupling between these parts.

Both problems have been tackled by more recent web application frameworks.
JWIG [2], RIFE, Jakarta Struts and JBoss SEAM have proposed solutions
which model control flow explicitly. However, most of these approaches do not
integrate well with the rest of the code as the flow has to be specified in exter-
nal XML pageflow specifications or using a different programming language.
Continuation-based approaches provide the mechanisms to model control flow
over several pages with one piece of code [3–8]. WebObjects, Ruby on Rails,
Google Web Toolkit and .NET, on the other hand, offer better abstractions by
composing an application from components, but fail to model control flow at
a high level. With any solution, combining multiple simultaneous flows inside
the same page is difficult.

In this article we briefly present the key challenges of modern web application
development, then we present Seaside 1 , a highly dynamic framework for de-
veloping web applications in Smalltalk. By exploiting the dynamic nature of
Smalltalk and its reflective capabilities, Seaside offers a unique way to have
multiple control flows active simultaneously on the same page. Furthermore,
Seaside application servers do not need to be recompiled and restarted af-
ter each modification. Applications can be debugged and updated on-the-fly,
which results in a considerable reduction in development time.

Seaside is open source and in productive use in many commercial applications
since 2002. Seaside was originally written by Avi Bryant, but is now under
active development by a growing community of contributors, among them the
third author of this article.

The contributions of this article are: (1) we outline the benefits of using a

1 http://www.seaside.st

2

dynamic language for advanced web development and (2) we describe the key
aspects of Seaside from this perspective.

2 Web Development Challenges

We identify the key features that a web development environment or language
should offer to bring web application development to the same level as a
desktop application development. For a more in-depth presentation of the
problems, we refer the reader to our previous work [9].

Reusable and composable components. A web application logically con-
tains reusable components, for example input forms, sortable reports, etc. It
is natural to build applications from reusable parts. In addition these com-
ponents should be able to define their own control flow. Composing new
components out of several other components each having a different flow
should be easy to achieve.

Producing valid XHTML. Producing valid XHTML code and connecting
it to the application logic is hard, especially if they have to be developed
in different environments. Template based XHTML generation lacks the
power and the expressiveness of the host language. A seamless integration
of development tools is often missing.

Hot debugging. The efficient identification of bugs is a major challenge for
web developers. Web applications become increasingly complex and the
characteristics of the client-server interaction make debugging more com-
plicated, especially since advanced debugging support is often missing with
today’s mainstream approaches. The ability to hot-debug exceptions and
use break points would speed-up productivity significantly. Once a problem
is fixed, the session can be resumed right at the place where it left off. There
should be no need to restart and navigate to the problematic part of the
application over and over again.

Hot recompilation. On-the-fly method recompilation, i.e., recompiling a
method while the application is running, is important since it supports up-
dating code without having to restart the session. This is especially benefi-
cial for development since it avoids time consuming edit-compile-run cycles.
Hot recompilation is a necessary requirement for hot debugging support.

3 Smalltalk Reflective Capabilities in a Nutshell

Seaside introduces a layer of abstraction over the asynchronous interaction
protocol between the client and server to provide the illusion of developing

3

a desktop application. This high level of abstraction is made possible by the
reflective capabilities of Smalltalk.

Smalltalk is a uniform language where simple principles are applied system-
atically. In Smalltalk everything is an object, an instance of a class. Objects
exclusively communicate via message passing. In addition, there is support for
closures, anonymous functions which can be passed around, stored in variables,
and executed at a later time.

Smalltalk is written in itself and offers powerful reflective capabilities: struc-
tural reflection as well as behavioral reflection [10–12]. We limit our brief
overview to the reflective capabilities that make it possible to create a power-
ful web development framework that offers multiple control flow composition,
hot-debugging, and hot-recompilation. The reflective features of Smalltalk are
comparable to those of CLOS [13], except that Smalltalk offers full access to
the execution stack as we explain in the following.

Shape and class changing. Objects are instances of classes. When the class
changes, i.e., instance variables are added, renamed or removed, all instances
of the class are automatically migrated.

On-the-fly recompilation. Methods can be defined and re-compiled on the
fly. Currently active execution contexts of a changed method run to com-
pletion using the old definition.

Stack reification. In addition to self and super, Smalltalk offers a third
pseudo-variable thisContext which represents the execution stack on de-
mand. For efficiency, the stack is reified (i.e., made an object) only when
the pseudo-variable is used. This object is causally connected to the stack it
represents. This means that it not only represents the stack but any change
made to the object is reflected to the execution stack itself. Hence, we are
able to manipulate the stack to change the execution of the program.

4 Seaside Key Features

In this section we discuss the key features and characteristics of Seaside and
how they address the web development challenges identified in Section 2.
For space reasons, we do not discuss the advanced AJAX (Asynchronous
JavaScript and XML) support offered by Seaside 2 .

4

TodoApplication

TodoFilterView

TodoListView

Fig. 1. The Todo application built from different Seaside components.

4.1 An Overview

In the remainder of this article we use a simple application that allows a user
to manage a todo-list of pending tasks. Figure 1 shows the main view which
is composed of three components. TodoApplication is the main component
which consists of the title and the two sub-components TodoFilterView and
TodoListView. TodoFilterView implements filters which are applied to the list
of todo items displayed by TodoListView. A todo item consists of a title, a
due date, and a completion status. The status of an item can be changed by
ticking its corresponding checkbox.

Components are the main building blocks in a Seaside application. A compo-
nent is an instance of an user-defined subclass of Component and defines the
look and the behavior of a portion of a page. On each request, the session lets
the components evaluate their action callbacks and render their current visual
representation. In action callbacks, components can define control flow, e.g.,
to temporarily pass control to another component.

The following list summarizes the three key features of Seaside and identifies
the dynamic capabilities of Smalltalk that make them possible.

Programmatic XHTML generation. Following Smalltalk’s principle of ev-
erything is an object, Seaside provides a very different approach to XHTML
generation compared to template systems. XHTML is generated through an
object layer using pure message sending. Action callbacks are bound to com-

2 http://scriptaculous.seasidehosting.st

5

ponents using block closures.
Multiple Simultaneous Control Flows. Each component can define its

own control flow independently from the other components displayed on
the same page. This makes it possible to implement business logic spanning
multiple pages as one continuous piece of code. The enabling technique are
continuations, possible through Smalltalk’s openness to access and manip-
ulate the execution stack.

Hot debugging, code-editing, and recompilation. Seaside offers excel-
lent development support, most notably, it makes the debugger work seam-
lessly with web application code. Smalltalk enables this through features
like hot-recompilation and exceptions being first-class.

In the following sections we explain how XHTML generation and action call-
backs are used in Seaside and how control flow works. Debugging support and
implementation points are discussed in Section 5.

4.2 A Domain Specific Language (DSL) for generating XHTML

In Seaside, XHTML code fragments are not kept in external files and are not
manipulated directly, i.e., there is no templating system. Instead, a high-level
interface reliefs developers from checking correct tag nesting and attributes.
The Smalltalk block closure syntax is used to define a domain specific lan-
guage for XHTML rendering. Thus, through this dedicated language defined
in Smalltalk itself, XHTML is generated programmatically.

Rendering. When the framework generates a response, each component visi-
ble on the page invokes its hook method renderContentOn:. It can then render
a representation of itself on a RendererCanvas instance passed as method ar-
gument, by convention named html 3 .

3 In Smalltalk, attributes and local variables are read simply by using the name
in an expression. They are written using the := construct. In a first approxima-
tion, messages follow the pattern receiver methodName1: arg1 name2: arg2, which is
equivalent to the Java syntax receiver.methodName1Name2(arg1, arg2).

6

TodoApplication�renderContentOn: html
self renderTitleOn: html.
...

TodoApplication�renderTitleOn: html
html div class: ’title’; with: [

html heading
level: 1;
with: self model title.

html paragraph
with: ’What can you do today?’]

The implementation

<div class=”title”>
<h1>Todo List</h1>
<p>What can you do today?</p>

</div>

The generated XHTML

The rendering canvas returns instances of XHTML tags, so-called brushes. In
the above code, for example, the object returned from html div is a brush for
the div tag. Brushes define the interface to specify attributes and the tag’s
contents. The contents, i.e., nested tags or strings, is passed as argument to
the with: message.

The correct nesting of tags is enforced by the closures. It is not possible to
forget closing a tag, as the compiler complains about the invalid source code.
Strings, as in the above code the title or notes, can be passed directly and are
automatically encoded. Since the attributes are set trough accessor methods,
the framework ensures the validity of the tag declaration.

Action Callbacks. So far we only discussed how a component renders itself.
But components can also react to actions triggered by the user by means of
action callbacks. Action callbacks are defined on anchors and buttons as well
as on form elements such as text input fields, check boxes, select boxes, etc.

Action callbacks are defined using closures. Their execution is delayed until
the action is triggered by the user. Buttons and anchors use closures without
arguments. Other form fields use closures that expect one argument, where
the current value of the element is passed in upon activation. The following
code snippet from the class TodoListView displays the checkbox of an item and
lets the user check or un-check a todo item.

html checkbox
submitOnClick;
value: anItem done;
callback: [:value | anItem done: value].

html span: anItem title

The statement html checkbox returns a checkbox brush which automatically
submits the form when clicked. Furthermore, it sets the checked boolean value
depending on the item’s current status. Finally, the action callback, which gets

7

executed when the user clicks the checkbox, expects one argument, a boolean,
reflecting the new status of the item.

These kinds of callbacks provide a high level of abstraction over the low level
HTTP protocol. Application developers do not have to manually fetch sub-
mitted parameters from HTTP requests, and validate and parse these Strings
on every request. Instead, Seaside automatically calls the appropriate handlers
with real objects as parameters.

4.3 Control Flow

Whenever a new page is requested by clicking an a link or a button, an action
callback of a component is executed. In this callback, the component can
change the state of the application model, as we have seen in the previous
section. Moreover, callbacks can be used to define a control flow, while other
components on the page remain unchanged.

Every component can have its own control flow which describes the sequence
in which it is temporarily replaced with other components. The control flow
in Seaside does not have to be linear: control statements, loops, method calls
and domain code can be mixed with messages to display components. All this
is done by writing plain source code. There is no need to build complex state
machines.

The method TodoFilterView�due is used to set a due date filter. It displays
two calendar components in sequence, allowing the user to select a start and
an end date as the range to filter the items. It first instantiates and calls a
calendar component to let the user select a start date. When selected, this date
is returned and stored in the local variable start. Since start is a date object,
we can use it right away in the second calendar component to assure that the
end date is after the start date. Eventually, in the last line of the method a
filter is defined by a closure referencing the start and end date. This closure
is then used to filter the todo items.

TodoFilterView�due
| start end |
start := self call: (Calendar new

addMessage: ’Select Start Date’).
end := self call: (Calendar new

canSelectBlock: [:date | date > start];
addMessage: ’Select End Date’).

self filter: [:item | item due between: start and: end]

As we see in the example above, there is no need to serialize state into strings

8

and pass information from one page to another. Temporary variables are used
to remember the state between the different steps of the flow.

The control flow in Seaside is based on the interplay between the methods call:
and answer:, as illustrated in Figure 2. The framed Calendar in the method
due is an instance of a Seaside component. The method select: in Calendar is
invoked from an action callback, i.e., when the user confirms the selection of
the date.

Filter>>due
 d := self call:
 d printString

Calendar

Calendar>>select: aDate
 self answer: aDate

Filter>>due
 d := self call:
 d printString
 -> 11.05.2007

components
in browserserver code

Filter

Filter

ACalen
dar

Calendar

Fig. 2. call: and answer:, the basic elements of control flow in Seaside.

Call. A component can pass control to another one. During this time it is
temporarily replaced with another component. This is achieved by sending
the message call: to the old component with the new component as argument.
In Figure 2 sending the method call: with an instance of a calendar component
installs this calender on top of the filter component and passes it the control.
Other components elsewhere on that page stay functional and can be used
independently of the new component.

Answer. A component can give back control to the component from which
it was called using the method answer:. When returning, a component can
additionally return an object to the caller. In Figure 2, the expression self
answer: aDate makes the calendar component return a date object to the filter
component.

4.4 Composing Components: Multiple Control Flows

A user interface is mostly built from different parts visible on the same screen
like our example illustrates. In Seaside, these parts are implemented as com-
ponents that can be composed from other components.

The following code describes how the top level component of the todo applica-

9

tion plugs together the filter and the todo list. The two components are both
stored in instance variables of the component instance TodoApplication and
are placed inside XHTML div elements to be rendered one after another. The
title is displayed above the two components.

TodoApplication�renderContentOn: html
self renderTitleOn: html.
html div

class: ’filter’;
with: filterView.

html div
class: ’list’;
with: listView

In Section 4.3 we illustrate a control flow of the filter component, the selection
of a start and an end date. The list view component, however, also defines
several control flows, such as a confirmation dialog displayed when a todo
item is about to be deleted or dialogs for adding or editing items. Without
additional changes to the code, both components can have simultaneously
active control flows.

...

Fig. 3. Multiple flows on the same page in the todo application. The user can interact
freely with different components and their flows.

Figure 3 shows this process in the web browser. It presents four states of the
todo application user interface. First the user decides to define a filter on the
items. Then he remembers that he wanted to remove the first todo item and
clicks on remove which displays a confirmation dialog below. Now there are
two flows active at the same time, the user can continue with either one. In the
example the user selects the start date and hence gets the end date calendar
presented next.

10

5 Implementation Points

Most dynamic capabilities of Seaside are directly inherited from the strong re-
flective capabilities of Smalltalk [10–12]. In this section we discuss the key im-
plementation points which enable Seaside debugging support and the call/ans-
wer protocol.

5.1 Hot Debugging and Recompilation

Most of today’s web frameworks have weak support for web application de-
bugging. Most of the time, only a line number and a stack trace results from
an unhandled exception. Fixing and finding bugs is tedious and often has to
be accomplished introducing log statements to gather additional datapoints.

Smalltalk’s philosophy of incremental programming in an interactive environ-
ment is supported by Seaside. Code can be added and edited while the web
application is running. This greatly eases development.

(a) (b)

(c) (d)

Fig. 4. Debugging a Seaside application – a continuous loop fixing a bug without
restarting the application.

11

With Seaside, when an unhandled exception occurs, as shown in Figure 4,
the web-browser displays a stack trace (a) with a link called debug. Clicking
this link, the developer activates a debugger (b) within the development envi-
ronment which lets him inspect variables and modify the code on-the-fly. The
developer replaces the code part that caused the index out of bounds exception
with a more elegant loop construct. The debugger now displays the recompiled
method (c). During this time, the web browser keeps waiting for the response
of the server. On hitting proceed, the processing of the request, which had
caused the error, is resumed and the resulting page is finally displayed in the
web browser (d).

Smalltalk exceptions are first class objects that reference the original execution
context they have been thrown from. Exceptions are not unwound until they
are properly handled. Therefore, Seaside is able to remember an earlier raised
exception in an instance variable and, later on, it can open a debugger on this
exception if the user decides to do so. The developer is then able to fix the
problem within the IDE and after fixing the problem, resume the application
at the point where he left off. This feature makes debugging web applications
very powerful. There is no manual recompilation and restarting of the web
server required. The developer is put right back into the questionable page
where he is able to see if he fixed the error correctly and is able to resume the
testing session.

5.2 Stack reification for Call and Answer

Seaside’s Call and Answer mechanism is implemented using continuations,
immutable representations of the execution stack at a certain point in time.
A continuation can be seen as a suspended process which is resumable from
the stored state several times. The following code excerpt of Seaside shows a
slightly simplified implementation of the Call and Answer mechanism.

Component�call: aComponent
ˆ Continuation currentDo: [:continuation |

self replaceWith: aComponent.
aComponent onAnswer: [:result |

aComponent replaceWith: self.
continuation value: result].

WARenderNotification raiseSignal]

Calling a component, i.e., invoking the method call: with an instance of a
component, captures a continuation and passes it into a closure as the variable
continuation. This closure replaces the current component self with the one
passed to the method aComponent and assigns an event handler to the called
component, which will be evaluated when sending answer:. The last statement

12

raises an exception, causing Seaside to stop the evaluation of the control flow
and redisplay the page with the new component aComponent in place. This
means that sending call: to a component will not immediately return after
executing the method like normal ones would.

Later on, during a subsequent HTTP request, aComponent might send the
message answer: and the closure defined as the answer handler will be evalu-
ated. It swaps back the called component with the original one and evaluates
the continuation with the answer argument which has been passed into the
handler. This causes the continuation to return from the point it has been
captured, i.e., the top of the method call: and return the result to the caller.

Due to the reflective nature of the language continuations can be implemented
with less than 30 lines of Smalltalk code. A continuation captures the current
execution stack by fetching the active context with the pseudo-variable this-
Context and walking up the execution stack and copying all the frames.

When a continuation is evaluated later on, the active execution stack is dis-
carded and the captured one is restored and reactivated. This is done by
iterating trough the stored stack frames and chaining them together again. As
a last step, the argument passed into the continuation is answered as a return
value, making it possible to return the answer to the call: statement.

Since Seaside keeps all captured continuations within a cache, the use of the
back button in the web browser causes no problems. For example, when defin-
ing a filter in the Todo application the user decides to change the start date
after already having set one. He does so by pressing the back button until he
gets back to the dialog to choose the start date. Since continuations can be
invoked multiple times, the send to the method call: returns a second time,
but now with a different start date, and the flow continues from there on.

6 Conclusion

In this article we presented the most important functionality offered by the
Seaside web application framework. We identified the following dynamic lan-
guage capabilities of Smalltalk that are key to facilitate these features.

• Block closures are used for the XHTML rendering protocol and for the
action callback mechanism.

• Full stack reification allows one to implement continuations within Smalltalk.
Continuations facilitate per component control flows to be implemented in
one continuous piece of code.

• Reflective capabilities such as on-the-fly recompilation and automatic migra-

13

tion of instances enable seamless integration of the Smalltalk IDE, namely
the debugger.

Summarizing, with Seaside a developer builds applications as interacting com-
ponents that are freely composable. The control flow of an application is ex-
pressed as plain method invocations without requiring special facilities like
state machines or configuration files – all the power of object-oriented pro-
gramming is at hand. The fulfillment of today’s web application demands with
one uniform dynamic language pays off with ease of use, rapid development,
and excellent debugging support.

References

[1] Edsger W. Dijkstra. Go to statement considered harmful. Communications of
the ACM, 11(3):147–148, March 1968.

[2] Aske Simon Christensen, Anders Moller, and Michael I. Schwartzbach.
Extending java for highlevel web service construction. ACM Transaction on
Programming Languages and Systems, 25(6):814–875, 2003.

[3] John Hughes. Generalising monads to arrows. Science of Computer
Programming, 37:67–111, may 2000.

[4] Christian Queinnec. The influence of browsers on evaluators or, continuations
to program web servers. In ACM SIGPLAN International Conference on
Functional Programming, pages 23–33, 2000.

[5] Paul Graunke, Shriram Krishnamurthi, Steve Van Der Hoeven, and Matthias
Felleisen. Programming the web with high-level programming languages. In
Proceedings of ESOP 2001, volume 2028 of Lecture Notes in Computer Science,
pages 122–136, 2001.

[6] Christian Queinnec. Inverting back the inversion of control or, continuations
versus page-centric programming. SIGPLAN Not., 38(2):57–64, 2003.

[7] Christian Queinnec. Continuations and web servers. Higher-Order and Symbolic
Computation: an International Journal, pages 1–16, 2004.

[8] Paul Graham. Beating the averages. http://www.paulgraham.com/avg.html.

[9] Stéphane Ducasse, Adrian Lienhard, and Lukas Renggli. Seaside — a multiple
control flow web application framework. In Proceedings of 12th International
Smalltalk Conference (ISC’04), pages 231–257, September 2004.

[10] Fred Rivard. Pour un lien d’instanciation dynamique dans les langages à classes.
In JFLA96. INRIA — collection didactique, January 1996.

[11] John Brant, Brian Foote, Ralph Johnson, and Don Roberts. Wrappers to the
rescue. In Proceedings European Conference on Object Oriented Programming
(ECOOP 1998), volume 1445 of LNCS, pages 396–417. Springer-Verlag, 1998.

14

[12] Stéphane Ducasse. Evaluating message passing control techniques in Smalltalk.
Journal of Object-Oriented Programming (JOOP), 12(6):39–44, June 1999.

[13] Gregor Kiczales, Jim des Rivières, and Daniel G. Bobrow. The Art of the
Metaobject Protocol. MIT Press, 1991.

15

